ON COMPONENTS OF TYPE $\mathbb{Z}\mathbb{A}_\infty^\infty$ FOR STRING ALGEBRAS

CHRISTOF GEISS

1. INTRODUCTION

Let $\Lambda = kQ/\langle P \rangle$ be a string algebra, see 3.1. From [BuR] we have an quite mechanical recipe for the calculation of Auslander-Reiten sequences, and moreover we know from there that the components of the Auslander-Reiten quiver Γ_{Λ} of Λ containing string modules are, besides a finite number of exceptions, of the form $\mathbb{Z}A_{\infty}^{\infty}$. The exceptional components are easy to find, since they contain particular Auslander-Reiten sequences parameterized by the arrows of the quiver Q of Λ .

In section 2 we obtain by rather simple combinatoric considerations, that each $\mathbb{Z}\mathbb{A}_{\infty}^{\infty}$ -Component of a string algebra contains a unique module of minimal dimension.

In section 3 we review the relevant definitions and results from [BuR]. By the way we find that the set of strings has a natural structure of a poset, where edges in the Hasse diagram correspond to irreducible maps between string-modules; this observation should be useful for related problems like clans.

In section 4 we provide more precise information: The structure of $\mathbb{Z}\mathbb{A}_{\infty}^{\infty}$ components is determined by certain infinite sections in Γ_{Λ} passing through
simple modules (Proposition 3), moreover these sections turn out to be
periodic in some sense (Proposition 2). Thus we obtain also a practical
method to determine all the strings which correspond to modules of minimal
dimension in a $\mathbb{Z}\mathbb{A}_{\infty}^{\infty}$ -component.

In section 5 we study a particular case in detail to illustrate the quite technical arguments of the foregoing sections.

The problem of the $\mathbb{Z}\mathbb{A}_{\infty}^{\infty}$ -components was suggested by C.M. Ringel. I am also indebted to P. Dräxler and J.A. de la Peña for several stimulating discussions on the subject.

¹⁹⁹¹ Mathematics Subject Classification. 16G70.

Key words and phrases. String algebras, Auslander-Reiten components.

This work was done while the author was supported by a catedra patrimonial of CONA-CYT at the Instituto de Matemáticas, UNAM (México), additional support was given by SFB 343 for a stay at University of Bielefeld.

2. Words

Let \mathcal{L} be a set of "letters" and $\mathcal{L}^{-1} := \{l^{-1} \mid l \in \mathcal{L}\}$ the set of formal inverse letters. We denote then by \mathcal{W}' the set of finite sequences in $\mathcal{L} \cup \mathcal{L}^{-1}$ – the "words" and $\mathcal{W} := \mathcal{W}' \cup \{1_{\mathcal{W}}\}$. The concatenation "·" gives \mathcal{W} the structure of a semi-group with neutral element $1_{\mathcal{W}}$. For $W = w_1 w_2 \cdots w_n \in$ \mathcal{W}' we define l(W) := n the *length* of W and $l(1_{\mathcal{W}}) := 0$. If $W = W' \cdot V \in \mathcal{W}$ we define $W \setminus V := W'$.

Finally, we say that a sequence $(W[i])_{i\in\mathbb{Z}}$ in \mathcal{W} has property

(S) if for every $i \in \mathbb{Z}$ we have either $W[i+1] = W[i] \cdot H_i$ for some $H_i = h_i \cdot H'_i$ with $h_i \in \mathcal{L}$, or else $W[i+1] := W[i] \setminus C_i$ for some $C_i = c_i \cdot C'_i$ with $c_i \in \mathcal{L}^{-1}$.

Lemma 1. Let $(W[i])_{i \in \mathbb{Z}}$ be a sequence in W with property (S), then there exists $i_0 \in \mathbb{Z}$ such that $l(W[i_0]) < l(W[i])$ for all $i \in \mathbb{Z} \setminus \{i_0\}$.

Proof. Without loss of generality we can assume $l(W[0]) \leq l(W[i])$ for all $i \in \mathbb{Z}$; then $W[1] = W[0] \cdot H_0$ with $H_0 = h_1 \cdots h_m \in \mathcal{H}$. We show by induction:

$$W[i] = W[0] \cdot h_1 \cdot S_i$$
 with $S_i \in \mathcal{W}$ for all $i \in \mathbb{N}$

For $\underline{i=1}$ nothing is to show. For the step $\underline{i \Longrightarrow i+1}$ we have two cases: - If $W[i+1] = W[i] \cdot H_i = W[0] \cdot h_1 \cdot S_i \cdot H_i$ obviously $S_{i+1} = S_i \cdot H_i$. - Else, $W[i+1] = W[i] \setminus C_i = (W[0] \cdot h_1 \cdot S_i) \setminus C_i$. In this case $l(W[i+1]) \ge l(W[i])$ implies $l(h_1 \cdot S_i) \ge l(C_i)$; moreover $h_1 \in \mathcal{L}$ while the first letter of C_i is in \mathcal{L}^{-1} , thus $S_{i+1} = S_i \setminus C_i$ is defined.

