ON COMPONENTS OF TYPE $\mathbb{Z} \mathbb{A}_{\infty}^{\infty}$ FOR STRING ALGEBRAS

CHRISTOF GEISS

1. Introduction

Let $\Lambda=\mathrm{k} Q /\langle P\rangle$ be a string algebra, see 3.1. From [BuR] we have an quite mechanical recipe for the calculation of Auslander-Reiten sequences, and moreover we know from there that the components of the Auslander-Reiten quiver Γ_{Λ} of Λ containing string modules are, besides a finite number of exceptions, of the form $\mathbb{Z} \mathbb{A}_{\infty}^{\infty}$. The exceptional components are easy to find, since they contain particular Auslander-Reiten sequences parameterized by the arrows of the quiver Q of Λ.

In section 2 we obtain by rather simple combinatoric considerations, that each $\mathbb{Z} \mathbb{A}_{\infty}^{\infty}$-Component of a string algebra contains a unique module of minimal dimension.

In section 3 we review the relevant definitions and results from $[B u R]$. By the way we find that the set of strings has a natural structure of a poset, where edges in the Hasse diagram correspond to irreducible maps between string-modules; this observation should be useful for related problems like clans.

In section 4 we provide more precise information: The structure of $\mathbb{Z} \mathbb{A}_{\infty^{-}}^{\infty}$ components is determined by certain infinite sections in Γ_{Λ} passing through simple modules (Proposition 3), moreover these sections turn out to be periodic in some sense (Proposition 2). Thus we obtain also a practical method to determine all the strings which correspond to modules of minimal dimension in a $\mathbb{Z} \mathbb{A}_{\infty}^{\infty}$-component.

In section 5 we study a particular case in detail to illustrate the quite technical arguments of the foregoing sections.

The problem of the $\mathbb{Z} \mathbb{A}_{\infty}^{\infty}$-components was suggested by C.M. Ringel. I am also indebted to P. Dräxler and J.A. de la Peña for several stimulating discussions on the subject.

[^0]
2. Words

Let \mathcal{L} be a set of "letters" and $\mathcal{L}^{-1}:=\left\{l^{-1} \mid l \in \mathcal{L}\right\}$ the set of formal inverse letters. We denote then by \mathcal{W}^{\prime} the set of finite sequences in $\mathcal{L} \cup \mathcal{L}^{-1}$ - the "words" and $\mathcal{W}:=\mathcal{W}^{\prime} \cup\{1 \mathcal{W}\}$. The concatenation "." gives \mathcal{W} the structure of a semi-group with neutral element $1_{\mathcal{W}}$. For $W=w_{1} w_{2} \cdots w_{n} \in$ \mathcal{W}^{\prime} we define $l(W):=n$ the length of W and $l(1 \mathcal{W}):=0$. If $W=W^{\prime} \cdot V \in \mathcal{W}$ we define $W \backslash V:=W^{\prime}$.

Finally, we say that a sequence $(W[i])_{i \in \mathbb{Z}}$ in \mathcal{W} has property
(S) if for every $i \in \mathbb{Z}$ we have either $W[i+1]=W[i] \cdot H_{i}$ for some $H_{i}=h_{i} \cdot H_{i}^{\prime}$ with $h_{i} \in \mathcal{L}$, or else $W[i+1]:=W[i] \backslash C_{i}$ for some $C_{i}=c_{i} \cdot C_{i}^{\prime}$ with $c_{i} \in \mathcal{L}^{-1}$.
Lemma 1. Let $(W[i])_{i \in \mathbb{Z}}$ be a sequence in \mathcal{W} with property (S), then there exists $i_{0} \in \mathbb{Z}$ such that $l\left(W\left[i_{0}\right]\right)<l(W[i])$ for all $i \in \mathbb{Z} \backslash\left\{i_{0}\right\}$.
Proof. Without loss of generality we can assume $l(W[0]) \leq l(W[i])$ for all $i \in \mathbb{Z}$; then $W[1]=W[0] \cdot H_{0}$ with $H_{0}=h_{1} \cdots h_{m} \in \mathcal{H}$. We show by induction:

$$
W[i]=W[0] \cdot h_{1} \cdot S_{i} \text { with } S_{i} \in \mathcal{W} \text { for all } i \in \mathbb{N}
$$

For $i=1$ nothing is to show. For the step $i \Longrightarrow i+1$ we have two cases: - If $W[i+1]=W[i] \cdot H_{i}=W[0] \cdot h_{1} \cdot S_{i} \cdot H_{i}$ obviously $S_{i+1}=S_{i} \cdot H_{i}$.

- Else, $W[i+1]=W[i] \backslash C_{i}=\left(W[0] \cdot h_{1} \cdot S_{i}\right) \backslash C_{i}$. In this case $l(W[i+1]) \geq$ $l(W[i])$ implies $l\left(h_{1} \cdot S_{i}\right) \geq l\left(C_{i}\right)$; moreover $h_{1} \in \mathcal{L}$ while the first letter of C_{i} is in \mathcal{L}^{-1}, thus $S_{i+1}=S_{i} \backslash C_{i}$ is defined.

