## Tarea 5

## Ejercicio 12

Demuestra que  $\sqrt[3]{2}$  no es un número racional.

## Ejercicio 13

Definamos para pares de números enteros una adición y una multiplicación:

$$(a_1, a_2) + (b_1, b_2) := (a_1 + b_1, a_2 + b_2)$$

$$(a_1, a_2) \cdot (b_1, b_2) := (a_1b_1 - a_2b_2, a_1b_2 + a_2b_1)$$

Resuelve con estas "reglas" los siguientes problemas:

(a) Verifica: 
$$(0,0) + (b_1,b_2) = (b_1,b_2)$$
 y  $(1,0) \cdot (b_1,b_2) = (b_1,b_2)$ 

- (b) Verifica: Si  $(a_1, a_2)$  y  $(b_1, b_2)$  son pares de enteros, enonces la ecuación  $(a_1, a_2) + (x_1, x_2) = (b_1, b_2)$  tiene una solucón única con  $(x_1, x_2)$  un par de enteros.
- (c) Verifica: Si  $(a_1, b_1) \cdot (b_1, c_1) = (0, 0)$  entonces  $(a_1, a_2) = (0, 0)$  ó  $(b_1, b_2) = (0, 0)$
- (d) Encuentra los pares de enteros  $(a_1, a_2)$  tales que la equación  $(a_1, a_2) \cdot (x_1, x_2) = (1, 0)$  tenga una solución  $(x_1, x_2)$  con  $x_1$  y  $x_2$  enteros.
- (e) Para  $(a_1, a_2) \neq (0, 0)$  encuentra pares de números racionales  $(x_1, x_2)$  que sesuelvan la ecuación  $(a_1, a_2) \cdot (x_1, x_2) = (b_1, b_2)$ .
- (f) Enceuntra los pares  $(x_1, x_2)$  de racionales que tengan la propiedad  $(x_1, x_2) \cdot (x_1, x_2) = (-1, 0)$
- (g) No hay pares de racionales  $(x_1, x_2)$  con la propiedad que  $(x_1, x_2) \cdot (x_1, x_2) = (2, 0)$

Fecha de entrega: 11-04-2007 antes de la clase.