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Introduction and main results

Throughout the paper K denotes a fixed algebraically closed field. By an algebra we

mean a connected finite dimensional K-algebra (associative, with an identity) and by a

module a finite dimensional right module.

For an algebra A, we denote by modA the category of A-modules and by Db(modA)

the derived category of bounded complexes of A-modules. By an equivalence of two de-

rived categories we mean an equivalence of triangulated categories [10]. Recall from [6,

12] that an A-module T is called a tilting (respectively, cotilting) module provided

Ext2
A(T,−) = 0 (respectively, Ext2

A(−, T ) = 0), Ext1
A(T, T ) = 0 and the number of

pairwise nonisomorphic indecomposable direct summands of T equals the rank of the

Grothendieck group K0(A) of A. Two algebras A and B are called tilting-cotilting equiv-

alent if there exists a sequence of algebras A = A0, A1, . . . , Am, Am+1 = B and a sequence

of modules T
(i)
Ai

(0 ≤ i ≤ m) such that Ai+1 = EndT
(i)
Ai

and T
(i)
Ai

is either a tilting or a
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cotilting Ai-module [3]. It is well-known that if two algebras A and B are tilting-cotilting

equivalent then the derived categories Db(modA) and Db(modB) are equivalent [10].

Following [21] a derived category Db(modA) is said to be discrete if for every vector

n = (ni)i∈Z of natural numbers there are only finitely many isomorphism classes of

indecomposable objects in Db(modA) of homology dimension vector n. An important

class of discrete derived categories is formed by the derived categories Db(modK∆) of

the path algebras K∆ of Dynkin quivers ∆ (of types Am, Dn, E6, E7, E8), called derived

categories of Dynkin type. It is known that a derived category Db(modA) is equivalent to

Db(modK∆), for some Dynkin quiver ∆, if and only if A is tilting-cotilting equivalent to

K∆. In particular, for two Dynkin quivers ∆ and ∆′, the derived categories Db(modK∆)

and Db(modK∆′) are equivalent if and only if ∆ and ∆′ have the same underlying graph.

Recently D. Vossieck proved in [21] that the derived category Db(modA) of an algebra

A is discrete but not of Dynkin type if and only if A is Morita equivalent to the bound

quiver algebra of a gentle bound quiver (in the sense of [2]) having exactly one cycle

with different numbers of clockwise and counterclockwise oriented relations. However,

the classification of such derived categories has been an open problem.

Denote by Ω the set of all triples (r, n,m) of integers such that n ≥ r ≥ 1 and m ≥ 0.

For each (r, n,m) ∈ Ω consider the quiver Q(r, n,m) of the form

1
α1−→ · · ·

αn−r−2
−−−−→ n− r − 1

α0↗ ↘αn−r−1

(−m)
α−m
−−→ · · ·

α−2
−−→ (−1)

α−1
−−→ 0 n− r

αn−1
↖ ↙αn−r

n− 1←−−−
αn−2

· · · ←−−−−
αn−r+1

n− r + 1

the ideal I(r, n,m) in the path algebra KQ(r, n,m) of Q(r, n,m) generated by the paths

αn−1α0, αn−2αn−1, . . . , αn−rαn−r+1, and put Λ(r, n,m) = KQ(r, n,m)/I(r, n,m). Our

first main result is the following.

Theorem A. Let A be a connected algebra and assume that Db(modA) is not of Dynkin

type. The following conditions are equivalent:

(i) Db(modA) is discrete.

(ii) Db(modA) ' Db(mod Λ(r, n,m)), for some (r, n,m) ∈ Ω.

(iii) A is tilting-cotilting equivalent to Λ(r, n,m), for some (r, n,m) ∈ Ω.

Moreover, for (r, n,m), (r′, n′,m′) ∈ Ω, Db(mod Λ(r, n,m)) ' Db(mod Λ(r′, n′,m′)) if

and only if (r, n,m) = (r′, n′,m′).

Let Ωf = {(r, n,m) ∈ Ω;n > r}. We note that (r, n,m) ∈ Ωf if and only if
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Λ(r, n,m) is of finite global dimension. We prove in Section 2 that, for each (r, n,m) ∈

Ωf , the algebra Λ(r, n,m) is tilting-cotilting equivalent to the bound quiver algebra

A(r, n,m) = K∆(r, n,m)/J(r, n,m), where the quiver ∆(r, n,m) is of the form

(−1)
σ2←− · · ·

σm−1
←−−− (−m+ 1)

σ1↙ ↖σm

0 (−m)

γn−1
↖ ↙γ0

(n− 1)
γn−2
←−−− · · ·

γn−r
←−−− n− r

γn−r−1
←−−−− · · ·

γ1
←− 1

and J(r, n,m) is the ideal in K∆(r, n,m) generated by the paths γn−2γn−1, γn−3γn−2,

. . . , γn−r−1γn−r.

The second aim of the paper is to describe the structure of discrete derived categories

which are not of Dynkin type. For (r, n,m) ∈ Ω, we denote by Γ(Db(mod Λ(r, n,m)))

the (Gabriel) quiver of the category of indecomposable objects in Db(mod Λ(r, n,m)),

that is, the quiver whose vertices are the isomorphism classes of indecomposable ob-

jects in Db(mod Λ(r, n,m)) and arrows are given by the irreducible morphisms. We

have the additional structure of a translation quiver in Γ(Db(mod Λ(r, n,m))) induced by

Auslander–Reiten triangles [10, 11], hence Γ(Db(mod Λ(r, n,m))) is just the Auslander–

Reiten (translation) quiver of Db(mod Λ(r, n,m)). The quiver Γ(Db(mod Λ(r, n,m))) is

stable if and only if (r, n,m) ∈ Ωf . The following theorem describes the structure of the

quivers Γ(Db(mod Λ(r, n,m))).