Dually we show $l(C[-i])>l(C[0])$ for all $i \in \mathbb{N}$.
Proposition 1. Let $(W[i, j])_{i, j \in \mathbb{Z}}$ be a (double) sequence in \mathcal{W} with the following three properties:
(S1) The sequence $\left(W\left[i_{0}, j\right]\right)_{j \in \mathbb{Z}}$ has property (S) for all $i_{0} \in \mathbb{Z}$.
(S2) The sequence $\left(\left(W\left[i, j_{0}\right]\right)^{-1}\right)_{i \in \mathbb{Z}}$ has property (S) for all $j_{0} \in \mathbb{Z}$.
(E) $l(W[i, j])+l(W[i+1, j+1])=l(W[i+1, j])+l(W[i, j+1])$ for all $i, j \in \mathbb{Z}$.
Then there exists $\left(i_{0}, j_{0}\right) \in \mathbb{Z} \times \mathbb{Z}$ such that $l\left(W\left[i_{0}, j_{0}\right]\right)<l(W[i, j])$ for all $(i, j) \in \mathbb{Z} \backslash\left\{\left(i_{0}, j_{0}\right)\right\}$.
Note: (S1), (S2) and (E) are fulfilled, if $(W[i, j])_{i, j \in \mathbb{Z}}$ is a family of strings parameterizing the indecomposable modules in a $\mathbb{Z} \mathbb{A}_{\infty}^{\infty}$-component of Γ_{Λ}, with Λ a string algebra, see section 3 .
Proof. We can suppose $l(W[0,0]) \leq l(W[i, j])$ for all $i, j \in \mathbb{Z}$. By the Lemma we obtain then, using (S1) and (S2):
(1) $l(W[0,0])<l(W(0, j))$ for all $j \in \mathbb{Z} \backslash\{0\}$ and
(2) $l(W[0,0])<l(W(i, 0))$ for all $i \in \mathbb{Z} \backslash\{0\}$.

Moreover we have for $(i, j) \neq(0,0)$:

$$
\begin{equation*}
l(W[i, j])+l(W[0,0]) \stackrel{(E)}{=} l(W[i, 0])+l(W[0, j]) \stackrel{(1),(2)}{>} 2 l(W[0,0]) \tag{1}
\end{equation*}
$$

3. STRING ALGEBRAS

In this section we repeat for convenience several important definitions and results concerning string algebras and give some additional setup. This review is based on $[\mathrm{BuR}]$, see however the references in $[\mathrm{BuR}]$ for previous work on string algebras.
3.1. Let k be a field. Let $Q=\left(Q_{0}, Q_{1}, s, e\right)$ be a finite quiver, i.e. Q_{0} is the set of vertices, Q_{1} is the set of arrows and the functions $s, e: Q_{1} \rightarrow Q_{0}$ determine the start resp. endpoint of an arrow. If P is a set of paths in Q, the (monomial) algebra $\mathrm{k} Q /\langle P\rangle$ is called a string algebra in case the following three conditions hold:
(1) For all $p \in Q_{0}$ we have $\left|\left\{\alpha \in Q_{1} \mid s(\alpha)=p\right\}\right| \leq 2$ and $\left|\left\{\alpha \in Q_{1} \mid e(\alpha)=p\right\}\right| \leq 2$
(2) For all $\beta \in Q_{1}$ we have $\mid\left\{\alpha \in Q_{1} \mid s(\alpha)=e(\beta)\right.$ and $\left.\alpha \beta \notin P\right\} \mid \leq 1$ and $\mid\left\{\gamma \in Q_{1} \mid e(\gamma)=s(\beta)\right.$ and $\left.\beta \gamma \notin P\right\} \mid \leq 1$
(3) $\langle P\rangle$ is an admissible ideal of $\mathrm{k} Q$.
3.2. For every arrow $\alpha \in Q_{1}$ we introduce a formal inverse arrow α^{-1} with $s\left(\alpha^{-1}\right)=e(\alpha), e\left(\alpha^{-1}\right)=s(\alpha)$ and $\left(\alpha^{-1}\right)^{-1}=\alpha ;$ write $Q_{1}^{-1}:=$ $\left\{\alpha^{-1} \mid \alpha \in Q_{1}\right\}$. A string is a finite sequence $C=c_{1} c_{2} \cdots c_{n}$ with $c_{i} \in$ $Q_{1} \cup Q_{1}^{-1}$ for $i=1,2, \ldots, n$ and $s\left(c_{i}\right)=e\left(c_{i+1}\right)$ for $i=1, \ldots, n-1$ and such that C and $C^{-1}:=c_{n}^{-1} c_{n-1}^{-1} \cdots c_{1}^{-1}$ do not contain a sub-path from P or of the form $\alpha^{-1} \alpha$. Moreover we introduce for every vertex $p \in Q_{0}$ two trivial strings $1_{(p, t)}$ for $t \in\{-1,1\}$ with $1_{(p, t)}^{-1}:=1_{(p,-t)}$. The set of all strings will be denoted by \mathcal{S} and we extend the functions s, e in the obvious way to \mathcal{S}. By definition a string $C=c_{1} \cdots c_{n}$ has length $l(C):=n$ and $l\left(1_{(p, t)}\right):=0$.