Dually we show l(C[-i]) > l(C[0]) for all $i \in \mathbb{N}$.

Proposition 1. Let $(W[i, j])_{i,j \in \mathbb{Z}}$ be a (double) sequence in W with the following three properties:

- (S1) The sequence $(W[i_0, j])_{j \in \mathbb{Z}}$ has property (S) for all $i_0 \in \mathbb{Z}$.
- (S2) The sequence $((W[i, j_0])^{-1})_{i \in \mathbb{Z}}$ has property (S) for all $j_0 \in \mathbb{Z}$.
- (E) l(W[i, j]) + l(W[i+1, j+1]) = l(W[i+1, j]) + l(W[i, j+1]) for all $i, j \in \mathbb{Z}$.

Then there exists $(i_0, j_0) \in \mathbb{Z} \times \mathbb{Z}$ such that $l(W[i_0, j_0]) < l(W[i, j])$ for all $(i, j) \in \mathbb{Z} \setminus \{(i_0, j_0)\}.$

<u>Note</u>: (S1), (S2) and (E) are fulfilled, if $(W[i, j])_{i,j \in \mathbb{Z}}$ is a family of strings parameterizing the indecomposable modules in a $\mathbb{Z}\mathbb{A}^{\infty}_{\infty}$ -component of Γ_{Λ} , with Λ a string algebra, see section 3.

Proof. We can suppose $l(W[0,0]) \leq l(W[i,j])$ for all $i, j \in \mathbb{Z}$. By the Lemma we obtain then, using (S1) and (S2):

(1) l(W[0,0]) < l(W(0,j)) for all $j \in \mathbb{Z} \setminus \{0\}$ and

(2) l(W[0,0]) < l(W(i,0)) for all $i \in \mathbb{Z} \setminus \{0\}$.

Moreover we have for $(i, j) \neq (0, 0)$:

(1)
$$l(W[i,j]) + l(W[0,0]) \stackrel{(E)}{=} l(W[i,0]) + l(W[0,j]) \stackrel{(1),(2)}{>} 2l(W[0,0]) \square$$

3. String Algebras

In this section we repeat for convenience several important definitions and results concerning string algebras and give some additional setup. This review is based on [BuR], see however the references in [BuR] for previous work on string algebras.

3.1. Let k be a field. Let $Q = (Q_0, Q_1, s, e)$ be a *finite* quiver, i.e. Q_0 is the set of vertices, Q_1 is the set of arrows and the functions $s, e: Q_1 \to Q_0$ determine the start resp. endpoint of an arrow. If P is a set of paths in Q, the (monomial) algebra $kQ/\langle P \rangle$ is called a *string algebra* in case the following three conditions hold:

- (1) For all $p \in Q_0$ we have $|\{\alpha \in Q_1 \mid s(\alpha) = p\}| \le 2$ and $|\{\alpha \in Q_1 \mid e(\alpha) = p\}| \le 2$
- (2) For all $\beta \in Q_1$ we have $|\{\alpha \in Q_1 \mid s(\alpha) = e(\beta) \text{ and } \alpha\beta \notin P\}| \le 1$ and $|\{\gamma \in Q_1 \mid e(\gamma) = s(\beta) \text{ and } \beta\gamma \notin P\}| \le 1$
- (3) $\langle P \rangle$ is an admissible ideal of kQ.

3.2. For every arrow $\alpha \in Q_1$ we introduce a formal inverse arrow α^{-1} with $s(\alpha^{-1}) = e(\alpha)$, $e(\alpha^{-1}) = s(\alpha)$ and $(\alpha^{-1})^{-1} = \alpha$; write $Q_1^{-1} := \{\alpha^{-1} \mid \alpha \in Q_1\}$. A string is a finite sequence $C = c_1c_2\cdots c_n$ with $c_i \in Q_1 \cup Q_1^{-1}$ for $i = 1, 2, \ldots, n$ and $s(c_i) = e(c_{i+1})$ for $i = 1, \ldots, n-1$ and such that C and $C^{-1} := c_n^{-1}c_{n-1}^{-1}\cdots c_1^{-1}$ do not contain a sub-path from P or of the form $\alpha^{-1}\alpha$. Moreover we introduce for every vertex $p \in Q_0$ two trivial strings $1_{(p,t)}$ for $t \in \{-1,1\}$ with $1_{(p,t)}^{-1} := 1_{(p,-t)}$. The set of all strings will be denoted by S and we extend the functions s, e in the obvious way to S. By definition a string $C = c_1 \cdots c_n$ has $length \ l(C) := n$ and $l(1_{(p,t)}) := 0$.

