
REPRESENTATIONS OF QUIVERS

M. BAROT

The study of representations of quivers was initiated in the early seventies
of the past century. By now, a number of remarkable connections to other
algebraic topics have been discovered, in particular to Lie algebras, Hall
algebras and quantum groups and more recently to cluster algebras. We
describe briefley the contents of the five lectures. In the first lecture the
principal notions of quivers and their representations are introduced, in the
second the classification problem is studied in three examples, the third lec-
ture is concerned with morphisms between representations, the forth with
properties of the representations which do not depend on the orientation of
the quiver and the fifth and last lecture with the connection of representa-
tions of quivers to finite-dimensional modules over algebras.

These notes were written for a course with the same title at the Advanced

School on Representation Theory and Related Topics, at the Abdus Salam
International Centre for Theoretical Physics in January 2006, in Trieste,
Italy. As the course was planned to be the most basic one, a major emphasis
was put to maintain things as simple and elementary as possible, while at the
same time it was intended to reach some of the milestones of representation
theory. There were two guiding rules: the notes should be completely self-
contained (of course, this one was missed) and the simple and intuitive
special case would have to be favored over the general and tricky one.

Also, since this version was finished only days before the meeting started,
it almost certainly contains some misprints and misleading formulations.
You should therefore be encouraged to point out any possible improvement
without pity to me.

I thank D. Benson, D. Kussin, H. Lenzing and J. Schröer for helpful remarks

and discussions and especially D. Labardini for reading and correcting the

whole draft as carefully as possible under the given time pressure.

1. The objects we study

1.1. Quivers. Roughly speaking, a quiver is an oriented graph, and
to be more precise, we explicitly allow multiple arrows between two
vertices and do not reduce to graphs with attached labels expressing
the multiplicity. Formally, a quiver is a quadruple Q = (Q0, Q1, s, t),
where Q0 is the set of vertices, Q1 is the set of arrows and s, t are two

1



2 M. BAROT

maps Q1 → Q0, assigning the starting vertex and the terminating

vertex or end vertex for each arrow. The quiver is finite if both sets
Q0 and Q1 are finite. For arrows α with s(α) = i and t(α) = j, we
usually write. α : i→ j.

Example 1.1. The following picture shows the quiver Q, where Q0 =
{1, 2, 3}, Q1 = {α, β, γ, δ} and s(α) = s(β) = 1, s(γ) = s(δ) = 2 and
t(α) = t(δ) = 3, t(β) = t(γ) = 2.
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1.2. Representations. A representation of a given quiver Q over
a field K assigns to each vertex i of Q a vector space V (i) and to each
arrow α : i→ j a K-linear map V (α) : V (i) → V (j). More formally, a

representation is a pair of families V =
(
(V (i))i∈Q0

, (V (α))α∈Q1

)
. We

do not make explicit reference to the ground field K, if no confusion
can arise.

Example 1.2. For any quiver there exists the zero representation,
which assigns to each vertex the zero space (and consequently to each
arrow the zero map).

In this notes, we will always restrict to finite-dimensional represen-
tations, that is, those representations V for which the total dimen-

sion dimK V =
∑

i∈Q0
dimK V (i) is finite. We say that two representa-

tions are isomorphic if they define the same vector spaces and linear
maps up to some base change. More precisely, if V and W are the two
representations of Q, then V is isomorphic to W if and only if there
exists a familiy of linear, bijective maps ϕ(i) : V (i) → W (i) such that
for any arrow α : i → j we have W (α) = ϕ(j)V (α)ϕ(i)−1. In that
case, the family ϕ = (ϕ(i))i∈Q0

is called an isomorphism from V to
W and we shall denote this by ϕ : V ∼−→ W . We write V ' W if V
and W are isomorphic.

Example 1.3. Let Q be the quiver of Example 1.1. Then the following
picture shows two representations, one on the left hand side and one on
the right hand side whereas the three horizontal maps (given in terms
of matrices) define an isomorphism, as can be verified directly.
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1.3. Morphisms. The notion of a morphism arises as a generaliza-
tion of an isomorphism, where the condition of bijectivity is dropped.
So, a morphism from a representation V to a representation W (both of
the same quiver Q − since there is no natural way to define morphisms
between representations of different quivers), is a familiy ϕ = (ϕ(i))i∈Q0

of linear maps ϕ(i) : V (i) → W (i) such that for any arrow α : i → j
we have W (α)ϕ(i) = ϕ(j)V (α). This condition is equivalent to the
commutativity of the following diagram.

V (j)

V (i)

W (j)

W (i)

? ?
-

-

ϕ(j)

ϕ(i)

V (α) W (α)(1.1)

We write ϕ : V → W to denote the fact that ϕ is a morphism from V
to W .

Example 1.4. For any representation V of Q there is always the
identity morphism 1V : V → V defined by the identity maps
(1V )(i) : V (i) → V (i), for any vertex i of Q.

It is straightforward that the set of morphisms ϕ : V → W is a vector
space over K, in particular there always exists the zero morphism,
also denoted by 0, given by the family of zero maps. Also, two mor-
phisms ϕ : U → V and ψ : V → W can be composed to a morphism
ψϕ = (ψ(i)ϕ(i))i∈Q0

: U → W . This composition is bilinear, that is,
whenever the sums and compositions are defined, we have

(a′ψ′ + a′′ψ′′)ϕ = a′ψ′ϕ+ a′′ψ′′ϕ for all a′, a′′ ∈ K and

ψ(b′ϕ′ + b′′ϕ′′) = b′ψϕ′ + b′′ψ′ϕ′′ for all b′, b′′ ∈ K.

The vector space of morphisms V →W will be denoted by HomQ(V,W ).
Notice that EndQ(V ) = HomQ(V, V ) is a K-algebra, that is, a ring R
together with an injective ring-homomorphism from K to the center of
R. Any element of EndQ(V ) is called an endomorphism of V and
EndQ(V ) itself the endomorphism algebra of V .
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Example 1.5. If Q is the quiver of Example 1.1 and V the repre-
sentation on the right in Example 1.3 and W the representation with
W (1) = W (2) = 0 and W (3) = k, then there is only the zero mor-
phism from V to W , but the space of morphisms from W to V is
two-dimensional, as any linear map f : W (3) → V (3) gives rise to a
morphism ϕ : W → V with ϕ(3) = f .

Notice that the isomorphisms of representations are exactly the in-

vertible morphisms, that is, those morphisms ϕ : V → W for which
there exists a morphism ψ : W → V such that ψϕ = 1V and ϕψ = 1W .

1.4. Indecomposables. If V and W are representations of a quiver Q
then we can define a new representation, called the direct sum of V
andW , and denoted by V ⊕W , by putting (V ⊕W )(i) = V (i)⊕W (i) for
each vertex i and (V ⊕W )(α) = V (α)⊕W (α) (defined componentwise)
for each arrow α of Q.

Example 1.6. Let Q be the quiver of Example 1.1 and V be one of the
two isomorphic representations in example 1.3. Then V is isomorphic
to W ⊕W ′, where W and W ′ are given as follows.
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A representation of Q is called indecomposable if it is not isomorphic
to the direct sum of two non-zero representations (that is, neither of
them is the zero representation). Any non-zero representation can be
decomposed into a finite direct sum of indecomposables, that is, for
any V 6= 0 there exist indecomposable representations W1, . . . ,Wt such
that V ' W1 ⊕ . . .⊕Wt. This follows easily by induction on the total
dimension dimK V .

Exercise 1.7. Let Q be the quiver with vertices Q0 = {1, 2} and one
arrow α : 1 → 2. Show that a representation V with V (1) ' V (2) ' K
is indecomposable if and only if V (α) 6= 0. Show also, that in any case,
the representation S, defined by S(1) = 0 and S(2) = V (2), is always
a subrepresentation of V (that is, the inclusions S(i) ⊆ V (i) define
a morphism of representations).
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Theorem 1.8 (Krull-Remak-Schmidt). The indecomposables appear-
ing in the decomposition are unique up to order and isomorphism. More
precisely, if V1, . . . , Vs,W1, . . . ,Wt are indecomposable representrations
such that V1 ⊕ . . .⊕ Vs ' W1 ⊕ . . .⊕Wt, then s = t and there exists a
permutation π (of 1, . . . , s) such that Vi ' Wπ(i) for any 1 ≤ i ≤ s.

The proof is given in section 1.6. If V and W are two non-zero repre-
sentations and ψV : V

∼
−→ V1⊕. . .⊕Vs and ψW : W

∼
−→ W1⊕. . .⊕Wt are

decompositions into indecomposables, then any morphism ϕ : V → W
can be written uniquely as a matrix of morphisms between the in-
decomposable summands, where the entry in the i-th row and j-th
column is the composition ϕji : Vi → Wj of the canonical inclusion

ιi : Vi →
⊕s

a=1 Va with ψWϕψ
−1
V :

⊕s
a=1 Va →

⊕t
b=1Wb and the canon-

ical projection πj :
⊕t

b=1Wb → Wj. Notice that ιi and πj are mor-
phisms of representations.

1.5. Fitting’s Lemma. The following result is very useful in many
situations. Recall that an algebra (or more generally, a ring) A is local

when its subset of non-invertible elements is closed under addition, and
also recall that an element a ∈ A is called nilpotent if an = 0 for some
n > 0.

Proposition 1.9 (Fitting’s Lemma). If V a non-zero, finite dimen-
sional representation of Q, then V is indecomposable if and only if
EndQ(V ) is local. When the field K is algebraically closed, this hap-
pens if and only if any endomorphism of V can be written as sum of a
nilpotent endomorphism with a multiple of the identity.

Proof. Since dimK V is finite, for any endomorphism ϕ of V , there
exists a natural number n such that ϕn(V ) = ϕn+1(V ). Set ψ = ϕn.
Then we have V ' ψ(V ) ⊕ W , where W (i) = ψ(i)−1(0). Hence, if
V is indecomposable, we must have ψ(V ) = 0 or W = 0. If W = 0
then ψ(i) is bijective and therefore ϕ(i) is bijective for all i. Hence ϕ
is invertible. If ψ(V ) = 0 then ϕ is nilpotent. This shows that any
endomorphism is either invertible or nilpotent.

Now, the composition (in any order) of any endomorphism with a nilpo-
tent one is clearly non-invertible and hence nilpotent. Also, for ψ nilpo-
tent, 1V −ψ is invertible (its inverse is 1V +ψ+ψ2 +ψ3 + . . ., which is a
finite sum since ψ is nilpotent). To show that the sum of any two non-
invertible endomorphisms is non-invertible again, take two nilpotent
endomorphisms ψ and ψ′. Then ψ + ψ′ is nilpotent, since otherwise it
would be invertible and then we could find η such that 1V = ηψ+ ηψ′,
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which is impossible since 1V − ηψ = ηψ′ would be both invertible and
nilpotent. We conclude that the set of non-invertible endomorphisms
of V is closed under adition.

Conversely, assume that V is not indecomposable, say η : V ∼−→ V ′ ⊕
V ′′, with V ′ and V ′′ both non-zero. Then the endomorphisms e′ =

η−1

[
1V ′ 0
0 0

]
η and e′′ = η−1

[
0 0
0 1V ′′

]
η are both idempotents, that

is e′e′ = e′ and e′′e′′ = e′′. Now, e′ and e′′ are both non-invertible but
1V = e′ + e′′. So EndQ(V ) is not local.

Now assume that K is algebraically closed. If V is indecomposable,
then for any endomorphism ϕ, we can certainly find a scalar a ∈ K
such that ϕ−a1V is not invertible and therefore nilpotent. This shows
that any endomorphism of V can be written in the form a1V + ψ with
a ∈ K and ψ nilpotent. If V decomposes, then the idempotents e′, e′′

defined as above cannot be written in this form. �

1.6. Proof of the Theorem 1.8. Let ϕ : V → W be an isomor-
phism, V = V1 ⊕ . . .⊕ Vs and W = W1 ⊕ . . .⊕Wt decompositions into
indecomposables. Then ϕ can be written as a matrix ϕ = (ϕji)

s
i=1

t
j=1,

where ϕji : Vi → Wj. Similarly write ψ = ϕ−1 as matrix and observe

that 1V1
= (ψϕ)11 =

∑t

l=1 ψ1lϕl1. One summand on the right must
then be invertible, since EndA(V1) is local. We assume without loss of
generality that ψ11ϕ11 is invertible. But, since both representations, V1

and W1, are indecomposable, we have that both morphisms, ψ11 and
ϕ11, are invertible.