Next, recall that we can define two functions $\sigma, \varepsilon: Q_{1} \cup Q_{1}^{-1} \rightarrow\{-1,1\}$ such, that for all $c_{1}, c_{2} \in Q_{1} \cup Q_{1}^{-1}$ with $s\left(c_{1}\right)=e\left(c_{2}\right)$ we have $c_{1} c_{2} \in \mathcal{S}$ iff $\sigma\left(c_{1}\right)=-\varepsilon\left(c_{2}\right)$. We extend these functions to \mathcal{S} in the following way: If $C=c_{1} \cdots c_{n}$ is a non trivial string, $\sigma(C):=\sigma\left(c_{n}\right)$ and $\varepsilon(C):=\varepsilon\left(c_{1}\right)$; moreover $\sigma\left(1_{(p, t)}\right):=-t$ and $\varepsilon\left(1_{(p, t)}\right):=t$. Finally, for $(p, t) \in Q_{0} \times\{-1,1\}$ let $\mathcal{S}_{(p, t)}:=\{C \in \mathcal{S} \mid e(C)=p, \varepsilon(C)=t\}$.

For two non-trivial strings $C=c_{1} \cdots c_{n}$ and $D=d_{1} \cdots d_{m}$ we say, that $C \cdot D$ is defined if the concatenation $c_{1} \cdots c_{n} d_{1} \cdots d_{m}$ is a string. In this case $C \cdot D:=c_{1} \cdots c_{n} d_{1} \cdots d_{m}$, and we have $s(C)=e(D), \sigma(C)=-\varepsilon(D)$. Similarly $1_{(p, t)} \cdot C$ is defined iff $e(C)=p$ and $-t=\sigma\left(1_{(p, t)}\right)=-\varepsilon(C)$, in this case $1_{(p, t)} \cdot C:=C$. Also $C \cdot 1_{(q, u)}$ is defined iff $s(C)=q$ and $\sigma(C)=-\varepsilon\left(1_{(q, u)}\right)=-u$, in this case $C \cdot 1_{(q, u)}:=C$.
3.3. Let $U_{(p, t)}$ be the unique string in $\mathcal{S}_{(p, t)}$ of maximal length which consists only of direct arrows; similarly $V_{(p, t)}$ is the unique string in $\mathcal{S}_{(p, t)}$ of maximal length which consists only of inverse arrows (recall, that $\mathrm{k} Q /\langle P\rangle$ is finite
dimensional). For $C \in \mathcal{S}_{(p, t)} \backslash\left\{U_{(p, t)}\right\}$ we define

$$
C[1]:= \begin{cases}C \cdot \alpha \cdot V_{(s(\alpha),-\sigma(\alpha))} & \text { if } \exists \alpha \in Q_{1}: C \cdot \alpha \text { defined } \\ C \backslash \beta^{-1} \cdot U_{\left(s\left(\beta^{-1}\right),-\sigma\left(\beta^{-1}\right)\right)} & \text { else }\end{cases}
$$

Dually we define $C[-1]$ for $C \in \mathcal{S}_{(p, u)} \backslash\left\{V_{(p, u)}\right\}$; finally we define inductively $C[i]$ for all $i \in \mathbb{Z}$ where this makes sense, else we say that $C[i]$ is not defined. Finally, for technical reasons we also introduce the notations $[i] C:=\left(C^{-1}[1]\right)^{-1}$ where this makes sense, and $I_{p}:=U_{(p,-1)}^{-1} \cdot U_{(p, 1)}$.

The set $\mathcal{S}_{(p, u)}$ is linearly ordered by

$$
V<W \Longleftrightarrow \begin{cases}\text { either } & W=V \cdot W^{\prime} \text { with } w_{1}^{\prime} \in Q_{1} \\ \text { or } & V=W \cdot V^{\prime} \text { with } v_{1}^{\prime} \in Q_{1}^{-1} \\ \text { or } & V=C V^{\prime}, W=C W^{\prime} \text { with } w_{1}^{\prime} \in Q_{1}, v_{1}^{\prime} \in Q_{1}^{-1}\end{cases}
$$

We leave the proof of the following as an exercise.
Lemma 2. With the above notations we have:

$$
\begin{aligned}
V_{(p, u)} & =\min \mathcal{S}_{(p, u)} & C[1] & =\min \left\{C^{\prime} \in \mathcal{S}_{(p, u)} \mid C^{\prime}>C\right\} \\
U_{(p, u)} & =\max \mathcal{S}_{(p, u)} & C[-1] & =\max \left\{C^{\prime} \in \mathcal{S}_{(p, u)} \mid C^{\prime}<C\right\}
\end{aligned}
$$

Remarks . (1) In the notation of $[\mathrm{BuR}]$ we have $C[1]=C_{h}$ if C starts not on a peak, otherwise $C=C[1]_{c}$.
(2) By the above lemma it is clear that that $C[i]=C[j] \Longleftrightarrow i=j$; by Theorem 2 below we can interpret this as a special case of [BaS].
3.4. For $C \in \mathcal{S}$ we can define naturally a Λ-module $M(C)$, see $[\mathrm{BuR}]$ for details but note that $M(C) \cong M\left(C^{-1}\right)$, and for $C_{1}<C_{2}$ in $\mathcal{S}_{(p, u)}$ there is a canonical morphism $M\left(C_{1}\right) \rightarrow M\left(C_{2}\right)$; moreover observe that $M\left(I_{p}\right)$ is an injective indecomposable module.