Next, recall that we can define two functions $\sigma, \varepsilon : Q_1 \cup Q_1^{-1} \to \{-1, 1\}$ such, that for all $c_1, c_2 \in Q_1 \cup Q_1^{-1}$ with $s(c_1) = e(c_2)$ we have $c_1c_2 \in S$ iff $\sigma(c_1) = -\varepsilon(c_2)$. We extend these functions to S in the following way: If $C = c_1 \cdots c_n$ is a non trivial string, $\sigma(C) := \sigma(c_n)$ and $\varepsilon(C) := \varepsilon(c_1)$; moreover $\sigma(1_{(p,t)}) := -t$ and $\varepsilon(1_{(p,t)}) := t$. Finally, for $(p,t) \in Q_0 \times \{-1,1\}$ let $S_{(p,t)} := \{C \in S \mid e(C) = p, \varepsilon(C) = t\}$.

For two non-trivial strings $C = c_1 \cdots c_n$ and $D = d_1 \cdots d_m$ we say, that $C \cdot D$ is defined if the concatenation $c_1 \cdots c_n d_1 \cdots d_m$ is a string. In this case $C \cdot D := c_1 \cdots c_n d_1 \cdots d_m$, and we have s(C) = e(D), $\sigma(C) = -\varepsilon(D)$. Similarly $1_{(p,t)} \cdot C$ is defined iff e(C) = p and $-t = \sigma(1_{(p,t)}) = -\varepsilon(C)$, in this case $1_{(p,t)} \cdot C := C$. Also $C \cdot 1_{(q,u)}$ is defined iff s(C) = q and $\sigma(C) = -\varepsilon(1_{(q,u)}) = -u$, in this case $C \cdot 1_{(q,u)} := C$.

3.3. Let $U_{(p,t)}$ be the unique string in $S_{(p,t)}$ of maximal length which consists only of direct arrows; similarly $V_{(p,t)}$ is the unique string in $S_{(p,t)}$ of maximal length which consists only of inverse arrows (recall, that $kQ/\langle P \rangle$ is finite dimensional). For $C \in S_{(p,t)} \setminus \{U_{(p,t)}\}$ we define

$$C[1] := \begin{cases} C \cdot \alpha \cdot V_{(s(\alpha), -\sigma(\alpha))} & \text{if } \exists \alpha \in Q_1 : \ C \cdot \alpha \text{ defined} \\ C \setminus \beta^{-1} \cdot U_{(s(\beta^{-1}), -\sigma(\beta^{-1}))} & \text{else} \end{cases}$$

Dually we define C[-1] for $C \in S_{(p,u)} \setminus \{V_{(p,u)}\}$; finally we define inductively C[i] for all $i \in \mathbb{Z}$ where this makes sense, else we say that C[i] is not defined. Finally, for technical reasons we also introduce the notations $[i]C := (C^{-1}[1])^{-1}$ where this makes sense, and $I_p := U_{(p,-1)}^{-1} \cdot U_{(p,1)}$.

The set $S_{(p,u)}$ is linearly ordered by

$$V < W \iff \begin{cases} \text{either} \quad W = V \cdot W' \text{ with } w_1' \in Q_1 \\ \text{or} \quad V = W \cdot V' \text{ with } v_1' \in Q_1^{-1} \\ \text{or} \quad V = CV', \ W = CW' \text{ with } w_1' \in Q_1, v_1' \in Q_1^{-1} \end{cases}$$

We leave the proof of the following as an exercise.

Lemma 2. With the above notations we have:

$$V_{(p,u)} = \min S_{(p,u)} \qquad C[1] = \min\{C' \in S_{(p,u)} \mid C' > C\}$$

$$U_{(p,u)} = \max S_{(p,u)} \qquad C[-1] = \max\{C' \in S_{(p,u)} \mid C' < C\}$$

Remarks. (1) In the notation of [BuR] we have $C[1] = C_h$ if C starts not on a peak, otherwise $C = C[1]_c$.

(2) By the above lemma it is clear that that $C[i] = C[j] \iff i = j$; by Theorem 2 below we can interpret this as a special case of [BaS].

3.4. For $C \in S$ we can define naturally a Λ -module M(C), see [BuR] for details but note that $M(C) \cong M(C^{-1})$, and for $C_1 < C_2$ in $S_{(p,u)}$ there is a canonical morphism $M(C_1) \to M(C_2)$; moreover observe that $M(I_p)$ is an injective indecomposable module.