We now exchange the given isomorphism ϕ by ϕ′ = αϕβ, where α and
β are given as

α =




1W1
0 · · · 0

−ϕ21ϕ
−1
11 1W2

· · · 0
...

...
· · ·

...
−ϕt1ϕ

−1
11 0 · · · 1Wt


, β =




1V1
−ϕ−1

11 ϕ12 · · · −ϕ−1
11 ϕ1s

0 1V2
· · · 0

...
...

· · ·
...

0 0 · · · 1Vs




and observe that ϕ′ =

[
ϕ11 0
0 Φ

]
, where Φ :

⊕s
i=2 Vi →

⊕t
j=2Wj. Since

ϕ′ is bijective, so must be Φ, which is thus an isomorphism again. The
result follows now by induction. �
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2. The classification problem

2.1. The problem. Given the fact that any representation can be
decomposed into indecomposable representations uniquely (up to iso-
morphism and order) and that any morphism then can be viewed as a
matrix between the indecomposables, one is tempted to think that all
what remains to do is to understand what indecomposables there are
and what morphisms between those indecomposables can exist for the
given quiver Q. This is the classification problem. The part concerned
with representations can be stated as follows: find a complete list of
pairwise non-isomorphic indecomposable representations.

We will solve this classification problem for certain, well chosen exam-
ples, but we also stress that this is not the whole story of representation
theory, not even close.

2.2. A first example. We consider a linearly ordered quiver (called
linear quiver, for short) as shown in the following picture

Q : r r r r r r- - - --
1 2 3 n− 2 n− 1 n

α1 α2 αn−2 αn−1

and will try to solve the classification problem, that is, we will try to
determine a complete set of pairwise non-isomorphic indecomposable
representations for Q. For that, let V be an indecomposable represen-
tation of Q.

Step 1. If V (αi) is not injective then V (j) = 0 for j > i. Suppose
first that V (α1), . . . , V (αi−1) are all injective, but V (αi) is not. Then
we set W (i) = KerV (αi) and inductively W (j) = V (αj)

−1(W (j + 1))
for j = i− 1, i− 2, . . . , 1. Let S(1) be a supplement of W (1) (that is,
a subspace of V (1) such that V (1) is the internal direct sum of W (1)
and S(1)) and for j = 1, . . . , i − 1, inductively define S(j + 1) to be
a supplement of W (j + 1) such that V (αj)(S(j)) ⊆ S(j + 1) (this is
possible since V (αj) is injective and V (αj)(S(j)) ∩W (j + 1) = 0).

We thus see that V decomposes into W ⊕ V ′, where

W = W (1) → . . .→W (i) → 0 → . . .→ 0) and

V ′ = S(1) → . . .→ S(i) → V (i + 1) → . . .→ V (n).

Since V is indecomposable and W (i) 6= 0 the summand V ′ must be
zero.

Step 2. If V (αj) is not surjective then V (h) = 0 for all h ≤ j. This
is proved very similarly to Step 1.
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Step 3. The representation V is isomorphic to

[j, i] : 0 → . . .→ 0 → K
1K−→ . . .

1K−→ K → 0 → . . .→ 0,

where the first occurrence of K happens in place 1 ≤ j and the last in
place i ≤ n.

If all maps V (αh) (1 ≤ h < n) are injective, let i = n. Otherwise,
let i be minimal such that V (αi) is not injective. If all maps V (αh)
(1 ≤ h < i) are surjective, let j = 1. Otherwise let j ≤ i be maximal
such that V (αj−1) is not surjective. Hence the maps V (αh) are bijective
for j ≤ h < i and by Step 1 and 2, we have V (h) = 0 for h < j and
h > i.

Therefore, V is isomorphic to

0 → . . .→ 0 → Kd 1d−→ . . .
1d−→ Kd → 0 → . . .→ 0,

where 1d denotes the identity matrix of size d× d. Hence V is isomor-
phic to d copies of [j, i] and since V is indecomposable, we must have
d = 1.

Step 4. The representations [j, i] are indecomposable and pairwise
non-isomorphic. The indecomposablity follows easily by contradiction.
Suppose that V := [j, i] decomposes, say V = W ⊕W ′ with W 6= 0
and W ′ 6= 0. Then dimK V ≥ 2 and hence j < i. Assume that W is
the representation with W (j) ' K (otherwise switch W and W ′) and
let h ≥ j be minimal such that W (h) = 0. Since W ′ 6= 0 we must have
h < i and W ′(h) ' K. Therefore, we have (W ⊕ W ′)(αh−1) = 0 in
contradiction to V (αh−1) = 1K.

Clearly, V = [j, i] is isomomorphic to V ′ = [j ′, i′] if and only if i = i′

and j = j ′ since you easily can find a vertex h for which dimK V (h) 6=
dimK V ′(h) in case (j, i) 6= (j ′, i′).

Hence we have found a complete list of pairwise non-isomorphic inde-

composables. There are n(n+1)
2

indecomposables, up to isomorphism,
and therefore Q is representation-finite or of finite representa-

tion type.

2.3. A second example. Here we consider a much simpler quiver L1,
which has only one vertex and one arrow, which then must be a loop,
that is, it starts and ends at the same vertex. A representation of this
quiver is just a vector space V together with a linear endomorphism
f : V → V . Choosing a base of V and writing f in this base, we get a
square matrix F and therefore an isomorphic representation (Km, F ),
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where m = dimK V . Two such representations (Km, F ) and (Kn, G)
are isomorphic if and only if m = n and F and G are conjugate.

We know from linear algebra that, if the field K is algebraically closed,
then there exists a normal form under conjugation (the Jordan nor-

mal form): the matrix F is conjugate to a Jordan matrix, which
we conveniently write as

Jm1,µ1
⊕ Jm2,µ2

⊕ . . .⊕ Jmt,µt
,

that is, it is a block matrix, whose non-diagonal blocks are zero and its
diagonal blocks are Jordan blocks of size m×m

Jm,µ =

µ

µ
···

µ

µ

1

1

1

···

��
����
��

with µ ∈ K, where the two big circles indicate that everything there is
zero. For our representation, this means that (Km, F ) decomposes as
follows

(Km, F ) ' (Km1 , Jm1,µ1
) ⊕ . . .⊕ (Kmt , Jmt,µt

).

If the field K is not algebraically closed, then there also exists a normal
form, but it is more complicated.

The representations Rm,µ = (Km, Jm,µ) are therefore good candidates
for our list of indecomposables. In fact, they are all the indecompos-
ables up to isomorphism and pairwise non-isomorphic. Hence they
give the complete list we are looking for. To see this, we assume that
ϕ : Rm,µ → Rn,ν is a morphism, given by a matrix T of size n × m.
From TJm,µ = Jn,νT we obtain

(2.2) µT + TJm,0 = νT + Jn,0T.

If µ 6= ν then look at the position (n, 1), that is in the n-th row and first
column of (2.2), we see that µTn,1 = νTn,1 and therefore Tn,1 = 0. Next,
we look at the position (n − 1, 1). We get µTn−1,1 = νTn−1,1 + Tn,1 =
νTn−1,1 so Tn−1,1 = 0. Inductively, we see that Ti,1 = 0 for all i. Then
we repeat this argument for the second (third, forth and so on) column,
starting form the bottom to the top and get that any column of T is
zero. So, for µ 6= ν, we get HomQ(Rm,µ, Rn,ν) = 0 for any m and any n.
This already shows that for µ 6= ν the representations Rm,µ and Rn,ν

are non-isomorphic.

Now, we shall see that Rm,µ is indecomposable. So, assume that µ = ν.
Then we can simplify the equation (2.2) and get TJm,0 = Jn,0T . If we
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look at the last row on both sides, we get Tn,j = 0 for all j < m.
Then we look at the row n − 1 and get that Tn−1,j = 0 for j < m − 1
and Tn,m = Tn−1,m−1. Inductively, we get Tij = 0 for i > j and
Ti−1,j−1 = Tij for 1 < i ≤ n and 1 < j ≤ m. Hence HomQ(Rm,µ, Rn,µ)
is |m− n|+ 1 dimensional. In particular, if m = n, the morphism ϕ is
of the form

ϕ = T1,11 + T1,2γm + T1,3γ
2
m + . . .+ T1,nγ

n−1
m

where γm is given by the nilpotent matrix Jm,0. Therefore we can write
ϕ = T1,11 + ψ, where ψ is nilpotent. In particular, ϕ is invertible if
and only if T1,1 6= 0, and the sum of two non-invertible endomorphisms
is again non-invertible. By Fitting’s Lemma (Proposition 1.9), this
is enough to ensure the indecomposability of the representation Rm,µ.
Therefore

Rm,µ, with µ ∈ K and m ∈ N1 = {1, 2, 3, . . .},

is a complete list of pairwise non-isomorphic indecomposables. This list
is infinite, and we call therefore the quiver Q to be representation

infinite, or of infinite representation type.

Observe that in each dimension there is a one-parameter family

of indecomposables, that is a family indexed by the field of pairwise
non-isomorphic indecomposables.

2.4. The phenomenon of wildness. We have already seen two ex-
amples and we shall consider one more to complete the picture. In the
third example, we consider the three-Kronecker quiver, which has
two vertices and three arrows, all of them starting in one vertex and
ending in the other vertex, as shown in the following picture.

r r-R
�

1 2

α

β

γ
(2.3)

In this case we consider the following representations Vλ,µ, for which
Vλ,µ(1) = K2, Vλ,µ(2) = K and

Vλ,µ(α) = [1 0], Vλ,µ(β) = [0 1] and Vλ,µ(γ) = [λ µ].

Suppose that there is a morphism ϕ : Vλ,µ → Vρ,σ, given by matrices T
and U such that

U [1 0] = [1 0]T, U [0 1] = [0 1]T, and U [λ µ] = [ρ σ]T.
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Since U is of size 1 × 1, say U = [u] with u ∈ K, from the first two
equations we get u12 = 12T = T . Hence we infer from the last equation
that either u = 0 and T = 0 or u 6= 0, in which case λ = ρ and µ = σ.

This shows that the representations Vλ,µ are pairwise non-isomorphic,
and that any endomorphism of Vλ,µ is a multiple of the identity mor-
phism. Hence Vλ,µ is indecomposable by Fitting’s Lemma (Proposition
1.9).

Thus we found a two parameter family of pairwise non-isomorphic
indecomposables. For a representation theorist, this is a point where
it is clear that it is hopeless to try to write down a complete list of all
indecomposables. The three-Kronecker quiver is called wild, a termi-
nology which becomes clearer by the following result:

Proposition 2.1. If we could solve the classification problem for the
quiver Q as in (2.3) then we could solve it for any quiver Q′.

Proof. The proof is done in several steps, in which we shall consider
the quivers Lt for t ≥ 2, which have one vertex and t loops α1, . . . , αt

starting and ending at the one vertex 0. To simplify notation, for a
representation V of Lt, set V0 = V (0) and Vi = V (αi) for i = 1, . . . , t.

Step 1. If we could solve the classification problem for Q then also
for L2.

For any representation V of L2, we get a representation F (V ) of the
quiver Q as follows.

V0 ⊕ V0 V0
-
R

�

[1V0
0]

[0 1V0
]

[V1 V2]

that is, F (V )(1) = V0 ⊕ V0, F (V )(2) = V0 and F (V )(α) = [1V0
0],

F (V )(β) = [0 1V0
] and F (V )(γ) = [V1 V2]. Furthermore, for any

morphism ϕ ∈ HomL2
(V,W ) a morphism F (ϕ) ∈ HomQ(F (V ), F (W ))

is obtained by F (ϕ)(1) = ϕ⊕ ϕ and F (ϕ)(2) = ϕ.

Conversely, if ψ : F (V ) → F (W ) is a morphism, then we have

ψ(1) [1W0
0] = [1V0

0]ψ(2),

ψ(1) [0 1W0
] = [0 1V0

]ψ(2) and

ψ(1) [W1 W2] = [V1 V2]ψ(2).
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From the first two equations, we infer that ψ(1) = ψ(2) ⊕ ψ(2) and
from the last that ψ(2)Wi = Viψ(2) for i = 1, 2, that is ψ(2) : V → W
is a morphism of representations of L2 and ψ = F (ψ(2)). It is now
easy to see that the map ϕ 7→ F (ϕ) is linear and satisfies F (ϕ2ϕ1) =
F (ϕ)2F (ϕ)1. Hence EndL2

(V ) and EndQ(F (V )) are always isomorphic
and thus it follows from Proposition 1.9 that V is indecomposable if
and only if F (V ) is indecomposable and two representations V and
W of L2 are isomorphic if and only if F (V ) and F (W ) are isomorphic
representations of Q. Hence the classification problem of L2 is included
in the classification problem of Q.