Define on \mathcal{S} an equivalence relation \sim by $C \sim D \Longleftrightarrow D \in\left\{C, C^{-1}\right\}$ and let \mathcal{S}^{\prime} be a set of representatives of the corresponding equivalence classes.

We also need the set \mathcal{B} of bands, by definition

$$
\mathcal{B}:=\left\{C \in \mathcal{S} \mid C^{n} \in \mathcal{S} \text { for all } n \in \mathbb{N} \text { and } C \neq B^{m} \text { for } B \in \mathcal{S}, m \geq 2\right\}
$$

For each $C \in \mathcal{B}$ we have a $\Lambda-\mathrm{k}\left[T, T^{-1}\right]$ bimodule $N(C)$; loosely speaking $N(C)=M(\cdots C \cdot C \cdot C \cdots)$. For $C=c_{1} c_{2} \cdots c_{l(C)} \in \mathcal{B}$ the rotation $C_{[r]}:=$ $c_{r+1} c_{r+2} \cdots c_{l(C)} c_{1} \cdots c_{r}$ is also a band. Define on \mathcal{B} an equivalence relation ρ by $C \rho D \Longleftrightarrow C_{[r]}^{t}=D$ for some $r \in\{0,1, \ldots, l(C)-1\}, t \in\{-1,1\}$, and let \mathcal{B}^{\prime} be a set of representatives of the corresponding equivalence classes.

Finally, let Ψ be a set of representatives of the isomorphism classes of indecomposable $\mathrm{k}\left[T, T^{-1}\right]$-modules of finite length.

Theorem 1 ([BuR]). Let $\Lambda=\mathrm{k}[Q] /\langle P\rangle$ be a string algebra and $\mathcal{S}^{\prime}, \mathcal{B}^{\prime}, \Psi$ the corresponding sets as above. Then the modules $M(C), C \in \mathcal{S}^{\prime}$ and $N(B) \otimes_{\mathrm{k}\left[T, T^{-1}\right]} S, B \in \mathcal{B}^{\prime}, S \in \Psi$ form a (irredundant) set of representatives of the isoclasses of indecomposable Λ-modules of finite length.

Theorem 2 ([BuR]). Under the same hypothesis as above we have:
(a) The functors $N(B) \otimes_{\mathrm{k}\left[T, T^{-1}\right]}-: \mathrm{k}\left[T, T^{-1}\right]-\bmod \rightarrow \Lambda-\bmod$ preserve Auslander-Reiten sequences.
(b) If for $(p, t) \in Q_{0} \times\{-1,1\}$ the string $U_{(p, t)} \neq I_{p}^{t}$ (i.e. $M\left(U_{(p, t)}\right)$ is not injective), then the canonical sequence

$$
0 \rightarrow M\left(U_{(p, t)}\right) \rightarrow M\left([1] U_{(p, t)}\right) \rightarrow M\left(\left([1] U_{(p, t)}\right)[1]\right) \rightarrow 0
$$

is an Auslander-Reiten sequence, otherwise

$$
M\left(U_{(p, t)}\right) \rightarrow M\left([1] U_{(p, t)}\right) \rightarrow 0
$$

is a source map.
(c) If for $C \in \mathcal{S} \backslash\left\{U_{(p, t)}^{u} \mid t, u \in\{-1,1\}, p \in Q_{0}\right\}$ we have $C \nsim I_{p}$ for all $p \in Q_{0}$ (i.e. $M(C)$ is not injective), then the canonical sequence

$$
0 \rightarrow M(C) \rightarrow M(C[1]) \oplus M([1] C) \rightarrow M([1](C[1])) \rightarrow 0
$$

is an Auslander-Reiten sequence and $[1](C[1])=([1] C)[1]$, otherwise

$$
0 \rightarrow M(C) \rightarrow M(C[1]) \oplus M([1] C)
$$

is a source map.
Remark. If in situation (b) of the theorem $U_{(p, t)} \neq I_{p}$, there exists a unique $\alpha \in Q_{1}$ with $\alpha^{-1} \cdot U_{(p, t)}$ defined. In this case $\left([1] U_{(p, t)}\right)[1]=V_{(s(\alpha),-\sigma(\alpha))}^{-1}$.

4. $\mathbb{Z} \mathbb{A}_{\infty}^{\infty}$-COMPONENTS

A (non-trivial) consequence of the above theorem also shown in [BuR] is, that the stable components of Γ_{Λ} containing string modules are of the form $\mathbb{Z A}^{\infty} /\left\langle\tau^{n}\right\rangle$ or $\mathbb{Z} \mathbb{A}_{\infty}^{\infty}$. The (finitely many) components of the first type are easy to determine since they contain AR-sequences of type (b) in the theorem above. Here we describe the other type of stable components. The proofs of the corresponding Propositions 2 and 3, based on the lemmas in 4.1, are given at the end of the section.