Define on S an equivalence relation ~ by $C \sim D \iff D \in \{C, C^{-1}\}$ and let S' be a set of representatives of the corresponding equivalence classes.

We also need the set \mathcal{B} of *bands*, by definition

 $\mathcal{B} := \{ C \in \mathbb{S} \mid C^n \in \mathbb{S} \text{ for all } n \in \mathbb{N} \text{ and } C \neq B^m \text{ for } B \in \mathbb{S}, m \geq 2 \}$

For each $C \in \mathcal{B}$ we have a Λ -k $[T, T^{-1}]$ bimodule N(C); loosely speaking $N(C) = M(\cdots C \cdot C \cdot C \cdots)$. For $C = c_1 c_2 \cdots c_{l(C)} \in \mathcal{B}$ the rotation $C_{[r]} :=$ $c_{r+1}c_{r+2}\cdots c_{l(C)}c_{1}\cdots c_{r}$ is also a band. Define on \mathcal{B} an equivalence relation ρ by $C\rho D \iff C_{[r]}^t = D$ for some $r \in \{0, 1, \dots, l(C) - 1\}, t \in \{-1, 1\}$, and let \mathcal{B}' be a set of representatives of the corresponding equivalence classes.

Finally, let Ψ be a set of representatives of the isomorphism classes of indecomposable $k[T, T^{-1}]$ -modules of finite length.

Theorem 1 ([BuR]). Let $\Lambda = k[Q]/\langle P \rangle$ be a string algebra and S', B', Ψ the corresponding sets as above. Then the modules $M(C), C \in S'$ and $N(B)\otimes_{\mathbf{k}[T,T^{-1}]}S, \ B\in \mathcal{B}', \ S\in \Psi \ form \ a \ (irredundant) \ set \ of \ representatives$ of the isoclasses of indecomposable Λ -modules of finite length.

Theorem 2 ([BuR]). Under the same hypothesis as above we have:

- (a) The functors $N(B) \otimes_{k[T,T^{-1}]} : k[T,T^{-1}] \mod \longrightarrow \Lambda \mod preserve$ Auslander-Reiten sequences.
- (b) If for $(p,t) \in Q_0 \times \{-1,1\}$ the string $U_{(p,t)} \neq I_p^t$ (i.e. $M(U_{(p,t)})$ is not injective), then the canonical sequence

$$0 \to M(U_{(p,t)}) \to M([1]U_{(p,t)}) \to M(([1]U_{(p,t)})[1]) \to 0$$

is an Auslander-Reiten sequence, otherwise

$$M(U_{(p,t)}) \to M([1]U_{(p,t)}) \to 0$$

is a source map.

(c) If for $C \in S \setminus \{U_{(p,t)}^u \mid t, u \in \{-1,1\}, p \in Q_0\}$ we have $C \not\sim I_p$ for all $p \in Q_0$ (i.e. M(C) is not injective), then the canonical sequence

$$0 \to M(C) \to M(C[1]) \oplus M([1]C) \to M([1](C[1])) \to 0$$

is an Auslander-Reiten sequence and [1](C[1]) = ([1]C)[1], otherwise

$$0 \to M(C) \to M(C[1]) \oplus M([1]C)$$

is a source map.

Remark. If in situation (b) of the theorem $U_{(p,t)} \neq I_p$, there exists a unique $\alpha \in Q_1$ with $\alpha^{-1} \cdot U_{(p,t)}$ defined. In this case $([1]U_{(p,t)})[1] = V_{(s(\alpha), -\sigma(\alpha))}^{-1}$.

4. $\mathbb{Z}\mathbb{A}^{\infty}_{\infty}$ -components

A (non-trivial) consequence of the above theorem also shown in [BuR] is, that the stable components of Γ_{Λ} containing string modules are of the form $\mathbb{Z}\mathbb{A}^{\infty}/\langle \tau^n \rangle$ or $\mathbb{Z}\mathbb{A}^{\infty}_{\infty}$. The (finitely many) components of the first type are easy to determine since they contain AR-sequences of type (b) in the theorem above. Here we describe the other type of stable components. The proofs of the corresponding Propositions 2 and 3, based on the lemmas in 4.1, are given at the end of the section.

Definition. Let $\Lambda = kQ/\langle P \rangle$ be a string algebra with $\varepsilon, \sigma \colon S \to \{-1, 1\}$ as in 3.2.

(1) For a string $C \in S$ let $R^+(C)$ be the maximal (left) substring of $U_{(s(C),-\sigma(C))}$ such that $C \cdot R^+(C)$ is defined. Similarly, let $L^+(C)$ be the maximal (right) substring of $V_{(e(C),-\varepsilon(C))}^{-1}$ such that $L^+(C) \cdot C$ is defined.