Step 2. If we could solve the classification problem for Q then also
for Lt for any t ≥ 2.

For a representation V of Lt define a representation G(V ) of L2 by
setting G(V )0 = (V0)

t+1 and

G(V )1 =

0

0
···

0

0

1V0

1V0

1V0

···

��
����
��

, G(V )2 =

0

0
···

0

0

V1

V2

Vt

···

��
����
��

.

For any ϕ ∈ HomLt
(V,W ), we define G(ϕ) : G(V ) → G(W ) by G(ϕ) =

ϕ⊕ϕ⊕. . .⊕ϕ (t+1 times). Conversely, let ψ ∈ HomL2
(G(V ), G(W )) be

a morphism. Write ψ in blocks and consider first ψG(V )1 = G(W )1ψ.
With similar arguments as when we studied morphisms between in-
decomposable representations of L1, we obtain that there exists some
linear maps f0, f1, . . . , ft : V0 → W0 such that

ψ =

f0
···

f0

f0

f1

f1

ft
···

···

··
·

��
�� .

Now, consider the second equation ψG(V )2 = G(W )2ψ. We get f0Vi =
Wif0 for all i = 1, . . . , t and some other equations (to be precise, we
get fj−i−1Vj−1 = Wifj−i−1 for 1 ≤ i ≤ j ≤ t). Hence f0 : V → W is
a mophism of representations of L2. Also, ψ is invertible if and only
if f0 is invertible. Therefore V ' W if and only if G(V ) ' G(W ).
Moreover, any endomorphism ψ ∈ EndL2

(G(V )) can be written as ψ =
G(f0) + ψ′, where f0 ∈ EndLt

(V ) and ψ′ is a nilpotent endomorphism
of G(V ). Hence EndLt

(V ) is local if and only if EndL2
(G(V )) is local.
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We conclude that the classification problem of Lt is included in the
classification problem of L2 and therefore Step 2 follows from Step 1.

Step 3. If we could solve the classification problem for Q then also
for any quiver Q′.

To simplify notations, assume that Q′
0 = {1, . . . , n} and that Q′

1 =
{β1, . . . , βr} with βj : sj → ej. Then let t = n + s and for any repre-
sentation V of Q′ define a representation H(V ) of Lt as follows. Set
H(V )0 = V (1)⊕ . . .⊕V (n). For 1 ≤ i ≤ n let H(V )i be the block ma-
trix, whose only non-zero block is 1V (i) at position (i, i). For 1 ≤ j ≤ r
let H(V )n+j be the block matrix, whose only non-zero block is V (βi)
at position (ei, si).

For ϕ ∈ HomQ′(V,W ), we define H(ϕ) ∈ HomLt
(H(V ), H(W )) by

H(ϕ) = ϕ(1) ⊕ . . .⊕ ϕ(n). And if ψ : H(V ) → H(W ) is a morphsim
we get immediatly from ψH(V )i = H(W )iψ for 1 ≤ i ≤ n that ψ =
ψ(1) ⊕ . . .⊕ ψ(n) for some linear maps ψ(i) : V (i) → V (i). But then,
the equations ψH(V )n+j = H(W )n+jψ show that the family (ψ(i))i∈Q′

0

is a morphism V → W of representations of Q. Again, H is linear on
the morphism spaces and commutes with the composition. Hence we
get that V is indecomposable if and only if H(V ) is indecomposable
and two representations of Q′ are isomorphic if and only if their images
under H are isomorphic. Hence the classification problem of Q′ is
included in the classification problem of Lt and therefore Step 3 follows
from Step 2. �

2.5. The representation types. We have encountered three different
situations:

• A finite list of indecomposables as in the case of the linear
quivers.

• An infinite but complete list of indecomposables containing in
each dimension only finitely many one-parameter family of pair-
wise non-isomorphic indecomposables. This was the case for the
quiver L1.

• A two parameter family of pairwise non-isomorphic indecom-
posable representations in some dimension, as in the three Kro-
necker problem.

These are the basic three representation types which occur in rep-
resentation theory. The second and third case are of infinte repre-

sentation type, but there is no general agreement on the term tame,
since some authors prefer to use it to refer only to the second case



14 M. BAROT

above (and hence always assume that the quiver is representation in-
finite) while others include the representation-finite quivers when they
speak of tame quivers.

Exercise 2.2. What representation type has the following quiver?r r r
r@@R ?��	

Classifying is one of the most important problems in representation
theory, but clearly there are many others. We used only linear alge-
bra, which is simple and powerful enough to do the job. However, you
should have noticed that we lack some general strategy. Furthermore,
we gained no structural insight and got just a plain list of indecom-
posables. There are better methods, very effective when applied to ex-
amples because they are somehow “self-correcting”, which means that
mistakes tend to surface quickly. These “better methods” are based on
the Auslander-Reiten theory, to be explained in another course.

3. Morphisms

3.1. Radical morphisms. The additional structure for these lists of
indecomposables is given by the morphisms. We start with some simple
facts and therefore fix a quiver Q.

A linear map f is injective if and only if fg = fg′ always implies
g = g′. Now, a morphism f : V → W of representations of Q satisfies
that fg = fg′ implies g = g′ if and only f(i) is injective for every vertex
i ∈ Q0 and we say then that f itself is injective. This can be easily
seen by considering Ker f , a representation of Q, called the kernel of
f , given by (Ker f)(i) = Ker(f(i)) for each vertex i ∈ Q0 and the maps
(Ker f)(α) are induced by V (α) for each arrow α ∈ Q1. Notice that
Ker f is a subrepresentation of V , that is the inclusion ι : Ker f → V ,
given by the family of inclusion Ker f(i) ⊆ V (i), is a morphism. Now,
if f is injective then for the morphisms ι and 0 from Ker f to V we
have fι = f0 and therefore ι = 0. This means that Ker f is the zero
representation and hence f(i) is injective for any i. The converse is
straightforward.

Similarly, we define the subrepresentation Im f of W called the image

of f and see that gf = g′f always implies g = g′ if and only if f(i) is
surjective for any vertex i ∈ Q0 if and only if Im f = W , in which case,
we call f surjective. Hence by definition, f is an isomorphism if and
only if f is injective and surjective.
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Lemma 3.1. The composition of two non-isomorphisms between inde-
composables is a non-isomorphism again.

Proof. Assume that U, V and W are indecomposables and that f :
U → V and h : V → W are such that hf is an isomorphism. Then
set g = (hf)−1h : V → U , so gf = 1U . Then f is injective, U ' Im f
and we have V (i) = Im f(i) ⊕ Ker g(i) for each vertex i. Indeed, if
ϕ = f(i), ψ = g(i) then ϕ(u) ∈ Kerψ then u = ψϕ(u) = 0 showing
Imϕ ∩ Kerψ = 0. On the other hand, for any v ∈ V (i), we have
v − ϕψ(v) ∈ Kerψ and therefore v = ϕ(ψ(v)) + (v − ϕψ(v)) ∈ Imϕ +
Kerψ. This shows that V decomposes, V = Im f ⊕ Ker g and since
V is indecomposable and Im f ' U 6= 0 we must have Ker g = 0 and
therefore Im f = V and both, f and g are isomorphisms. Therefore
also h is an isomorphism. �

A morphism f : V → W between representations is called radical if,
written as a matrix of morphisms between indecomposables, no entry
is an isomorphism. The set of radical morphisms from U to V shall be
denoted by radQ(U, V ).

Proposition 3.2. The sets radQ(U, V ) are vector spaces and the com-
position (in any order) of a radical morphism with any morphism is
radical again.

Proof. If U and V are non-isomorphic indecomposable representations,
then radQ(U, V ) = HomQ(U, V ), which is a vector space. If U = V is
indecomposable then the radical morphisms U → U are precisely the
nilpotent morphisms and are therefore closed under sums and scalar
multiples, by Fitting’s Lemma (Proposition 1.9). If f : V → U is an
isomorphism, then g : U → V is radical if and only if fg : U → U
is nilpotent, hence HomQ(U, f) : HomQ(U, V ) → HomQ(U, U), g 7→ fg
is a linear bijection, which maps radQ(U, V ) into radQ(U, U), a vector
space. The first assertion follows now by decomposing into indecom-
posables.

Let T
f
−→ U

g
−→ V

h
−→ W be morphisms with g radical. By Lemma

3.1, if T, U, V and W are indecomposables then gf and hg are also
radical. Otherwise decompose them into indecomposables and write
the morphisms as matrices. Then any entry of gf and hg is a sum of
compositions of a radical morphism with some other morphism between
indecomposables and hence radical by the above. �
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3.2. Irreducible morphims. We calculate the radical morphisms be-
tween indecomposable representations in an example, namely the rep-
resentation finite case we studied in 2.2. For that, let us adopt the
notation established there.

Suppose that ψ : [j, i] → [j ′, i′] is a morphism and set ψj = ψ(j) to
simplify notation. For each arrow αi in Q, we obtain a commutative
square. If we omit the cases where the commutativity always is garan-
teed, the following three cases remain.

K

K

K

K

? ?
-

-

1K

1K

ψh ψh+1

0

K

K

K

? ?
-

-

0

1K

ψh ψh+1

K

K

K

0

? ?
-

-

1K

0

ψh ψh+1

It is now easy to see that we get the following description for the
morphism spaces.

Hom([j, i], [j ′, i′]) =

{
K γj′,i′

j,i , if j ′ ≤ j ≤ i′ ≤ i

0, else,

where γ = γj′,i′

j,i : [j, i] → [j ′, i′] is the morphism with γ(h) = 1K

for each max(j, j ′) ≤ h ≤ min(i, i′). Notice that the maps γj′,i′

j,i behave

multiplicatively, that is γj′′,i′′

j′,i′ γ
j′,i′

j,i = γj′′,i′′

j,i , if j ′′ ≤ j ≤ i′′ ≤ i. Therefore

there are some “shortest” radical morphisms, namely γj−1,i
j,i (if 1 < j)

and γj,i−1
j,i (if j < i).

���

���

���

���

���

���

���

���

���

���@@R

@@R

@@R

@@R

@@R

@@R

@@R

@@R

@@R

@@R
[5, 5]

[4, 5]

[3, 5]

[2, 5]

[1, 5]

[4, 4]

[3, 4]

[2, 4]

[1, 4]

[3, 3]

[2, 3]

[1, 3]

[2, 2]

[1, 2]

[1, 1]

(3.4)

Notice that the whole diagram is commutative. Observe that in the
picture (3.4), the morphisms going up are all injective and the mor-
phisms going down are all surjective. But there is much more structure
inside of it as we shall see soon.

For any two representations U and V , we define the square-radical

rad2
Q(U, V ) =

∑
W radQ(W,V ) radQ(U,W ) to be the subspace of

radQ(U, V ) generated by all possible compositions U →W → V of two
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radical morphisms. More generally, for i ≥ 2, we define inductively the
ith power of the radical radi

Q(U, V ) =
∑

W radQ(W,V ) radi−1
Q (U,W )

and finally, the infinite radical rad∞
Q (U, V ) =

⋂
i≥1 radi

Q(U, V ) to be
the set of morphisms which can be written as compositions of arbitrar-
ily many radical morphisms.

A morphism f ∈ radQ(U, V ) is called irreducible if f 6∈ rad2
Q(U, V )

(this is the formal definition for a morphism to be “shortest among the
radical morphisms”).

Exercise 3.3. Any irreducible morphism (between indecomposable
representations) is either injective or surjective but not both. Com-
pare this general result with the example studied above (3.4).

Exercise 3.4. A morphism f : U → V between indecomposables is
irreducible if and only if it is not an isomorphism and whenever η = ψϕ
for some morphisms ϕ : V → U and ψ : U → W (where U is not
necessarily indecomposable) then ϕ is a section (that is there exists
ϕ′ : U → V with ϕ′ϕ = 1V ) or ψ a retraction (that is there exists
ψ′ : W → U with ψψ′ = 1W ).

3.3. The Auslander-Reiten quiver. Let us recall some notions from
homological algebra. A representation P of a quiver Q is projective

if any surjective morphism to P is a retraction. We will study the
projective representations in more detail in section 3.4 below. A rep-
resentation I is called injective if any injective morphism starting in
I is a section.