Definition. Let $\Lambda=\mathrm{k} Q /\langle P\rangle$ be a string algebra with $\varepsilon, \sigma: \mathcal{S} \rightarrow\{-1,1\}$ as in 3.2.
(1) For a string $C \in \mathcal{S}$ let $R^{+}(C)$ be the maximal (left) substring of $U_{(s(C),-\sigma(C))}$ such that $C \cdot R^{+}(C)$ is defined. Similarly, let $L^{+}(C)$ be the maximal (right) substring of $V_{(e(C),-\varepsilon(C))}^{-1}$ such that $L^{+}(C) \cdot C$ is defined.
(2) We say, that $C=c_{1} c_{2} \cdots c_{n}$ is critical, if for any $1 \leq i<j \leq n$ we have, that $c_{i}=c_{j} \in Q_{1}$ implies $l\left(R^{+}\left(c_{1} \cdots c_{i}\right)\right)>l\left(R^{+}\left(c_{1} \cdots c_{j}\right)\right)$.
(3) $\mathcal{S}_{(p, t)}^{+}:=\left\{C \in \mathcal{S}_{(p, t)} \mid C\right.$ is critical $\}$, this is a finite (!) set which contains $U_{(p, t)}$.

Proposition 2. Let $\Lambda=\mathrm{k} Q /\langle P\rangle$ be a string algebra with $\varepsilon, \sigma: \mathcal{S} \rightarrow\{-1,1\}$ as in 3.2. Let $(p, u) \in Q_{0} \times\{-1,1\}$. Then we are in exactly one of the following situations.
(I) $1_{(p, u)}[i] \notin \mathcal{S}_{(p, u)}^{+}$for some $i \in \mathbb{N}$. In this case $1_{(p, u)}[i]$ is defined for all $i \in \mathbb{N}$ and there are $P_{(p, u)}^{+}, Q_{(p, u)}^{+} \in \mathbb{N}_{0}$ with $M_{(p, u)}^{+}:=P_{(p, u)}^{+}+Q_{(p, u)}^{+} \leq$ $\left|\mathcal{S}_{(p, u)}^{+}\right|$such that
$1_{(p, u)}\left[Q_{(p, u)}^{+}+n P_{(p, u)}^{+}+r\right]=1_{(p, u)}\left[Q_{(p, u)}^{+}\right] \cdot\left(1_{\left(p^{\prime}, t^{\prime}\right)}\left[P_{(p, u)}^{+}\right]\right)^{n} \cdot 1_{\left(p^{\prime}, u^{\prime}\right)}[r]$
for all $n, r \in \mathbb{N}_{0}$ (with $p^{\prime}=s\left(1_{(p, u)}\left[Q_{(p, u)}^{+}\right]\right)$, $u^{\prime}=-\sigma\left(1_{(p, u)}\left[Q_{(p, u)}^{+}\right]\right)$). In this case for $C \in \mathcal{S}$ the composition $C \cdot 1_{(p, u)}[i]$ is defined for all $i \in \mathbb{N}$ iff $C \cdot 1_{(p, u)}\left[M_{(p, u)}^{+}\right]$is defined.
(F) $1_{(p, u)}\left[N_{(p, u)}^{+}\right]=U_{(p, u)}$ for some $0 \leq N_{(p, u)}^{+} \leq\left|\mathcal{S}_{(p, u)}^{+}\right|$. In this case $1_{(p, u)}[i] \in \mathcal{S}_{(p, u)}^{+}$for all $i \in \mathbb{N}$ where $1_{(p, u)}[i]$ is defined.

There is an obvious "negative version" of this proposition dealing with the strings $1_{(p, u)}[-i]$, for $i \in \mathbb{N}$.

Proposition 3. Under the same hypothesis as Proposition 2 let $C \in \mathcal{S}$ be a string. The following two conditions are equivalent:
(i) $M(C)$ is a module of minimal dimension in a component of type $\mathbb{Z} \mathbb{A}_{\infty}^{\infty}$ in the $A R$-quiver Γ_{Λ} of Λ.
(ii) For all $i, j \in \mathbb{Z}$ the expression

$$
C(i, j):=[i] 1_{(e(C), \varepsilon(C))} \cdot C \cdot 1_{(s(C),-\sigma(C))}[j]
$$

is defined.
In this case the modules $M([i](C[j]))=M(C(i, j))$ for $i, j \in \mathbb{Z}$ are just the vertices of the component of $M(C)$, and moreover $M(C)$ is of strictly minimal dimension in that component.

Remarks . (1) If $M(C)$ lies in a $\mathbb{Z} \mathbb{A}_{\infty}^{\infty}$-component of Γ_{Λ} the string $([i] C)[j]=$ $[i](C[j])$ is defined for all $i, j \in \mathbb{Z}$, but this does not mean automatically that $C(i, j)$ is always defined.
(2) Let $\mathcal{C}:=\{C \in \mathcal{S} \mid C(i, j)$ defined for all $i, j \in \mathbb{Z}\}$. By Proposition 2 we get for C a string: $C \in \mathcal{C}$ iff $C\left(M_{(e(C),-\varepsilon(C))}^{-}, M_{(s(C),-\sigma(C))}^{+}\right)$and $C\left(M_{(e(C),-\varepsilon(C))}^{+}, M_{(s(C),-\sigma(C))}^{-}\right)$are defined; thus condition (ii) above is easy to check.
(3) Of course, every $\mathbb{Z} \mathbb{A}_{\infty}^{\infty}$-component of Γ_{Λ} contains some module of minimal dimension; this module is by the proposition unique.