(2) We say, that $C = c_1 c_2 \cdots c_n$ is *critical*, if for any $1 \le i < j \le n$ we have, that $c_i = c_j \in Q_1$ implies $l(R^+(c_1 \cdots c_i)) > l(R^+(c_1 \cdots c_j))$.

(3) $S^+_{(p,t)} := \{ C \in S_{(p,t)} \mid C \text{ is critical} \}$, this is a finite (!) set which contains $U_{(p,t)}$.

Proposition 2. Let $\Lambda = kQ/\langle P \rangle$ be a string algebra with $\varepsilon, \sigma \colon S \to \{-1, 1\}$ as in 3.2. Let $(p, u) \in Q_0 \times \{-1, 1\}$. Then we are in exactly one of the following situations.

CHRISTOF GEISS

(I) $1_{(p,u)}[i] \notin \mathbb{S}^+_{(p,u)}$ for some $i \in \mathbb{N}$. In this case $1_{(p,u)}[i]$ is defined for all $i \in \mathbb{N}$ and there are $P^+_{(p,u)}, Q^+_{(p,u)} \in \mathbb{N}_0$ with $M^+_{(p,u)} := P^+_{(p,u)} + Q^+_{(p,u)} \leq |\mathbb{S}^+_{(p,u)}|$ such that

$$1_{(p,u)}[Q^+_{(p,u)} + nP^+_{(p,u)} + r] = 1_{(p,u)}[Q^+_{(p,u)}] \cdot (1_{(p',t')}[P^+_{(p,u)}])^n \cdot 1_{(p',u')}[r]$$

for all $n, r \in \mathbb{N}_0$ (with $p' = s(1_{(p,u)}[Q^+_{(p,u)}])$, $u' = -\sigma(1_{(p,u)}[Q^+_{(p,u)}])$). In this case for $C \in S$ the composition $C \cdot 1_{(p,u)}[i]$ is defined for all $i \in \mathbb{N}$ iff $C \cdot 1_{(p,u)}[M^+_{(p,u)}]$ is defined.

(F) $1_{(p,u)}[N^+_{(p,u)}] = U_{(p,u)}$ for some $0 \le N^+_{(p,u)} \le |S^+_{(p,u)}|$. In this case $1_{(p,u)}[i] \in S^+_{(p,u)}$ for all $i \in \mathbb{N}$ where $1_{(p,u)}[i]$ is defined.

There is an obvious "negative version" of this proposition dealing with the strings $1_{(p,u)}[-i]$, for $i \in \mathbb{N}$.

Proposition 3. Under the same hypothesis as Proposition 2 let $C \in S$ be a string. The following two conditions are equivalent:

- (i) M(C) is a module of minimal dimension in a component of type ZA[∞]_∞ in the AR-quiver Γ_Λ of Λ.
- (ii) For all $i, j \in \mathbb{Z}$ the expression

$$C(i,j) := [i]\mathbf{1}_{(e(C),\varepsilon(C))} \cdot C \cdot \mathbf{1}_{(s(C),-\sigma(C))}[j]$$

is defined.

In this case the modules M([i](C[j])) = M(C(i,j)) for $i, j \in \mathbb{Z}$ are just the vertices of the component of M(C), and moreover M(C) is of strictly minimal dimension in that component.

Remarks . (1) If M(C) lies in a $\mathbb{Z}\mathbb{A}_{\infty}^{\infty}$ -component of Γ_{Λ} the string ([i]C)[j] = [i](C[j]) is defined for all $i, j \in \mathbb{Z}$, but this does not mean automatically that C(i, j) is always defined.

(2) Let $\mathcal{C} := \{C \in \mathcal{S} \mid C(i, j) \text{ defined for all } i, j \in \mathbb{Z}\}$. By Proposition 2 we get for C a string: $C \in \mathcal{C}$ iff $C(M^-_{(e(C), -\varepsilon(C))}, M^+_{(s(C), -\sigma(C))})$ and $C(M^+_{(e(C), -\varepsilon(C))}, M^-_{(s(C), -\sigma(C))})$ are defined; thus condition (ii) above is easy to check.

(3) Of course, every $\mathbb{Z}\mathbb{A}_{\infty}^{\infty}$ -component of Γ_{Λ} contains some module of minimal dimension; this module is by the proposition unique.

Corollary. The set C/\sim parameterizes the $\mathbb{Z}\mathbb{A}_{\infty}^{\infty}$ -components of Γ_{Λ} ; the elements of C/\sim describe the (unique) modules of minimal dimension for each $\mathbb{Z}\mathbb{A}_{\infty}^{\infty}$ -component.