A sequence of morphisms X1
f1

−→ X2
f2

−→ X3 → . . . → Xt−1
ft−1

−−→ Xt

is called exact if for each 1 ≤ i ≤ t − 1 we have Im fi = Ker fi−1.
An exact sequence 0 → X → Y → Z → 0 is called a short exact

sequence. Call two short exact sequences 0 → X
f
−→ Y

g
−→ Z → 0 and

0 → X
f ′

−→ Y ′ g′

−→ Z → 0 equivalent if there exists an isomorphism
η : Y → Y ′ such that ηf = f ′ and g = g′η. Since one always can
choose Y ′ = KdimY , the equivalence classes form a set denoted by
Ext1

Q(Z,X) (it can be even seen that these sets are finite dimensional
vector spaces).

We say that a short exact sequence 0 → X
f
−→ Y

g
−→ Z → 0 splits

if g is a retraction. It is easily seen that this happens if and only if
f is a section. An almost split sequence is a short exact sequence

0 → W
f
−→ E

g
−→ V → 0 for which V and W are indecomposable and

f is a source map, that is f is not a section and any non-section
f ′ : W → E ′ factors through f , and g is a sink map, that is, g not a
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retraction and and any non-retraction g′ : E ′ → V factors through g.
Notice that an almost split sequence cannot be split.

The following result is the main theorem of the Auslander-Reiten the-
ory, it shows that there is a very rich structure for the irreducible
morphisms.

Theorem 3.5 (Auslander-Reiten). For any quiver Q, there exists a
bijective map τ from the indecomposable non-projective representations
to the indecomposable non-injective representations such that for each
non-projective indecomposable V there exists an almost split sequence
0 → τV → E → V → 0.

The map τ is called the Auslander Reiten translate. We show the
Auslander-Reiten translate in (3.4):

(3.5)

���

���

���

���

���

���

���

���

���

���@@R

@@R

@@R

@@R

@@R

@@R

@@R

@@R

@@R

@@R
[5, 5]

[4, 5]

[3, 5]

[2, 5]

[1, 5]

[4, 4]

[3, 4]

[2, 4]

[1, 4]

[3, 3]

[2, 3]

[1, 3]

[2, 2]

[1, 2]

[1, 1]�τ �τ �τ �τ

�τ �τ �τ

�τ �τ

�τ

Given a quiver Q, we define a new quiver ΓQ, which has as vertices some
chosen representatives of the isomorphism classes of indecomposable
representations of Q (even if we cannot classify them) and for the ar-
rows U → V chosen radical morphisms f1, . . . , fd which are mapped to
a base of radQ(U, V )/ rad2

Q(U, V ) under the canonical projection. This
quiver is called the Auslander-Reiten quiver of Q. Some authors
prefer not to choose representatives in order to make the assignation
Q 7→ ΓQ unique; they take the isomorphism classes of indecomposables
as vertices of ΓQ and take abstract symbols for the arrows.

Now, ΓQ decomposes into components in a straightforward way: two
objects X and Y lie in the same component if there is a “unoriented
path” of irreducible morphisms between them, more precisely, if there
are objects X = Z0, Z1, . . . , Zt−1, Zt = Y such that for each i = 1, . . . , t
there is an arrow (an irreducible morphism) Zi−1 → Zi or an arrow
Zi → Zi−1.

Although ΓQ encodes many information about the representations, it is
not all information in the representation-infinite case since morphisms
in the infinte radical remain unseen.
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Corollary 3.6. Let V be a non-projective indecomposable representa-
tion and

0 → τV
a=[a1 ... at]tr

−−−−−−−−→

t⊕

i=1

Ei

b=[b1 ... bt]
−−−−−−→ V → 0

be an almost split sequence where E1, . . . , Et are indecomposables. Then
the morphisms ai (resp. bi) can be chosen as arrows in ΓQ, and if done
so, then they are all arrows starting in τV (resp. ending in V ).

Proof. First note that for each i, the morphism ai is radical, since
otherwise it would be invertible and then a would be a section. Next, let
f : W = τV → X be an irreducible morphism into an indecomposable
representation X. Then f is certainly not a section and hence factors
over a, therefore there are morphisms f ′

i : Ei → X such that f =∑t

i=1 f
′
iai. If all morphisms f ′

i are radical, we could infer that f ∈
rad2

Q(W,X) in contradiction to the irreducibility of f . Hence at least
one f ′

j is invertible. If we denote by J ⊆ {1, . . . , t} the subset of indices
for which Ej ' X (to simplify notations, we shall assume Ej = X), we
can write f = (

∑
j∈J λjaj) + f ′′, where f ′′ ∈ rad2

Q(W,X) and λj ∈ K

for j ∈ J . This shows that {aj | j ∈ J} is mapped to a generating set
under the canonical projection to radQ(L,X)/ rad2

Q(L,X).

Suppose that
∑

j∈J λjaj ∈ rad2
Q(L,X) for some scalars λj ∈ K. We

express then aJ =
∑

j∈J λjaj in two different ways. First, aJ = ρf for

some retraction ρ :
⊕t

i=1Ei →
⊕

j∈J Ej and second, aJ = gf for two

radical morphisms g and f = f ′a. Hence (ρ − gf ′)a = 0 and there
is a morphism h : M → X such that ρ − gf ′ = hb. Since g and b
are radical, we have that ρ = gf ′ + hb is radical and simultaneously a
retraction, a contradiction unless ρ = 0. Hence aJ = 0 and we see that
aj for j ∈ J are linearly independent.

The statements for the morphism b are proved similarly. �

3.4. Projective and injective representations. Let Q be a quiver.
A path of length l is a (l + 2)-tuple

(3.6) w = (j|αl, αl−1, . . . , α2, α1|i)

which satisfies the following: its first and last entry are vertices and
the other entries are arrows satisfying s(α1) = i, t(αi) = s(αi+1) for
i = 1, . . . , l − 1 and t(αl) = j. We allow l = 0 but then require
that j = i. We extend the functions s and t in the obvious way:
s(w) = i and t(w) = j if w is the path above. The composition of two
paths v = (i|αl, . . . , α1|h) and w = (j|βm, . . . , β1|i) is then obviously
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declared as wv = (j|βm, . . . , β1, αl, . . . , α1|h). Notice that we write
the composition just in the same way as functions, which is not at all
standard in the literature, but rather a question of the taste of each
author. Since the case l = 0 is allowed in (3.6), we have one identity

path (i||i) for each vertex i.

For any representation V and any path w = (j|αl, . . . , α1|i) of posi-
tive length we define V (w) = V (αl) . . . V (α1) : V (i) → V (j) and set
V (ei) = 1V (i). By induction on the length of the paths we get that a
morphsim f : V → W always satisfies fhV (w) = W (w)fi for any path
w ∈ KQ(i, h).

Let KQ(j, i) be the vector space with basis all paths form i to j and
extend the composition bilinearly. Also, for an arrow α : j → h we
denote by

KQ(i, α) : KQ(i, j) → KQ(i, h), w 7→ αw

the composition with α on the left. Whereas, for an arrow β : h → i,
the composition with β on the right is denoted by

KQ(β, j) : KQ(i, j) → KQ(h, j), w 7→ wβ.

If we fix i, we therefore get two representations Pi = KQ(i, ?) and
Ii = DKQ(?, i), where D always denotes dualization over the ground
field K. Notice that all the representations Pi for i ∈ Q0 are finite
dimensional if and only if there is no oriented cycle in Q, that is a
path of positive length which starts and ends in the same vertex. Since
we want to deal only with finite dimensional representations we shall
from now on assume that Q has no oriented cycle. The representations
Pi and Ii are very important as we shall see now.

Exercise 3.7. Verify that for Q the linear quiver with n vertices we
have Pi ' [i, n] and Ii ' [1, i]. Observe also that in the picture (3.4),
the representations Pi form the left border of the triangle and the
representations Ii form the right border.

Lemma 3.8 (Yoneda’s Lemma). For any representation V , the maps
Hom(Pi, V ) → V (i), f 7→ fi(ei), and Hom(V, Ii) → DV (i), f 7→ (x 7→
(fi(x))(ei)), are bijections.

Proof. Let us first verify that these maps make sense. Clearly, for
f ∈ HomQ(Pi, V ), we have fi : Pi(i) → V (i) and since ei = (i||i) ∈
Pi(i) = KQ(i, i), we get fi(ei) ∈ V (i). Similarly, if f ∈ HomQ(V, Ii)
then fi : V (i) → Ii(i) = DKQ(i, i). So for any x ∈ V (i), we get a
linear map fi(x) : KQ(i, i) → K and therefore fi(x)(ei) ∈ K.



REPRESENTATIONS OF QUIVERS 21

Let f ∈ HomQ(Pi, V ) and x = fi(ei) ∈ V (i). We will show that
f is completely determined by x, since fh(w) = fhKQ(i, w)(ei) =
V (w)fi(ei) = V (w)(x) ∈ V (h) for any path w ∈ KQ(i, h). Conversely,
if x ∈ V (i), we get a morphism f ∈ HomQ(Pi, V ) by setting fh(w) =
V (w)(x) for any h and any path w ∈ KQ(i, h). The result for Ii is
proved similarly. �

Lemma 3.9. If Q has no oriented cycle then {Pi | i ∈ Q0} is a com-
plete set of pairwise non-isomorphic representations, which are projec-
tive and indecomposable.

Proof. Each Pi is indecomposable by Proposition 1.9, since EndQ(Pi) =
HomQ(Pi, Pi) ' K is local.

For an indecomposable projective representation V set A =
⊕

i∈Q0
P di

i ,

where di = dimK V (i) and observe that HomQ(A, V ) contains a sur-

jective morphism f (for each i, choose a base v
(i)
1 , . . . , v

(i)
di

of V (i) and

define f
(i)
j : Pi → V by f

(i)
j (ei) = v

(i)
j using Yoneda’s Lemma; then take

f
(i)
j as the entries of f as a matrix). Since V is projective, such an f

is a retraction, that is, there exists g : V → A such that fg = 1V . But
then A ' Ker gf ⊕ Im gf ' Kergf ⊕ V . By Theorem 1.8, we get that
V is isomorphic to Pi for some i.

On the other hand, for i 6= j, it is not possible that KQ(i, j) 6= 0
and KQ(j, i) 6= 0 since Q has no oriented cycle. Hence we have
HomQ(Pi, Pj) = 0 or HomQ(Pj, Pi) = 0. In any case, Pi can not be
isomorphic to Pj. �

3.5. Heredity. By the above classification, we also get the following
remarkable result.

Proposition 3.10. Let Q be a quiver with no oriented cycle. A sub-
representation of a projective representation is projective again.

Proof. Also, if V ⊆ Pi is a subrepresentation with V (i) 6= 0 then we
have V (i) = Pi(i) and therefore we must have V = Pi since for any
h and any path w ∈ KQ(i, h), we have for the inlusion morphism
ι : V → Pi that ιh(w) = ιhV (w) = KQ(i, w)ιi = KQ(i, w). But the
subrepresentation V with V (i) = 0 and V (h) = Pi(h) is isomorphic to⊕

α:i→j Pj. �

Exercise 3.11. If V is indecomposable and f : V → Pi is a non-zero
morphism then V ' Pj and if f is additionaly irreducible then f is
given by the composition with some arrow α : i→ j on the right.
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3.6. Knitting with dimension vectors. Now, we are ready to show
how one can construct a picture like 3.5 directly. Let us take an example
which we have not considered yet, namely the quiver of exercise 2.2.

r
r
r
r

@@I
�
��	

1

2

3

4

We start by calculating the left border, namely the projective indecom-
posables representations Pi, they are isomoprhic to:
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P3:

K K

0

0

@@I

�
��	

P4:

K
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From Lemma 3.8, we get that there is a morphism P1 → Pi for i =
2, 3, 4 and these are all morphisms (up to scalar multiples) between
the indecomposable projective representations which are not isomor-
phisms. Hence they must be irreducible by Exercise 3.11. Since P1

is not injective we can consider the indecomposable representation
V = τ−1P1 and know that there exists an almost split sequence 0 →
P1 → E → τ−1P1 → 0. Now, P2 ⊕ P3 ⊕ P4 must be a direct sum-
mand of E, but also no other summand can occur, since otherwise it
would be non-projective and we would have an almost split sequence
0 → τE → P1 ⊕ F → E → 0 and consequently a non-zero morphism
τE → P1 which implies that τE is projective (Exercise 3.11). Hence,
we must have E = P2 ⊕ P3 ⊕ P4 by Corollary 3.6 and can calculate
τ−1P1 as quotient (P2 ⊕ P3 ⊕ P4)/P1, which must be indecomposable.