Corollary. The set \mathcal{C} / \sim parameterizes the $\mathbb{Z A}_{\infty}^{\infty}$-components of Γ_{Λ}; the elements of \mathcal{C} / \sim describe the (unique) modules of minimal dimension for each $\mathbb{Z} \mathbb{A}_{\infty}^{\infty}$-component.
4.1. For the proof of the propositions we will need the following lemmas:

Lemma 3. Let $C \in \mathcal{S}$ be a string and $n \in \mathbb{N}_{0}$. Then the following are equivalent:
(i) $l(C[j]) \geq l(C)$ for $j=0,1, \ldots, n$.
(ii) $C \cdot 1_{(s(C),-\sigma(C))}[j]$ is defined for $j=0,1, \ldots, n$.
(iii) $C[j]=C \cdot 1_{(s(C),-\sigma(C))}[j]$ for $j=0,1, \ldots, n$.

For the proof of the non-obvious implications $(\mathrm{i}) \Longrightarrow$ (iii) and (ii) \Longrightarrow (iii) one easily adapts the argument of Lemma 1 (section 2).

Lemma 4. Suppose $1_{(p, t)}[n]=C \cdot \beta \cdot D$ with C, D strings and $\beta \in Q_{1}$, then:
(a) $C=1_{(p, t)}[k]$ for some natural number $k<n$.
(b) $C \cdot 1_{(s(C),-\sigma(C))}[i]$ is defined for $i=1,2, \ldots, n-k$.

Proof. a) We have only to observe that $1_{(p, t)}<C<C \cdot \beta \cdot D=1_{(p, t)}[n]$, and that by Lemma 2 the interval $\left[1_{(p, t)}, 1_{(p, t)}[n]\right]$ consists just of the elements $\left\{1_{(p, t)}[i] \mid i=0,1, \ldots n\right\}$.
b) By lemma 3 we would get otherwise $C\left[i_{0}\right]$ a (left) substring of C for some $i_{0} \in\{2,3, \ldots, n-k-1\}$, but this is impossible because $C<C\left[i_{0}\right]<$ $C[n-k]=C \cdot \beta \cdot D$.
4.2. Proof of Proposition 2. If there is no $t \in \mathbb{N}$ with $1_{(p, u)}[t] \notin \mathcal{S}_{(p, u)}^{+}$ then, by remark (2) in 3.3 and the fact that $\mathcal{S}_{(p, u)}^{+}$is a finite set, there must be some natural number $N_{(p, u)}^{+} \leq\left|\mathcal{S}_{(p, u)}^{+}\right|$with $1_{(p, u)}\left[N_{(p, u)}^{+}\right]=U_{(p, u)}$.

Otherwise, let $t:=\min \left\{i \in \mathbb{N}_{0} \mid 1_{(p, u)}[i+1] \notin \mathcal{S}_{(p, u)}^{+}\right\}$. This means that $1_{(p, u)}[t+1]$ can be written as

$$
1_{(p, u)}[t+1]=\underbrace{c_{1} \cdots c_{j-1} \alpha c_{j+1} \cdots c_{n}}_{1_{(p, u)}[t]} \cdot \alpha \cdot V_{(s(\alpha),-\sigma(\alpha))}
$$

with $l\left(R^{+}\left(c_{1} \cdots c_{j-1} \alpha\right)\right) \leq l\left(R^{+}\left(c_{1} \cdots c_{n} \alpha\right)\right)(*)$. By Lemma 4 we obtain for some $Q \in \mathbb{N}$:

$$
1_{(p, u)}[Q+i]=c_{1} \cdots c_{j-1} \cdot 1_{\left(s\left(c_{j-1}\right),-\sigma\left(c_{j-1}\right)\right)}[i] \text { for } i=0,1, \ldots t-Q:=P .
$$

As a consequence $1_{(p, u)}[Q+P] \cdot 1_{\left(s\left(c_{j-1}\right),-\sigma\left(c_{j-1}\right)\right)}[i]=1_{(p, u)}[Q+P+i]$ for $i=0,1, \ldots, P$, here the left hand side is defined by ($*$) and thus is equal to the right side by Lemma 3. Finally observe, that $l\left(L^{+}\left(1_{(p, u)}[i]\right)\right)$ is a monotonous decreasing function $\mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$. By the above it reaches its minimum at $Q+P$.
4.3. Proof of Proposition 3. a) $\Longrightarrow \mathrm{b})$ By Lemma 3 and its dual $C(0, k)$ and $C(k, 0)$ are defined for all $k \in \mathbb{Z}$. If $C\left(i_{0}, j_{0}\right)$ is not defined for some $\left(i_{0}, j_{0}\right) \in \mathbb{Z} \times \mathbb{Z}$, then we may suppose that C consists only of direct arrows and that $i_{0}<0<j_{0}$. Moreover we can suppose that $C(i, j)$ is defined for all $j \in \mathbb{Z}$ if $i>i_{0}$, and that $C\left(i_{0}, j\right)$ is defined for $j<j_{0}$. This means, that the module $M\left(C\left(i_{0}, j_{0}-1\right)\right)$ is injective (!), but on the other hand it lies in the component of $M(C)$ - a contradiction.
b) \Longrightarrow a) Applying twice Lemma 3 we get $C(i, j)=([j] C)[i]=[j](C[i])$ for all $i, j \in \mathbb{Z}$, therefore (see Theorem 2) we have irreducible maps $M(C(i, j)) \rightarrow M(C(i, j+1))$ and $M(C(i, j)) \rightarrow M(C(i+1, j))$ for all $i, j \in \mathbb{Z}$.