4.1. For the proof of the propositions we will need the following lemmas:

Lemma 3. Let $C \in S$ be a string and $n \in \mathbb{N}_0$. Then the following are equivalent:

(i) $l(C[j]) \ge l(C)$ for j = 0, 1, ..., n.

6

(ii) $C \cdot 1_{(s(C), -\sigma(C))}[j]$ is defined for j = 0, 1, ..., n. (iii) $C[j] = C \cdot 1_{(s(C), -\sigma(C))}[j]$ for j = 0, 1, ..., n.

For the proof of the non-obvious implications (i) \Longrightarrow (iii) and (ii) \Longrightarrow (iii) one easily adapts the argument of Lemma 1 (section 2).

Lemma 4. Suppose $1_{(p,t)}[n] = C \cdot \beta \cdot D$ with C, D strings and $\beta \in Q_1$, then: (a) $C = 1_{(p,t)}[k]$ for some natural number k < n.

(b) $C \cdot 1_{(s(C), -\sigma(C))}[i]$ is defined for i = 1, 2, ..., n - k.

Proof. a) We have only to observe that $1_{(p,t)} < C < C \cdot \beta \cdot D = 1_{(p,t)}[n]$, and that by Lemma 2 the interval $[1_{(p,t)}, 1_{(p,t)}[n]]$ consists just of the elements $\{1_{(p,t)}[i] \mid i = 0, 1, \ldots n\}$.

b) By lemma 3 we would get otherwise $C[i_0]$ a (left) substring of C for some $i_0 \in \{2, 3, \ldots, n-k-1\}$, but this is impossible because $C < C[i_0] < C[n-k] = C \cdot \beta \cdot D$.

4.2. Proof of Proposition 2. If there is no $t \in \mathbb{N}$ with $1_{(p,u)}[t] \notin S^+_{(p,u)}$ then, by remark (2) in 3.3 and the fact that $S^+_{(p,u)}$ is a finite set, there must be some natural number $N^+_{(p,u)} \leq |S^+_{(p,u)}|$ with $1_{(p,u)}[N^+_{(p,u)}] = U_{(p,u)}$.

Otherwise, let $t := \min\{i \in \mathbb{N}_0 \mid 1_{(p,u)}[i+1] \notin S^+_{(p,u)}\}$. This means that $1_{(p,u)}[t+1]$ can be written as

$$1_{(p,u)}[t+1] = \underbrace{c_1 \cdots c_{j-1} \alpha c_{j+1} \cdots c_n}_{1_{(p,u)}[t]} \cdot \alpha \cdot V_{(s(\alpha), -\sigma(\alpha))}$$

with $l(R^+(c_1 \cdots c_{j-1}\alpha)) \leq l(R^+(c_1 \cdots c_n\alpha))$ (*). By Lemma 4 we obtain for some $Q \in \mathbb{N}$:

$$1_{(p,u)}[Q+i] = c_1 \cdots c_{j-1} \cdot 1_{(s(c_{j-1}), -\sigma(c_{j-1}))}[i] \text{ for } i = 0, 1, \dots, t-Q := P.$$

As a consequence $1_{(p,u)}[Q+P] \cdot 1_{(s(c_{j-1}),-\sigma(c_{j-1}))}[i] = 1_{(p,u)}[Q+P+i]$ for $i = 0, 1, \ldots, P$, here the left hand side is defined by (*) and thus is equal to the right side by Lemma 3. Finally observe, that $l(L^+(1_{(p,u)}[i]))$ is a monotonous decreasing function $\mathbb{N}_0 \to \mathbb{N}_0$. By the above it reaches its minimum at Q+P.

4.3. Proof of Proposition 3. a) \Longrightarrow b) By Lemma 3 and its dual C(0, k) and C(k, 0) are defined for all $k \in \mathbb{Z}$. If $C(i_0, j_0)$ is not defined for some $(i_0, j_0) \in \mathbb{Z} \times \mathbb{Z}$, then we may suppose that C consists only of direct arrows and that $i_0 < 0 < j_0$. Moreover we can suppose that C(i, j) is defined for all $j \in \mathbb{Z}$ if $i > i_0$, and that $C(i_0, j)$ is defined for $j < j_0$. This means, that the module $M(C(i_0, j_0 - 1))$ is injective (!), but on the other hand it lies in the component of M(C) - a contradiction.

CHRISTOF GEISS

b) \Longrightarrow a) Applying twice Lemma 3 we get C(i, j) = ([j]C)[i] = [j](C[i]) for all $i, j \in \mathbb{Z}$, therefore (see Theorem 2) we have irreducible maps $M(C(i, j)) \to M(C(i, j+1))$ and $M(C(i, j)) \to M(C(i+1, j))$ for all $i, j \in \mathbb{Z}$.