Instead of working with the representations themselves, we prefer to
consider their dimension vectors, that is, for a representation V ,
we consider the tuple dimV = (dimK V (i))i∈Q0

. In our example, we
have dimV ∈ Z4, but we write them conveniently not as a single col-
umn or row, but represent the shape of the quiver, for instance we

have dimτ−1P1 = 2
1
1
1
. In a similar way, we can calculate dimτ−1Pi =

dimτ−1P1−dimPi for i = 2, 3, 4 and then proceed to calculate dimτ−2P2 =
∑4

i=2 dimτ−1Pi − dimτ−1P1 = 1
1
1
1
. This procedure is known as knit-

ting, and if we proceed with it, we get the following picture.
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But of course, something is wrong with dimτ−3P1 (the one in a circle)
since it has a negative entry and therefore can not come from a repre-
sentation. The only possible conclusion is that the reprentation τ−2P1

is injective. Indeed, we have dimτ−2P1 = dimI1.

3.7. Finite component. As you can see, knitting with dimension vec-
tors is really easy and tremendously powerful: it enabled us in the
example to produce easily all indecomposable representations, since
for each dimension vector appearing only one possible choice (up to
isomorphism) for an indecomposable representation is possible.

But hold on, the previous is not clear at all, since we do not know
that we indeed found all indecomposables. For there could be many
undetected components out there. The following result will help us
out.

Theorem 3.12 (Auslander). Suppose that the quiver Q is connected.
If there exists a connected component C of ΓQ which is finite then
C = ΓQ, in particular, Q is representation finite.

Before we can enter the proof, we prove a useful tool.

Lemma 3.13. For any indecomposable representation V of Q there
exists n such that radn

Q(V, V ) = 0.

Proof. Recall that radQ(V, V ) is the subspace of nilpotent endomor-
phisms of V and write Ri = radi

Q(V, V ) to simplify notations. The de-
scending chain of finite-dimensional vector spaces R1 ⊇ R2 ⊇ R3 ⊇ . . .
necesarily must get stationary at some point, say Rn = Rn+1. If Rn = 0
we are done.

So, suppose that Rn 6= 0. This means that any f ∈ Rn can be written
as f =

∑
h rhfh for some fh ∈ Rn and some rh ∈ R1. However, it is

possible to take always the same elements fh, for instance by choosing
a base of Rn. Let F = {f1, . . . , ft} ⊂ Rn be a minimal set of elements
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such that any f ∈ Rn can be written as f =
∑t

h=1 rhfh for some
rh ∈ R1.

Write f1 =
∑

h rhfh and hence (1 − r1)f1 =
∑t

h=2 rhfh. Since r1 is
nilpotent, 1 − r1 is invertible (the inverse is 1 + r1 + r2

1 + r3
1 + . . .)

and therefore r′h = (1 − r1)
−1rh ∈ R1 for 2 ≤ h ≤ t. But then f1 =∑t

h=2 r
′
hfh and hence the set F was not minimal, a contradiction. �

Proof of Theorem 3.12. Denote by V1, . . . , Vm the (indecomposable)
representations in C and let N be minimal such that radN

Q(Vi, Vi) = 0
for all 1 ≤ i ≤ m (here Lemma 3.13 is used to ensure the existence
of such an N). Then we must have that any composition of radical
morphisms

Vi1

f1

−→ Vi2

f2

−→ Vi3 → . . .→ Vid−1

fd−1

−−→ Vid

is zero for d = m(N+1), since at least one Vj is repeated at least N+1
times and the composition of the corresponding subsequence (from the
first occurrence to the (N + 1)-th occurrence of Vj) is zero.

We show that this implies that for any X 6∈ C and any Y ∈ C, we
have HomQ(X, Y ) = 0. For if f : X → Y is a non-zero morphism,
then it would factor through the sink map πY : E → Y ending in Y .
Therefore there is at least one indecomposable direct summand Y1 ∈ C
of E and radical morphisms f1 : X → Y1 and g1 : Y1 → Y such that
g1f1 6= 0. Iterating the argument for f1, we obtain an indecomposable
Y2 ∈ C and morphisms f2 : X → Y2, g2 : Y2 → Y1 such that g1g2f2 6= 0.
Hence rad2(Y2, Y ) 6= 0. Inductively, we find representation Yn ∈ C such
that radn(Yn, Y ) 6= 0 for any n, in contradiction to radd(Yd, Y ) = 0.
Similarly, we have HomQ(Y,X) = 0 for any Y ∈ C and any X 6∈ C.

Now, for a fixed Y ∈ C there exists a projective indecomposable repre-
sentation P admitting a non-zero morphism P → Y . Hence P lies in C.
Since Q is connected, inductively all other projective indecomposable
representations belong to C. But then again, for any indecomposable
representation X there exists a non-zero morphism P → X for some
projective indecomposable representation and therefore X lies in C. �

3.8. Preprojective component. A connected component C of the
Auslander-Reiten quiver ΓQ of Q is called preprojective (some au-
thors prefer to use the term postprojective) if each τ -orbit contains
a projective indecomposable (and consequently there are only finitely
many τ -orbits) and there are no cyclic paths in C. Dually, a compo-
nent without cyclic paths in which each τ -orbit contains an injective
and is called preinjective (nobody calls them “postinjective”).
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There are as many preprojective components in ΓQ as there are con-
nected components of Q and knitting of a preprojective component is
always successful: starting with some simple projective in it, either the
knitting goes on forever in each τ -orbits or in each τ -orbit an injec-
tive indecomposable is reached and then the component is finite and
hence C = Γ following Proposition 3.12. Similarly there exists as many
preinjective components, which can be obtained by knitting in the
opposite direction starting from the injective indecomposable represen-
tations.

Proposition 3.14. If C is a preprojective or preinjective component
of ΓQ then for each indecomposable X ∈ C we have EndA(X) ' K and
Ext1

A(X,X) = 0.

Proof. With a similar argument as in the proof of Theorem 3.12, we
see that HomQ(X, Y ) = 0 whenever Y “lies to the left of X in C”,
meaning that there is no path in C from X to Y . As a consequence, we
have HomQ(X,E) = 0 if E is the middle term of the Auslander-Reiten
sequence stopping at X and therefore radQ(X,X) = 0 by Corollary

3.6, which in turn implies EndQ(X) ' K. Moreover, if 0 → X
f
−→

E
g
−→ X → 0 is a short exact sequence with X ∈ C then g must be

a retraction and therefore the sequence splits and its class is zero in
Ext1

Q(X,X). �

Exercise 3.15. Knit the preprojective component for the quiver

r
r
r r

��	

@@I �

and compare the dimension vectors for the found indecomposable rep-
resentations with the dimension vectors occuring in the Example 2.2.

Exercise 3.16. Knit the prepojetive nd the preinjective components
of the Kronecker quiver Q, which has vertices Q0 = {1, 2} and two
arrows α, β : 1 → 2. Use induction to show that none of these compo-
nents is finite. We will see later that there are even more components.

4. Indepence of orientation

In this chapter, we want to classify those quivers which are representa-
tion finite. We shall see that the representation type does not depend
on the orientation of the quiver, that is, if we reverse some of the ar-
rows, we get a quiver of the same representation type. We shall need
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some tools before we are ready to understand the reason for this. At
some points of this chapter, we will not argue very formally but provide
a rather intuitive approach.

For the following we fix a quiver Q with no oriented cycle and, for the
sake of simplicity, assume that Q0 = {1, . . . , n} is its set of vertices.

4.1. Group action in a vector space. Fix a dimension vector d ∈
Nn. Then each representation V with dimension vector d is isomorphic
to a representation of the form M =

(
(Kdi)i∈Q0

, (M(α))α∈Q1

)
, where,

for each arrow α : i → j, M(α) is a matrix defining a linear map
Kdi → Kdj , that is M(α) ∈ Kdj×di .

Thus in order to study the representations with that particular dimen-
sion vector, we can look at the vector space

(4.7) rep(Q, d) =
∏

(α:i→j)∈Q1

Kdj×di ,

whose elements we still call representations (of dimension d). Two
representations M,N ∈ rep(Q, d) are isomorphic if and only if there
exist a family (fi : Kdi → Kdi)i∈Q0

of invertible linear maps, such that
for every arrow α : i → j in Q we have N(α)fi = fjM(α). We can
state this in a slightly different way. Let

(4.8) GL(Q, d) =
∏

i∈Q0

GL(di)

and define a group action of GL(Q, d) on rep(Q, d) by

(4.9) g ·M = (gjMαg
−1
i )(α:i→j)∈Q1

.

Then M and N are isomorphic if and only if they lie in the same orbit
under the action of GL(Q, d). The orbit of M is denoted by O(M).

Let’s look at the dimensions of rep(Q, d) and GL(Q, d). Clearly

dim rep(Q, d) =
∑

(α:i→j)∈Q1

didj.

Now, GL(Q, d) is not a vector space, but an open set (for the Zariski

topology) in G =
∏

i∈Q0
Kdi×di defined by a single polynomial inequal-

ity det f1 · det f2 · . . . · det fn 6= 0. Clearly, if f ∈ GL(Q, d), then there
exists a ball {g ∈ G | ‖f − g‖ ≤ ε} completely contained in GL(Q, d)
(here, we are thinking K = R or C, and considering the euclidean norm
‖h‖ for h ∈ G). Hence locally GL(Q, d) has dimension

dim GL(Q, d) =
∑

i∈Q0

d2
i .

To be a bit more formal: here, GL(Q, d) is an affine variety and
dim GL(Q, d) is its dimension as variety.
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Now define χQ : Zn → Z by

χQ(d) =
∑

i∈Q0

d2
i −

∑
(α:i→j)∈Q1

didj.

This is a quadratic form, which satisfies

(4.10) χQ(d) = dim GL(Q, d) − dim rep(Q, d)

for each d ∈ Nn.

4.2. Quadratic forms. For two representations X and Y of Q, we
define

〈X, Y 〉Q = dimK HomQ(X, Y ) − dimK Ext1
Q(X, Y ) ∈ Z.

This form has many names (depending on what generalization one is
thinking of): it may be called homological form or Euler form or
also Tits form or Ringel form.

Lemma 4.1. The number 〈X, Y 〉Q depends only on the dimension vec-
tors x = dimX and y = dimY , that is, there exists a bilinear form
b(−,−) : Zn × Zn → Z, which satisfies 〈X, Y 〉Q = b(dimX, dimY ) for
all representations X and Y .

Proof. We already know that for any representation X there exists a
projective representation P and a surjective morphism f : P → X.
By Proposition 3.10, P ′ = Ker f is projective again and hence we

get a short exact sequence 0 → P ′ ι
−→ P

f
−→ X → 0. Hence, by

the fundamental theorem of homological algebra, we get a long exact
sequence

0 → HomQ(X, Y ) → HomQ(P, Y ) → HomQ(P ′, Y ) → Ext1
Q(X, Y ) → 0

since Ext1
Q(P,X) = 0 (P is projective). By Lemma 3.9 we can assume

that P =
⊕n

i=1 P
di

i and P ′ =
⊕n

i=1 P
d′i
i for some di, d

′
i ∈ N.

The vectors dimP1, . . . , dimPn are linearly independent since Q has no
oriented cycle (order the vertices in such a way that KQ(i, j) = 0 if
i > j, then the matrix CQ = (dimK KQ(i, j))ij is upper triangular
and has as i-th row vector exactly dimPi). Therefore, it follows from
dimX = dimP − dimP ′ =

∑n

i=1(di − d′i)dimPi that the numbers ci =
di − d′i are uniquely determined by dimX, namely c = C−1

Q dimX.
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The alternating sum of the dimension in the long exact sequence yields

〈X, Y 〉Q = dimK HomQ(P, Y ) − dimK HomQ(P ′, Y )

=
∑n

i=1
ci dimK Y (i)

= ctrdimY

= (dimX)trC−tr
Q dimY

and hence we can set b(x, y) = xtrC−tr
Q y to get the result. �

By abuse of notation, we shall denote 〈x, y〉Q = b(x, y) for x, y ∈ Zn.

The matrix CQ is called Cartan matrix of Q.

Proposition 4.2. For any representation V of Q, we have 〈V, V 〉Q =
χQ(dimV ).