Thus, by Theorem 2 the $M(C(i, j))$ are exactly the vertices of the component of Γ_{Λ} containing $M(C)$, and moreover this is a stable component, containing no Auslander-Reiten sequence with indecomposable middle term. Following [BuR, p. 175] we conclude that this component is of type $\mathbb{Z A}_{\infty}^{\infty}$ containing $M(C)$ as a module of strictly minimal dimension.

5. An example

Consider the following quiver Q, with relations P^{\prime} indicated by dotted lines and additional relations $P^{\prime \prime}=\left\{\lambda^{m+1},(\kappa \alpha \iota)^{n} \kappa\right\}$; thus $\Lambda_{m, n}:=\mathrm{k} Q /\left\langle P^{\prime} \cup P^{\prime \prime}\right\rangle$ is a string algebra for all $m, n \in \mathbb{N}$.

We want to determine the $\mathbb{Z} \mathbb{A}_{\infty}^{\infty}$ components of the Auslander-Reiten quiver of $\Lambda_{m, n}$.

First we determine the functions σ and ε by giving their values on Q_{1}.

	α	β	γ	δ	ϵ	ζ	η	θ	ι	κ	λ
σ	1	-1	1	-1	1	1	-1	-1	1	-1	1
ε	1	-1	-1	-1	1	1	-1	1	-1	-1	-1

Next we have to find the pairs $(p, u) \in Q_{0} \times\{-1,1\}$ where $1_{(p, u)}[i]$ is defined for all $i \in \mathbb{Z}$. The following simple calculations rule out most cases:

p / u	-1	1
a	$*$	$*$
b	$1_{(b,-1)}[-6]=\beta^{-1}=V_{(b,-1)}$	$1_{(b, 1)}=U_{(b, 1)}$
c	$1_{(c,-1)}=V_{(c,-1)}$	$1_{(c, 1)}=V_{(c, 1)}$
d	$1_{(d,-1)}=\eta=U_{(d,-1)}$	$*$
e	$1_{(e,-1)}=V_{(e,-1)}$	$1_{(e, 1)}=V_{(e, 1)}$
f	$1_{(f,-1)}=V_{(f,-1)}=U_{(f,-1)}$	$*$
g	$1_{(g,-1)}=U_{(g,-1)}$	$1_{(g, 1)}=U_{(g, 1)}$
h	$1_{(h,-1)}=U_{(h,-1)}$	$1_{(h, 1)}[-5]=\theta^{-1} \delta^{-1}=V_{(h, 1)}$

In the cases marked by $*$ the string $1_{(p, u)}[i]$ is defined for all $i \in \mathbb{Z}$. There we find:

i	$1_{(d, 1)}[i]$	$1_{(f, 1)}[i]$
-5	$\gamma^{-1} \beta \alpha^{-1} \lambda^{m} \kappa^{-1} \iota^{-1} \alpha^{-1} \lambda^{m}$	$\epsilon^{-1} \delta \theta \iota^{-1} \alpha^{-1} \lambda^{m} \kappa^{-1} \iota^{-1}$
-4	$\gamma^{-1} \beta \alpha^{-1} \lambda^{m} \kappa^{-1} \iota^{-1}$	$\epsilon^{-1} \delta \theta \iota^{-1} \alpha^{-1} \lambda^{m} \kappa^{-1}$
-3	$\gamma^{-1} \beta \alpha^{-1} \lambda^{m} \kappa^{-1}$	$\epsilon^{-1} \delta \theta \iota^{-1} \alpha^{-1} \lambda^{m}$
-2	$\gamma^{-1} \beta \alpha^{-1} \lambda^{m}$	$\epsilon^{-1} \delta \theta \iota^{-1}$
-1	$\gamma^{-1} \beta$	$\epsilon^{-1} \delta \theta$
0	$1_{(d, 1)}$	$1_{(f, 1)}$
1	$\theta\left(\iota^{-1} \alpha^{-1} \kappa^{-1}\right)^{n} \iota^{-1} \alpha^{-1}$	$\zeta \eta^{-1} \gamma^{-1}$
2	$\theta\left(\iota^{-1} \alpha^{-1} \kappa^{-1}\right)^{n} \iota^{-1} \alpha^{-1}$	$\zeta \eta^{-1} \gamma^{-1} \beta\left(\alpha^{-1} \kappa^{-1} \iota^{-1}\right) \alpha^{-1}$
	$\cdot \lambda\left(\iota^{-1} \alpha^{-1} \kappa^{-1}\right)^{n}$	
3	$\theta\left(\iota-\alpha^{-1} \alpha^{-1} \kappa^{-1}\right)^{n} \iota^{-1} \alpha^{-1}$	$\zeta \eta^{-1} \gamma^{-1} \beta\left(\alpha^{-1} \kappa^{-1} \iota^{-1}\right) \alpha^{-1}$
	$\cdot \lambda\left(\iota^{-1} \alpha^{-1} \kappa^{-1}\right)^{n} \lambda\left(\iota^{-1} \alpha^{-1} \kappa^{-1}\right)^{n}$	$\cdot \quad \cdot \lambda\left(\kappa^{-1} \iota^{-1} \alpha^{-1}\right)^{n}$