Thus, by Theorem 2 the M(C(i, j)) are exactly the vertices of the component of Γ_{Λ} containing M(C), and moreover this is a stable component, containing *no* Auslander-Reiten sequence with indecomposable middle term. Following [BuR, p. 175] we conclude that this component is of type $\mathbb{Z}\mathbb{A}_{\infty}^{\infty}$ containing M(C) as a module of strictly minimal dimension.

5. An example

Consider the following quiver Q, with relations P' indicated by dotted lines and additional relations $P'' = \{\lambda^{m+1}, (\kappa \alpha \iota)^n \kappa\}$; thus $\Lambda_{m,n} := kQ/\langle P' \cup P'' \rangle$ is a string algebra for all $m, n \in \mathbb{N}$.

We want to determine the $\mathbb{Z}\mathbb{A}_{\infty}^{\infty}$ components of the Auslander-Reiten quiver of $\Lambda_{m,n}$.

First we determine the functions σ and ε by giving their values on Q_1 .

	α	β	γ	δ	ϵ	ζ	η	θ	ι	κ	λ
σ	1	-1	1	-1	1	1	-1	-1	1	-1	1
ε	1	$^{-1}$	$^{-1}$	$^{-1}$	1	1	$^{-1}$	1	$^{-1}$	$^{-1}$	-1

Next we have to find the pairs $(p, u) \in Q_0 \times \{-1, 1\}$ where $1_{(p,u)}[i]$ is defined for all $i \in \mathbb{Z}$. The following simple calculations rule out most cases:

p/u	-1	1
a	*	*
b	$1_{(b,-1)}[-6] = \beta^{-1} = V_{(b,-1)}$	$1_{(b,1)} = U_{(b,1)}$
c	$1_{(c,-1)} = V_{(c,-1)}$	$1_{(c,1)} = V_{(c,1)}$
d	$1_{(d,-1)} = \eta = U_{(d,-1)}$	*
e	$1_{(e,-1)} = V_{(e,-1)}$	$1_{(e,1)} = V_{(e,1)}$
f	$1_{(f,-1)} = V_{(f,-1)} = U_{(f,-1)}$	*
g	$1_{(g,-1)} = U_{(g,-1)}$	$1_{(g,1)} = U_{(g,1)}$
h	$1_{(h,-1)} = U_{(h,-1)}$	$1_{(h,1)}[-5] = \theta^{-1}\delta^{-1} = V_{(h,1)}$

In the cases marked by * the string $1_{(p,u)}[i]$ is defined for all $i \in \mathbb{Z}$. There we find:

i	$1_{(d,1)}[i]$	$1_{(f,1)}[i]$
-5	$\gamma^{-1}\beta\alpha^{-1}\lambda^m\kappa^{-1}\iota^{-1}\alpha^{-1}\lambda^m$	$\epsilon^{-1}\delta\theta\iota^{-1}\alpha^{-1}\lambda^m\kappa^{-1}\iota^{-1}$
-4	$\gamma^{-1}\beta\alpha^{-1}\lambda^m\kappa^{-1}\iota^{-1}$	$\epsilon^{-1}\delta\theta\iota^{-1}\alpha^{-1}\lambda^m\kappa^{-1}$
-3	$\gamma^{-1}\beta\alpha^{-1}\lambda^m\kappa^{-1}$	$\epsilon^{-1}\delta\theta\iota^{-1}\alpha^{-1}\lambda^m$
-2	$\gamma^{-1}\beta\alpha^{-1}\lambda^m$	$\epsilon^{-1}\delta\theta\iota^{-1}$
-1	$\gamma^{-1}\beta$	$\epsilon^{-1}\delta\theta$
0	$1_{(d,1)}$	$1_{(f,1)}$
1	$\theta(\iota^{-1}\alpha^{-1}\kappa^{-1})^n\iota^{-1}\alpha^{-1}$	$\zeta \eta^{-1} \gamma^{-1}$
2	$\theta(\iota^{-1}\alpha^{-1}\kappa^{-1})^n\iota^{-1}\alpha^{-1}$	$\zeta \eta^{-1} \gamma^{-1} \beta (\alpha^{-1} \kappa^{-1} \iota^{-1}) \alpha^{-1}$
	$\cdot \lambda (\iota^{-1} \alpha^{-1} \kappa^{-1})^n$	
3	$\theta(\iota^{-1}\alpha^{-1}\kappa^{-1})^n\iota^{-1}\alpha^{-1}$	$\zeta \eta^{-1} \gamma^{-1} \beta (\alpha^{-1} \kappa^{-1} \iota^{-1}) \alpha^{-1}$
	$\cdot \lambda (\iota^{-1} \alpha^{-1} \kappa^{-1})^n \lambda (\iota^{-1} \alpha^{-1} \kappa^{-1})^n$	$\cdot \lambda (\kappa^{-1} \iota^{-1} \alpha^{-1})^n$