Proof. Denote by Si the simple representation at the vertex i (it sat-
isfies Si(I) = K, Si(j) = 0 for j 6= i and Si(α) = 0 for any arrow α).
By the above lemma, we have

〈Si, Sj〉 = dimK HomQ(Si, Sj) − dimK Ext1
Q(Si, Sj).

Now, dimK HomQ(Si, Si) = 1 and dimK HomQ(Si, Sj) = 0 for i 6= j
and for all i, j we have that dimK Ext1

Q(Si, Sj) is the number of ar-
rows from j to i. Hence be the above lemma, we get 〈V, V 〉Q =∑

i,j vivj〈Si, Sj〉Q =
∑

i vivj −
∑

α:i→j vivj, which by definition equals

χQ(dimV ). �

We will need also the following result.

Proposition 4.3. For any positive definite quadratic form q : Zn → Z
each fibre q−1(a) is finite.

Proof. Let q : Zn → Z, q(x) =
∑n

i=1 qiix
2
i +

∑
i<j qijxixj be positive def-

inite. Denote by qQ : Qn → Q and qR : Rn → R the obvious extensions
of q. We show that qR is also positive definite by contradiction. So let
x ∈ Rn, x 6= 0 be such that qR(x) ≤ 0. Since qQ(a

b
) = 1

b2
q(a), we see

that qQ is also positive definite and by continuity we have qR(x) ≥ 0.
Thus x is a global minimum of the function qR and hence (∗) ∂qR

∂xi
(x) = 0

for all i = 1, . . . , n. But this means that x satisfies the system of linear
equations (∗) non-trivially. But since all coefficients in (∗) are rational
there exists also a non-trivial solution in Qn, a contradiction.

So qR(x) > 0 for any non-zero x ∈ Rn and therefore 1
qR

is well defined

on the compact S1 = {x ∈ Rn | ‖x‖ = 1} and takes there a global
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minimum m. Hence we have for all x with qR(x) = a that a
‖x‖2 =

qR(x)
‖x‖2 = qR( x

‖x‖
) ≥ m and hence ‖x‖ ≤

√
a
m

. Therefore there can only

be finitely many vectors in q−1
R (a) ∩ Zn = q−1(a). �

Any vector x ∈ Zn such that q(x) = 1 is called a root of q.

4.3. Dimension of the Orbits. For a representation M ∈ rep(Q, d),
we consider the surjective map

(4.11) GL(Q, d) → O(M), g 7→ g ·M.

The fibre ofM under this map is the stabilizer subgroup GL(Q, d)M =
{g ∈ GL(Q, d) | g ·M = M} which has dimension

(4.12) dim GL(Q, d)M = dim GL(Q, d) − dimO(M).

This is the second crucial equation. We try to understand it very
informally as before and we will be thinking that K = R or C. Clearly,
the identity id = (1Kdi×di )i belongs to the stabilizer. If we look on
a small enough neighbourhood of id (like an open ball) then in some
directions g ·M may be equal to M , whereas in other directions this
will not hold. A little bit more precise: for any A ∈ G =

∏
i∈q0

Kdi×di,

the matrix (id+εA) lies in GL(Q, d) for ε small enough and in that
case (id +εA) · M has entries which are quadratic polynomials in ε,
that is (id +εA) ·M = M + εA′ + ε2A′′ for some matrices A′ and A′′.
Now, the entries of A′ depend linearly on A and therefore

A 7→ lim
ε→0

(id +εA) ·M −M

ε
= A′

is a linear function ϕ : G =
∏

i∈q0
Kdi×di → rep(Q, d). The ker-

nel of ϕ consists of the directions for which M is fixed under the
action. Hence dim GL(Q, d) = dimK kerϕ and on the other hand
dimO(M) = dim Imϕ hence the result follows from the classical linear
algebra formula since dimK G = dim GL(Q, d).

We notice that GL(Q, d)M always contains the one-dimensional sub-
group consisting of the scalar multiples of the identity. Therefore
dim GL(Q, d)M ≥ 1.

4.4. Gabriel’s Theorem. We have now gathered enough material to
be able to prove the following result, which is one of the founding stones
of representation theory of algebras. A vector x ∈ Zn is called positive

if xi ≥ 0 for all i and x 6= 0. For a quadratic form q, we denote by
P (q) the set of positive roots of q. Also recall that we denote by ΓQ

the Auslander-Reiten quiver of Q.
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Theorem 4.4 (Gabriel). Let Q be a quiver and denote by χQ its ho-
mological form. Then Q is representation-finite if and only if χQ is
positive definite. Moreover, in that case, the function

Ψ : (ΓQ)0 → P (χQ), X 7→ dimX

is bijective.

Proof. First assume that χQ is not positive definite. Then there exists
a non-zero vector d such that χQ(d) ≤ 0. Write d = d+ − d− with
d±i ≥ 0 and d+

i d
−
i = 0 for any i. Then 0 ≥ χQ(d) = χQ(d+)+χQ(d−)−∑

qijd
+
i d

−
j , where the sum runs over all i, j such that d+

i > 0 and

d−j > 0. Since qij ≤ 0, we have thus that this sum is not negative and
consequently χQ(d+) ≤ 0 with d+ 6= 0 or χQ(d−) ≤ 0 with d− 6= 0. In
any case, there exists a positive vector d such that χQ(d) ≤ 0.

Hence by (4.10) and (4.12), we have dim rep(Q, d) ≥ dim GL(Q, d) =
dimO(M) + dim GL(Q, d)M > dimO(M) and hence there can be no
orbit in rep(Q, d) with the same dimension than rep(Q, d) itself and
consequently there must exist infinitely many orbits. That is, Q is
not representation finite. This argument is usually referred to as the
Tits-argument.

Now, suppose that χQ is positive definite. We will show that Q is rep-
resentation finite. Observe that we can assume that Q is connected
since the general case follows then easily. Since Q is hereditary it has
a preprojective component C and any indecomposable representation
V ∈ C satisfies dim EndQ(V ) = 1 and Ext1

Q(V, V ) = 0 by Proposition
3.14. Hence, dimV is a root of χQ. Now, let V,W ∈ C be two inde-
composable representations with the same dimension vector d. Then
1 = χQ(d) = 〈dimV, dimW 〉 = dimK HomQ(V,W ) − dimK Ext1

Q(V,W )
shows that HomQ(V,W ) 6= 0. Similarly, we have HomQ(W,V ) 6= 0 and
since there is no cycle in C, we must have V = W . Thus it follows
from Proposition 4.3, that this preprojective component is finite, and
hence by Theorem 3.12 that Q is representation finite.

Having settled this, we assume now that Q is representation finite and
χQ positive definite. Then the preprojective component C is the whole
Auslander-Reiten quiver and hence dimM is a positive χQ-root for
any indecomposable representation and, as we have seen Ψ is injective
since no two non-isomorphic indecomposable representations can have
the same dimension vector.

Conversely, suppose that d is a positive χQ-root. Since there are
only finitely many indecomposable representation in C, there are only
finitely many combinations in which these representations can sum
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up to a representation V with dimV = d. Hence there are only
finitely many orbits in rep(Q, d). One of them, say O(V ), must nec-
essarily satisfy dimO(V ) = dim rep(Q, d). But then it follows from
dim rep(Q, d) = dim GL(Q, d) − χQ(d) = dim GL(Q, d)V + O(V ) − 1
that dim GL(Q, d)V = 1, that is, V is indecomposable. Hence the
function Ψ is surjective. �

4.5. Positive definite unit forms. The previous result turns our
attention to the positive definite forms, which we want to study in
more detail here. Observe first, that the quadratic forms χ = χQ for any
representation-finite quiver Q satisfy χQ(ei) = 1 since ei = dimSi is the
dimension vector of an indecomposbale (even simple) representation.

Hence, if we write

χ(x) =

n∑

i=1

χiix
2
i +

∑

i<j

χijxixj

we have χii = 1. Such a form is called unit form. Moreover, we can
express the coefficients χij for i 6= j as follows

χij = χ(ei + ej) − χ(ei) − χ(ej)

= 〈ei + ej, ei + ej〉Q − 〈ei, ei〉Q − 〈ej, ej〉Q

= 〈ei, ej〉Q + 〈ej, ei〉Q

= − dimK Ext1
Q(Si, Sj) − dimK Ext1

Q(Sj, Si),

since HomQ(Si, Sj) and HomQ(Sj, Si) are both zero. Therefore χij ≤ 0
for i 6= j and |χij| is the number of arrows between the two vertices i
and j.

Theorem 4.4 shows therefore that representation-finiteness does not
depend on the orientation, even more, the dimension vectors for which
an indecomposbale representation may exist (and which is then unique
up to isomorphism) are given independently of the orientation by the
positive roots of χQ.

In general, we associate to a unit form q : Zn → Z, q(x) =
∑

i x
2
i +∑

i<j qijxixj a bigraph B(q), whose vertices are 1, . . . , n and which has

|qij| dotted (resp. full) edges between the vertices i and j if qij ≥ 0
(resp. qij < 0).

The following graphs are called (simply laced) Dynkin diagrams.
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An (n ≥ 1):

r r r r r rp p p
1 2 3 4 n − 1 n

Dn (n ≥ 4):

r r r r r rp p pr
1 3

2

4 5 n − 1 n

En (n = 6, 7, 8):

r r r r r rp p pr
1 2

3

4 5 n − 1 n

If Q is a quiver whose underlying graph is ∆ the we shall say that χQ

has Dynkin type ∆.

Corollary 4.5. The quiver Q is representation finite if and only if
each connected component of the underlying graph of Q (obtained by
forgetting the orientation of the arrows) is a Dynkin diagram.

Proof. Let q be a unit form with qij ≤ 0 for i 6= j. By Theorem 4.4
we only have to show that q is positive definite if and only if B(q) is a
disjoint union of Dynkin diagrams. This can be done directly by the
Lagrange algorithm, for instance, if B(q) = Dn then

q(x) =x2
1 − x1x3 + x2

2 − x2x3 + x2
3 − x3x4 + x2

4 − . . .− xn−1xn + x2
n

=(x1 −
1
2
x3)

2 + (x2 −
1
2
x3)

2 + 1
2
(x3 − x4)

2 + . . .

+ 1
2
(xi − xi+1)

2 + . . .+ 1
2
(xn−1 − xn)2 + 1

2
x2

n,

which shows that q is positive definite. The other cases are handled
similarly. This shows that any quiver whose underlying graph is a
Dynkin diagram is representation finite.

Now, assume that q is positive definite. Then |qij| ≤ 1 for all i 6= j,
since otherwise q(ei+ej) ≤ 0. Next, we observe B(q) cannot contain an
induced extended Dynkin diagrams (by some authors also called
Euclidean diagrams), i.e. a subgraph of the following list.

(4.13)

Ã1:

r?1

1

Ãn (n ≥ 2):

r r r r r rp p p
1 1 1 1 1 1

v? 1
D̃4:

r r rr
?

1

2
1

1
1

D̃n (n ≥ 5):

r r r r r rp p pr
1 2

1

2 2 2 1

? 1

Ẽ6:

r r r r rr
?

1 2

2

3 2 1

1
Ẽ7:

r r r r r rr?
2 3

2

4 3 2 11

Ẽ8:

r r r r r r rr
?

2 4

3

6 5 4 3 2 1

The reason is simple: if q is a unit form such that B(q) is one of the
diagrams above, then q(v) = 0 for the non-zero vector v, which is
defined by the numbers by the vertices above.

But a connected graph B, which does not contain an extended Dynkin

diagram must be a Dynkin diagram: it must be a tree since no Ãn is
contained. The degree of each vertex is less or equal than three since
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it does not contain D̃4. The graph B is a star, that is it has at most

one vertex i of degree 3, since it does not contain D̃n for n ≥ 5. Hence
it is An or else a star with three arms of length r ≤ s ≤ t (the length of
an arm is counted by the vertices involved, including i). In the latter

case we have r = 2 since B does not contain Ẽ6; and s ≤ 3 since B

does not contain Ẽ7; that means that B = Dn or else B = En for some

n ≤ 8 since it does not contain Ẽ8. This finishes the proof. �

Remark 4.6. Readers which are familiar with the theory of Lie alge-
bras should note that the roots of the positive definite unit forms χQ

form a root system, where all roots have the same length. Therefore
only the types An, Dn and En occur in the Coxeter diagram, which is
just the underlying graph of the quiver Q, as we have seen above.

The following table shows the number of positive roots of q for each
Dynkin diagram ∆ = B(q).