But, $C \cdot 1_{(f, 1)}[i]$ defined for $i \in\{-1,1\}$ implies $C=1_{(f, 1)}$, and $C \cdot 1_{(d, 1)}[i]$ defined for $i \in\{-1,1\}$ implies $C \in\left\{\eta, \eta \zeta^{-1}, \delta^{-1}, \delta^{-1} \epsilon\right\}$, so remain:

i	$1_{(a, 1)}[i]$	$1_{(a,-1)}[i]$
-4		$\kappa^{-1} \iota^{-1} \alpha^{-1} \lambda^{m} \kappa^{-1}$
-3		$\kappa^{-1} \iota^{-1} \alpha^{-1} \lambda^{m}$
-2	$\left(\lambda^{-1}(\alpha \iota \kappa)^{n}\right)^{2}$	$\kappa^{-1} \iota^{-1}$
-1	$\lambda^{-1}(\alpha \iota \kappa)^{n}$	κ^{-1}
0	$1_{(a, 1)}$	$1_{(a,-1)}$
1	$\alpha \beta^{-1}$	$\lambda\left(\kappa^{-1} \iota^{-1} \alpha^{-1}\right)^{n}$
2	$\alpha \beta^{-1} \gamma \delta^{-1}$	$\left(\lambda\left(\kappa^{-1} \iota^{-1} \alpha^{-1}\right)^{n}\right)^{2}$
3	$\alpha \beta^{-1} \gamma \delta^{-1} \epsilon$	
4	$\alpha \beta^{-1} \gamma$	
5	$\alpha \beta^{-1} \gamma \eta \zeta^{-1}$	
6	$\alpha \beta^{-1} \gamma \eta$	
7	α	
8	$\alpha \iota \theta^{-1} \delta^{-1}$	
9	$\alpha \iota \theta^{-1} \delta^{-1} \epsilon$	
10	$\alpha \iota \theta^{-1}$	
11	$\alpha \iota \theta^{-1} \eta \zeta^{-1}$	
12	$\alpha \iota \theta^{-1} \eta$	
13	$\alpha \iota$	
14	$\alpha \iota \kappa \lambda^{-m}$	
15	$\alpha \iota \kappa \lambda^{-m} \alpha \beta^{-1}$	

Now it is not hard to see, that up to equivalence for a string C the expressions $C(i, j)$ can be defined for all $i, j \in \mathbb{Z}$ only if $s(C)=a=e(C)$ and $\sigma(C)=$ $-1, \varepsilon(C)=1$, thus $C(i, j)=[i] 1_{(a, 1)} \cdot C \cdot 1_{(a, 1)}[j]=\left(1_{(a,-1)}[i]\right)^{-1} \cdot C \cdot 1_{(a, 1)}[j]$. By Proposition 2 we see, that such $C(i, j)$ is defined for all $i, j \in \mathbb{Z}$ iff it is defined for $(i=-3, j=14)$ and for $(i=1, j=-1)$. By the corollary
of Proposition 2 these strings parameterize the $\mathbb{Z} \mathbb{A}_{\infty}^{\infty}$-components of $\Lambda_{m, n}$. Consequently $\Lambda_{m, n}$ has $\mathbb{Z} \mathbb{A}_{\infty}^{\infty}$ components if $(m, n) \in \mathbb{N} \times \mathbb{N} \backslash\{(1,1)\}$ and $M\left(1_{(a, 1)}\right)$ lies in a $\mathbb{Z} \mathbb{A}_{\infty}^{\infty}$ component if $m, n \geq 2$. Indeed, if say $m \geq 2$, the expressions $\left(\lambda^{-1} \alpha \iota \kappa \lambda^{-1}\right)(1,-1)$ and $\left(\lambda^{-1} \alpha \iota \kappa \lambda^{-1}\right)(-3,14)$ are defined, while $1_{(a, 1)}(1,-1)$ is defined if $m \geq 2$ and $1_{(a, 1)}(-3,14)$ is defined if $n \geq 2$.

References

[BaS] R. Bautista, S. Smalø: Nonexistent cycles, Comm. Alg. 11 (16) (1983), 1755-1767.
[BuR] M. Butler, C.M. Ringel: On Auslander Reiten Sequences with few middle terms and applications to string algebras, Comm. Alg. 15 (1\&2) (1987), 145-179.

Instituto de Matemáticas, UNAM,04510 México D.F., MEXICO
E-mail address: geiss@servidor.unam.mx

[^0]: 1991 Mathematics Subject Classification. 16G70.
 Key words and phrases. String algebras, Auslander-Reiten components.
 This work was done while the author was supported by a catedra patrimonial of CONACYT at the Instituto de Matemáticas, UNAM (México), additional support was given by SFB 343 for a stay at Universtity of Bielefeld.