But, $C \cdot 1_{(f,1)}[i]$ defined for $i \in \{-1,1\}$ implies $C = 1_{(f,1)}$, and $C \cdot 1_{(d,1)}[i]$ defined for $i \in \{-1,1\}$ implies $C \in \{\eta, \eta\zeta^{-1}, \delta^{-1}, \delta^{-1}\epsilon\}$, so remain:

i	$1_{(a,1)}[i]$	$1_{(a,-1)}[i]$
-4		$\kappa^{-1}\iota^{-1}\alpha^{-1}\lambda^m\kappa^{-1}$
-3		$\kappa^{-1}\iota^{-1}\alpha^{-1}\lambda^m$
-2	$(\lambda^{-1}(lpha\iota\kappa)^n)^2$	$\kappa^{-1}\iota^{-1}$
-1	$\lambda^{-1}(\alpha\iota\kappa)^n$	κ^{-1}
0	$1_{(a,1)}$	$1_{(a,-1)}$
1	$lpha eta^{-1}$	$\lambda (\kappa^{-1} \iota^{-1} \alpha^{-1})^n$
2	$lphaeta^{-1}\gamma\delta^{-1}$	$(\lambda(\kappa^{-1}\iota^{-1}\alpha^{-1})^n)^2$
3	$lpha eta^{-1} \gamma \delta^{-1} \epsilon$	
4	$lpha eta^{-1} \gamma$	
5	$lpha eta^{-1} \gamma \eta \zeta^{-1}$	
6	$lpha eta^{-1} \gamma \eta$	
7	α	
8	$\alpha\iota\theta^{-1}\delta^{-1}$	
9	$\alpha\iota\theta^{-1}\delta^{-1}\epsilon$	
10	$\alpha\iota\theta^{-1}$	
11	$\alpha\iota\theta^{-1}\eta\zeta^{-1}$	
12	$\alpha\iota\theta^{-1}\eta$	
13	$\alpha\iota$	
14	$\alpha\iota\kappa\lambda^{-m}$	
15	$\alpha\iota\kappa\lambda^{-m}\alpha\beta^{-1}$	

Now it is not hard to see, that up to equivalence for a string C the expressions C(i, j) can be defined for all $i, j \in \mathbb{Z}$ only if s(C) = a = e(C) and $\sigma(C) = -1, \varepsilon(C) = 1$, thus $C(i, j) = [i]1_{(a,1)} \cdot C \cdot 1_{(a,1)}[j] = (1_{(a,-1)}[i])^{-1} \cdot C \cdot 1_{(a,1)}[j]$. By Proposition 2 we see, that such C(i, j) is defined for all $i, j \in \mathbb{Z}$ iff it is defined for (i = -3, j = 14) and for (i = 1, j = -1). By the corollary

CHRISTOF GEISS

of Proposition 2 these strings parameterize the $\mathbb{Z}\mathbb{A}_{\infty}^{\infty}$ -components of $\Lambda_{m,n}$. Consequently $\Lambda_{m,n}$ has $\mathbb{Z}\mathbb{A}_{\infty}^{\infty}$ components if $(m,n) \in \mathbb{N} \times \mathbb{N} \setminus \{(1,1)\}$ and $M(1_{(a,1)})$ lies in a $\mathbb{Z}\mathbb{A}_{\infty}^{\infty}$ component if $m, n \geq 2$. Indeed, if say $m \geq 2$, the expressions $(\lambda^{-1}\alpha\iota\kappa\lambda^{-1})(1,-1)$ and $(\lambda^{-1}\alpha\iota\kappa\lambda^{-1})(-3,14)$ are defined, while $1_{(a,1)}(1,-1)$ is defined if $m \geq 2$ and $1_{(a,1)}(-3,14)$ is defined if $n \geq 2$.

References

[BaS] R. Bautista, S. Smalø: Nonexistent cycles, Comm. Alg. 11 (16) (1983), 1755–1767.
[BuR] M. Butler, C.M. Ringel: On Auslander Reiten Sequences with few middle terms and applications to string algebras, Comm. Alg. 15 (1&2) (1987), 145–179.

INSTITUTO DE MATEMÁTICAS, UNAM,04510 MÉXICO D.F., MEXICO *E-mail address*: geiss@servidor.unam.mx