∆(q)

|P (q)|

An

n(n+1)
2

Dn

(n− 1)n

E6

36

E7

63

E8

120

Since we know the indecomposable representations of the linearly ori-

ented quiver, we can easily verify that there are n(n+1)
2

positive roots
in case B(q) = An.

Exercise 4.7. Choose some orientations for the edges of D6 to get
a quiver Q and knit the preprojective component (which is the whole
Auslander-Reiten quiver). Verify that there are 30 positive roots. Anal-
ize the roots and show that there are at least (n − 1)n positive roots
of q if B(q) = Dn.

Exercise 4.8. Chose some orientation for the edges of E8 and verify
that there are precisely 120 positive roots of q with B(q) = E8. Count
the positive roots x for which x8 = 0 (resp. x7 = x8 = 0) to get
that there are 63 (resp. 36) positive roots of q with B(q) = E7 (resp.
B(q) = E6).

4.6. Kac’s Theorem. Call a vertex i of Q loop-free if there is no
arrow in Q which starts and ends in i. For any loop-free vertex i define
the reflection

ρi : Zn → Zn, ρi(x) = x− (x, ei)Qei,

where (x, y)Q = 〈x, y〉Q + 〈y, x〉Q and 〈x, y〉Q = xtr(C−tr
Q y, being CQ

the Cartan matrix of Q. Since i is sink of Q, there is no loop at i
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and therefore ρi(ei) = −ei. The Weyl group W is the subgroup of
GLn(Z) generated by these reflections.

Kac’s Theorem shows for which dimension vectors indecomposable rep-
resentations exist and these dimension vectors will be called “roots”
again, but now they are defined differently as in the context of Gabriel’s
Theorem. By definition, the set of roots splits into two classes: the
real roots are those vectors which may be obtained from a canonical
base vector ei for some loop-free vertex i by applying some w ∈ W .
The imaginary roots are those which can be obtained by applying
elements of the Weyl group to the fundamental region F . By defini-
tion, F consist of those non-zero vectors x ∈ Nn which have connected
support (the support is the subquiver of Q induced by those vertices
i for which xi > 0) and for which (x, ei) ≤ 0 for all i = 1, . . . , n.

Theorem 4.9 (Kac). Let Q be a quiver.

(i) If V is an indecomposable representation of Q then dimV is a
root.

(ii) If x is a positive real root then there exists (up to isomorphism)
exactly one indecomposable representation V with dimV = x.

(iii) If x is a positive imaginary root and the field K is algebraically
closed then there exists infinitely many pairwise non-isomorphic
representations V with dimV = x.

Example 4.10. To show the power of Kac’s Theorem let’s look at
an example, where we already have some partial information about
the indecomposable representations, namely the Kronecker quiver of
Exercise 3.16. We have χQ(x) = x2

1 +x2
2−2x1x2 and therefore calculate

easily (x, e1)Q = 2(x1 − x2) and (x, e2)Q = 2(x2 − x1). This enables to
calculate the reflections

ρ1(x) =

[
−x1 + 2x2

x2

]
and ρ2(x) =

[
x1

2x1 − x2

]
.

Now, we can calculate the real roots, starting from e1 and e2. We
obtain the following.

1
0

1
2

3
2

3
4

5
4

5
6

�	
��ρ2

�	
��ρ2

�	
��ρ2

@R
@I

@R
@I

@R
@I

ρ1 ρ1 p p p

0
1

2
1

2
3

4
3

4
5

6
5

�	
��ρ1

�	
��ρ1

�	
��ρ1

@R
@I

@R
@I

@R
@I

ρ2 ρ2 p p p
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Observe that this are all real roots, since ρi(ei) = −ei and that the
positive real roots correspond exactly to the dimension vectors of the
indecomposable representations in the preprojective and the preinjec-
tive component knitted in Exercise 3.16. Are there more components?
Well, let’s calculate the fundamental region F . A vector x satisfies
(x, ei) ≤ 0 for i = 1, 2 precisly when x1 = x2. Any such (non-zero)
vector has connectd support. So F = {x ∈ Z2 | x1 = x2 6= 0}. Since
ρi(x) = x for each x ∈ F , we get that the imaginary roots are precisly
the integral vectors x with x1 = x2 > 0. This shows that there are
indeed more components.

5. Connection with modules over algebras

In this last chapter the relationship of representations over a quiver
with modules over algebras is inspected.

5.1. The path algebra. Recall that we denoted by KQ(j, i) the vec-
tor space with basis all paths from i to j. Now we can define the path

algebra KQ of the quiver Q to be

KQ =
⊕

i,j∈KQ

KQ(j, i)

as vector space and define a multiplication on KQ by extending the
composition of paths bilinearly, setting vw = 0 whenever s(v) 6= t(w).
We have then that KQ is an associative ring. It has a unit if and
only if Q0 is finite and then 1KQ =

∑
i∈Q0

(i||i). Moreover, by λ 7→∑
i∈Q0

λ(i||i), the field K is mapped into the center of KQ. Note that
in general KQ is not commutative, in the example of the linear quiver
not unless n = 1. Observe also, that KQ is finite-dimensional if and
only if Q is a finite quiver which has no oriented cycle.

Notice that in the example of the linearly ordered quiver, there is a
path from i to j, and then up to scalar multiples just one path, if and
only if i ≤ j. Moreover, the algebra KQ is isomorphic to the lower
triangular matrices of size n× n, under the mapping induced by

(j|αj−1, . . . αi|i) 7→ E(ji),

where E(ji) is the n× n-matrix, whose unique non-zero entry equals 1
and sits in the j-th row and i-th column.
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5.2. Modules over the path algebra. Assume that Q is a finite
quiver. Given any representation V of Q, we can define a left KQ-
module

V ′ =
⊕

i∈Q0

Vi

by defining the multiplication V ′
w with a path w = (j|αl, . . . α1|i) on

a family (vh)h∈Q0
as the family having V (αl) . . . V (α1)(vi) in the j-

th coordinate and zero elsewhere. Notice that V ′ is always finite-
dimensional, since Q is finite and by definition a representation has
finite-dimensional vector spaces attached to each vertex. Conversely,
given a finite-dimensional left KQ-module M , we define M(i) = eiM =
{eim | m ∈M}. We have then M =

⊕
i∈Q0

M(i) and can easily define

a representation by setting M(α) : M(i) → M(j), eim 7→ (j|α|i)m for
any arrow α : i→ j in Q.

If ϕ : V → W is a morphism of representations, then we define
ϕ′ =

⊕
i∈Q0

ϕi : V ′ →W ′, which is a homomorphisms of KQ-modules.
Conversely, any homomorphism ψ : M → N of finite-dimensional KQ-
modules gives rise to a morphism of representations by ψ(i) : M(i) →
N(i), eim 7→ ψ(eim) = eiψ(m). The direct sum of KQ-modules cor-
respond to the direct sum of representations and therefore their inde-
composables correspond one-to-one (up to isomorphism).

Example 5.1. There are 15 indecomposable A-modules if A is the
algebra of lower triangular 5 × 5-matrices, since A ' KQ, where Q is
the linear quiver with 5 vertices.

5.3. The categorical language. We have seen that dealing with rep-
resentations and mophisms of representations of a quiver Q amounts
to the same thing as dealing with modules and homomorphimss of
modules over the path algebra KQ.

In categorical language: the categories repQ of representations of Q
and modKQ are equivalent. A category C is a class of objects to-
gether with sets of morphisms C(X, Y ) for each pair of objects (X, Y )
and composition maps C(Y, Z) × C(X, Y ) → C(X,Z), (g, f) 7→ g ◦ f
which are associative and admit identity morphisms 1X ∈ C(X,X)
for each object X. We write X ∈ C to express the fact that X is an ob-
ject of the category C. Two objects X, Y ∈ C are isomorphic if there
exist morphisms f ∈ C(X, Y ) and g ∈ C(Y,X) such that g ◦ f = 1X

and f ◦ g = 1Y .

Example 5.2. The representations of a quiver Q form a category where
the morphism sets are denoted by HomQ(V,W ) for V,W ∈ repQ. For
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a finite-diemsnional algebra A, the finite-dimensional (left) A-modules
form a category modA, where the morphisms are called homomor-
phisms and form sets denoted by HomA(M,N) for M,N ∈ modA.

If C and D are two categories, a functor F : C → D assigns to each
object X ∈ C an object FX ∈ D and to each morphism g ∈ C(X, Y )
a morphism Fg ∈ D(FX, FY ), in such a way that F1X = 1FX for
each object X ∈ C and F (g ◦ f) = FG ◦ Ff for any f ∈ C(X, Y ) and
g ∈ C(Y, Z). The functor F is an equivalence if for any two objects
X, Y ∈ C the map C(X, Y ) → D(FX, FY ), g 7→ Fg is bijective and
every object of D is isomoprhic to FX for some object X ∈ C.

Exercise 5.3. Show that if F is an equivalence, then two non-isomor-
phic objects of C are mapped to two non-isomorphic objects of D.

Two categories C and D are called equivalent if there exists an equiv-
alence F : C → D.

Thus, we can rephrase our findings of Section 5.2 in the following terms.

Proposition 5.4. The category repQ of representation of a quiver
without oriented cycle is equivalent to the category modKQ of finite-
dimensional (left) KQ-modules.

5.4. Morita equivalence. Two finite dimensional algebras A and B
are called Morita equivalent if the categories modA and modB are
equivalent.

Example 5.5. Let A be a finite-dimensional algebra and B = A2×2

be the algebra of 2 × 2-matrices with entries in A. Then A and B
are Morita equivalent. Indeed, for M ∈ modA define FM = M ⊕M
as B-module where the multplication is given by the matrix multi-
plication. Then for any g ∈ HomA(M,N) we define Fg = g ⊕ g ∈
HomB(FM,FN). It is straightforward to see that F defines a func-
tor. Clearly, HomA(M,N) → HomB(FM,FN) are injective. So, let
h ∈ HomB(FM,FN) and define for i, j ∈ {1, 2} the linear maps
hij = πjhιi : M → N , where πj : M ⊕ M → M is the canoncial
projection and ιi : M →M ⊕M is the canonical inclusion.

Let E(ji) ∈ B be the 2× 2-matrix, whose unique non-zero entry equals
1A and sits in the j-th row and i-th column. Since h is a B-module
homomorphism, we have h(E(11)m) = E(11)h(m) = (h11m1 + h12m2, 0)
on one hand and h(E(11)m) = h(m1, 0) = (h11m1, h21m1) on the other.
Therefore h12 = h21 = 0 and infer then from h(E(12)m) = E(12)h(m)
that h11 = h22 and hence h = Fh11.
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Given a finite-dimensional algebra A, consider it as a left module over
itself and decompose it into indecomposables A =

∑n
i=1 Pi, which are

projective as is easily seen. The algebra A is called basic if Pi is not
isomorphic to Pj for i 6= j. The next result shows that if we are only
interested in the module category, then we can reduce our atention to
basic algebras. But first some general considerations. Therefore assume
that we have given some decomposition A =

⊕n

i=1 Pi into indecompos-
able A-modules and denote by πj : A → Pj the canonical projection
and by ιj : Pj → A the canoncial inclusion, which are homomorphisms
of A-modules.

Then ej = ιjπj(1A) is an idempotent, that is, it satisfies e2
j = ej (this

follows from πjιj = 1Pj
). Moreover, these idempotents are pairwise

orthogonal, that is eiej = 0 for i 6= j (this follows from πiιj = 0) and
finally each ej is a primitive idempotent, that is, it is non-zero and
cannot be written as a sum of two non-zero orthogonal idempotents
(this follows from the indecomposability of Pj).

Observe that ιj : Pj → Aej is an isomorphism. For any A-module M ,
we have that HomA(Aej,M) → ejM,ψ 7→ ψ(ej) is a bijection whose
inverse maps ejm to the homomorphism aej 7→ aejm (in analogy to
Lemma 3.8), again called Yoneda Lemma.

Proposition 5.6. Every finite dimensional algebra is Morita-equivalent
to a basic finite-dimensional algebra.

Proof. Let A be a finite-dimensional algebra and A =
⊕n

i=1Aei the
decomposition into indecomposables. If A is not basic, renumber the
summands Aei such that Ae1 ' Ae2.

Let e = e2 + . . . en = 1 − e1 and set B = eAe = {eae | a ∈ A}
which is clearly closed under addition and multiplication and 1B = e
since e is an idempotent. We will show that A and B are Morita-
equivalent. Clearly, this implies the result by induction on the number
of summands in the decomposition of A.

For an A-module M define FM = eM = {em | m ∈ M}. This is a
B-module, since for any b = eae ∈ B and any x ∈ FM we have bx =
e(ax) ∈ eM . Also, if f ∈ HomA(M,N) define Ff ∈ HomB(FM,FN)
by Ff(em) = f(em) = ef(m) ∈ eN . It is easily verified that F is a
functor.

Now, an isomorphism ϕ : Ae1 → Ae2 corresponds to an element a12 =
e1a12e2 and its inverse ϕ−1 to an element a21 = e2a21e1 and they satisfy
a12a21e1 = e1 and a21a12e2 = e2.
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By Yoneda’s Lemma, we have e1M ' e2M as vector spaces and the
left multiplications µi : A× eiM → M for i = 1, 2 are coupled in the
following sense

µ1(a, e1m) = µ2(aa12, e2a21e1m).

This shows that we can define an A-module structure on M ′ = e2M ⊕
eM from the B-module structure on eM such that M ′ ' M as A-
modules. Therefore any object in modB is isomorphic to an object
FM for some M ∈ modA.

Any homomorphism f ∈ HomA(M,N) induces linear maps fi : eiM →
eiN, eim 7→ f(eim) = eif(m). But in our situation, the map f1 is
completely determined by f2 since we have f1(e1m) = f(a12a21e1m) =
a12f2(e2a21e1m). Now, it is easy to see that the map HomA(M,N) →
HomB(FM,FN), f 7→ Ff is bijective. �

5.5. Quotients of a path algebra. Notice that the path algebra KQ
of a quiver Q is graded, that is KQ =

⊕
l≥0(KQ)l as vector spaces,

where (KQ)l is the subspace of KQ generated by the paths of length l
and the multiplication in KQ induces bilinear maps (KQ)l×(KQ)m →
(KQ)l+m.

An ideal I of KQ is called admissible if (KQ)N ⊆ I ⊆
⊕

l≥2(KQ)2

for some N .

Theorem 5.7 (Gabriel). Let K be an algebraiclly closed field. Then
every basic finite dimensional algebra A is isomorphic to the quotient
KQ/I of a path algebra of some quiver Q modulo an admissible ideal
I of KQ.

Proof. Let e1, . . . , en be a set of pairwise orthogonal primitive idempo-
tents. Then define a category C whose objects are 1, . . . , n and whose
morphism spaces are C(i, j) = ejAei = {ejaei | a ∈ A}. Since the
idempotents are primitive, the algebras C(i, i) are local and therefore i
is indecomposable in C. Since A is basic, the objects of C are pairwise
non-isomorphic.

Since there are only finitely many objects, all of which have a local
endomorphism algebra, we conclude as in the proof of Lemma 3.13,
that if radn

C(i, j) = radn+1
C (i, j) then radn

C(i, j) = 0 and that for some,
sufficiently large N we have radN

C (i, j) = 0 for all i, j.

Now, let Q be the quiver of C, that is, the objects ofQ are the objects of
C, that is the vertices 1, . . . , n and there are dimK

(
radC(i, j)/ rad2

C(i, j)
)

arrows from i to j in Q labeled by some chosen irreducible morphisms
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α1, . . . , αdij
∈ C(i, j) = ejAei which are linearly independent modulo

rad2
C(i, j).

Then we get a homomoprhism of algebras λ : KQ → A which maps
the arrow i → j labeled by α to α ∈ ejAei ⊆ A and the identity
morphism 1i = (i||i) to ei. Since K is algebraically closed, the map
λ is surjective by Fitting’s Lemma. Let I be the kernel of λ. Then
A ' KQ/I. Since the morphisms which label the arrows are linearly
independent, the restriction of λ to (KQ)0 ⊕ (KQ)1 is injective and
therefore I ⊆ (KQ)2. On the other hand, we must have (KQ)N ⊆ I
if N is as above with radN

C (i, j) = 0 for all i, j. This shows that I is
admissible. �

Remark 5.8. The quiver Q is uniquely determined by A.

Proof. It is easy to prove that for any idempotent e, the module Ae is
projective and that HomA(Ae,M) → eM , f 7→ f(e) is a bijection (this
is the general version of Yoneda’s Lemma). From this it follows that
Ae is indecomposable if and only if eAe is local, which happens if and
only if e is primitive. Hence the number of vertices of Q equals the
number of isoclasses of indecomposable projective A-modules, which
clearly does not depend on any choice.

Let Ae1, . . . , Aen be representatives of the isoclasses of indecomposable
projective A-modules. Then the number of arrows i→ j in the quiver
Q equals the dimension of the space radA(Aei, Aej)/ rad2

A(Aei, Aej),
which again is uniquely determined by A. �

An algebra (or more generally a ring) A is called hereditary if every
submodule of a projective module is projective.

Proposition 5.9. A finite dimensional algebra is hereditary if and
only if it is Morita equivalent to a path algebra of some quiver without
oriented cycle.

Proof. We already know by Proposition 3.10 that any path algebra over
a quiver without oriented cycle is hereditary.

Suppose now that A is an algebra which is basic, finite dimensional
and hereditary. Write A = KQ/I, where Q is the quiver of A and I an
admissible ideal of KQ. We have to show that I = 0. Let Ae1, . . . , Aen

be a complete set of pairwise non-isomorphic indecomposable projective
A-modules. Then Aei = KQ(i, ?)/Iei =: Pi.

Let f : Pi → Pj be a non-zero morphism. Then Im f ⊆ Pj is a projec-
tive submodule since A is hereditary. Hence the surjective morphism
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Pi → Im f is a retraction and therefore Im f a direct summand of Pi.
Since Pi is indecomposable, we have that Pi ' Im f and f is injec-
tive. Thus, if f is not an isomorphism then dimK Pi < dimK Pj. This
implies that Q cannot contain an oriented cycle and therefore KQ is
finite-dimensional.

Let Ri be the submodule of Pi generated by the classes of the paths
of positivce length. Since I is admissible, I ⊆ (KQ)2 and therefore,
for each arrow i → j, there exists an injective morphism α∗ : Pj → Pi

which sends the class of a path γ to the class of γα. Recall that
Q1(i →) = {α ∈ Q1 | s(α) = i} and observe that g =

[
· · ·α∗ · · ·

]
:⊕

α∈Q1(i→) Pt(α) → Ri is surjective, but if any direct summand of the

domain, say Pt(α), is dropped, then the resulting morphism g′ is not
surjective anymore, since the class of α cannot be in the image of g ′.
This shows that Ri '

⊕
α∈Q1(i→) Pt(α).

Now it follows by induction on dimK Pi that Pi = KQ(i, ?), that is
Iei = 0. Hence I = 0. �

5.6. Modules over other algebras.

Proposition 5.10. Let A be an algebra, I an ideal of A and B = A/I.
Then modB is a full subcategory of modA.

Proof. Let π : A → B be the canonical projection, which is a homo-
morphism of algebras. Then any B-module M can be viewed as an
A-module, where the multiplication is given by a · m = π(a)m. If
f ∈ HomB(M,N) then for all a ∈ A we have f(a ·m) = f(π(a)m) =
π(a)f(m) = a · f(m), which shows that f ∈ HomA(M,N). Hence we
get a functor incl : modB → modA, which is injective on objects and
morphisms since π is surjective.

Since for any two B-modules M and N , each g ∈ HomA(M,N) sat-
isfies g((a + I)m) = g(a · m) = a · g(m) = (a + I)g(m) we get that
HomA(M,N) = Homb(M,N) and therefore the result. �

Apply this to the situation where A = KQ and I is an admissible
ideal. We know from Proposition 5.4 that the KQ-modules can be
understood as representations of Q. Therefore it is quite natural to
ask which such representations correspond to B = KQ/I-modules?
The answer is quite simple, we just need some vocabulary to formulate
it.

Let I be an (adimissible) ideal of KQ and write I(i, j) = I ∩KQ(i, j).
Each γ ∈ I(i, j) is a linear combination of paths which start in i and end
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in j, say γ =
∑t

h=1 λhγh, where λh ∈ K and γh = (j|αhmh
, . . . , αh1|i) is

a path from i to j. Then we can define

V (γ) =

t∑

h=1

λhV (αhmh
) . . . V (αh1) : V (i) → V (j)

A representation V of the quiver satisfies the ideal I if for each i, j
and each x ∈ I(i, j) we have V (x) = 0.

Let repI Q be the full subcategory of repQ given by all representations
which satisfy the ideal I.

Proposition 5.11. Let Q be a finite quiver and I be an admissible ideal
of KQ. Then the category mod(KQ/I) is equivalent to the category
repI Q.

Proof. A KQ-module M is a KQ/I-module precisely when IM = 0.
This happens under the equivalence given in Section 5.2 exactly when
the corresponding representation satisfies I. �

Exercise 5.12. Let Q be the linear quiver with 5 points and I ⊂
KQ the ideal generated by all paths of length ≥ 3. Determine the
Auslander-Reiten quiver of B = KQ/I.

Example 5.13. For example, if Q is the linear quiver with 5 ver-
tices and I is the ideal of KQ generated by the paths (3|α2, α1|1) and
(5|α4, α3, α2|2) then the representations of Q which satisfy the ideal I
are precisely those exhibitted in the next picture.
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5.7. Final Remarks. As it seems, all what we have to understand
in order to study finite dimensional modules over finite-dimensional
algebras are representations of quivers. However we should warn here
that this could be misleading since in many cases the quiver of some
interesting algebra is wild, whereas the algebra itself is tame.

Also, it can be really difficult to calculate the quiver over of a given
algeba since the decomposition of a given module into indecomposables
is a hard problem.

Finally, it should also be mentioned that we really loose information by
the reduction to indecomposables and the morphisms between them as
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the following example shows. Let Q be the quiver with one single point
and no arrow. The study of repQ is then the study of finite dimensional
vector spaces and linear maps between them, a study usually called
“linear algebra”. However, there is just one indecomposable S (the
simple representation) and morphisms S → S are just the multiples of
the identity. The Auslander-Reiten quiver ΓQ is again just a point – a
terrible reduced view of the whole linear algebra.
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• M. Auslander, I. Reiten and S. Smalø: Representation
theory of Artin algebras. Cambridge Studies in Advanced Math-
ematics, 36. Cambridge University Press, Cambridge, 1997.

• P. Gabriel and A. V. Rŏıter: Representations of finite-
dimensional algebras. With a chapter by B. Keller. Encyclopae-
dia. Math. Sci., 73, Algebra VIII, Springer-Verlag, Berlin,
1992.

• C. M. Ringel: Tame algebras and integral quadratic forms.
Lecture Notes in Mathematics, 1099. Springer-Verlag, Berlin,
1984.

• I. Assem, D. Simson and A. Skowrońsky: Elements of
the representation theory of associative algebras. Vol. 1. Tech-
niques of representation theory. London Mathematical Soci-
ety Student Texts 65, Cambridge University Press, Cambridge,
2006.

For readers interested in geometrical aspects in representation theory,
we recommend one of the following texts.

• H. Kraft: Geometric methods in representation theory. Rep-
resentations of alegbras (Puebla 1980), pp. 180-258, Lecture
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Notes in Mathematics, 944. Springer-Verlag, Berlin - New York,
1982.

• W. Crawley-Boevey: Geometry of representations of alge-
bras. Available from his homepage
(http://www.amsta.leeds.ac.uk/~pmtwc/).

Proofs of Kac’s Theorem can be found for example in the following
texts (and also a sketch of it is contained in the above preprint by
W. Crawley-Boevey):

• V. Kac: Root systems, representations of quivers and invari-
ant theory. Invariant theory, pp. 74-108. Lecture Notes in
Mathematics 996, Springer-Verlag, Berlin 1983.

• H. Kraft and Ch. Riedtmann: Geometry of representations
of quivers. Representations of algebras (Durham, 1985), pp.
109-145. London Math. Soc. Lecture Notes Series, 116. Cam-
bridge University Press, Cambridge, 1986.

We mention two more instructive introductions, the first to the Aus-
lander-Reiten theory, which includes a description of the knitting tech-
nique and the second on the use of quadratic forms and geometrical
methods.

• P. Gabriel: Auslander-Reiten sequences and representation-
finite algebras. Representation theory I (Proc. Workshop, Car-
leton Univ. Ottawa, Ont. 1979), pp. 1-71. Lecture Notes in
Mathematics 831. Springer-Verlag, Berlin 1980.

• J. A. de la Peña: Quadratic forms and the representation
type of an algebra. Preprint E90-003, Bielefeld, 1990.