Theorem B. (i) For (r, n,m) ∈ Ωf , the quiver Γ(Db(mod Λ(r, n,m))) has exactly 3r

components, namely 2r components X (0), . . . , X (r−1), Y (0), . . . , Y (r−1) of type ZA∞, and

r components Z (0), . . . , Z (r−1) of type ZA∞
∞. For each X ∈ X (i) we have τm+rX = X[−r]

and for each Y ∈ Y (i) we have τn−rY = Y [r].

(ii) For (r, n,m) ∈ Ω \ Ωf , the quiver Γ(Db(mod Λ(r, n,m))) consists of precisely 2r

components, namely r components X (0), . . . , X (r−1) of type ZA∞ and r components L(0),

. . . , L(r−1) which are equioriented lines of type A∞
∞. For each X ∈ X (i) we have τm+rX =

X[−r], while the vertices of L(i) are projective-injective in Γ(Db(mod Λ(r, n,m))).

Recall that n = r for (r, n,m) ∈ Ω \ Ωf . Theorem B implies in particular that

Λ(r, n,m) and Λ(r′, n′,m′) are derived equivalent if and only if (r, n,m) = (r′, n′,m′). In

contrast, the structure of the translation quiver Γ(Db(mod Λ(r, n,m))) reveals only the

invariant r.

For (r, n,m) ∈ Ωf , we have the Euler integral quadratic form χΛ(r,n,m) and the (non-

symmetric) bilinear homological form 〈−,−〉Λ(r,n,m) defined on K0(D
b(mod Λ(r, n,m))) '

K0(Λ(r, n,m)) ' Zn+m. We have the following.



4 G. Bobiński, Ch. Geiß, A. Skowroński / Central European Journal of Mathematics 1 (2004) 1–31

Theorem C. (i) Let (r, n,m), (r′, n′,m′) ∈ Ωf . The bilinear forms 〈−,−〉Λ(r,n,m) and

〈−,−〉Λ(r′,n′,m′) are Z-equivalent if and only if r ≡ r′ (mod 2) and {m + r, n − r} =

{m′ + r′, n′− r′}. Moreover, if r is even then 〈−,−〉Λ(r,n,m) is Z-equivalent to the bilinear

form of a hereditary algebra of Euclidean type Ãm+r,n−r.

(ii) Let (r, n,m) ∈ Ωf . If r is odd then the Euler form χΛ(r,n,m) is positive definite

of Dynkin type Dn+m. If r is even then χΛ(r,n,m) is positive semi-definite of Dynkin type

An+m−1 and corank 1.

1 Preliminaries

1.1. Let R be a locally bounded category over K [7]. We denote by modR the category

of all finite dimensional contravariant functors from R to the category of K-vector spaces.

If R is bounded (the number of objects in R is finite), then modR is equivalent to the

category modA of finite dimensional right modules over the algebra A =
⊕

R formed by

the quadratic matrices a = (ayx)x,y∈R such that ayx ∈ R(x, y). Conversely, to each basic

algebra A we can attach the bounded category R with A '
⊕

R whose objects are formed

by a complete set E of orthogonal primitive idempotents e of A, R(e, f) = fAe and the

composition is induced by the multiplication in A. We shall identify a bounded category

R with its associated basic algebra
⊕

R. Recall also that every locally bounded category

R is the bound quiver category KQ/I, where Q = QR is the (locally finite) quiver of R

and I is an admissible ideal in the path category KQ of Q. In particular, every finite

dimensional K-algebra Λ is Morita equivalent to a bound quiver algebra KQΛ/I. For

a locally bounded category R = KQ/I and a vertex i of Q, we shall denote by ei the

corresponding primitive idempotent of R, by SR(i) the corresponding simple R-module,

and by PR(i) (respectively, IR(i)) the projective cover (respectively, injective envelope) of

SR(i) in modR. Following [19] a locally bounded category R is said to be special biserial

if R ' KQ/I, where the bound quiver (Q, I) satisfies the following conditions:

(1) The number of arrows in Q with a prescribed source or target is at most 2.

(2) For any arrow α of Q there are at most one arrow β and at most one arrow γ such

that αβ and γα are not in I.

1.2. For a locally bounded category R we shall denote by Γ(modR) the Auslander–

Reiten quiver of modR and by τR and τ−R the Auslander–Reiten translations DTr and

TrD, respectively. We shall identify the vertices of Γ(modR) with the corresponding in-

decomposable R-modules. By a component of Γ(modR) we mean a connected component

of Γ(modR).

1.3. For an algebra Λ we denote by Db(mod Λ) the bounded derived category of the

abelian category of finite dimensional Λ-modules. It has the structure a triangulated

category in the sense of Verdier [20]. The corresponding translation functorDb(mod Λ)→

Db(mod Λ) assigns to each complex X in Db(mod Λ) its shift X[1]. Accordingly, the

distinguished triangles inDb(mod Λ) are of the formX → Y → Z → X[1]. We shall often
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identify a module from mod Λ with the corresponding complex inDb(mod Λ) concentrated

in degree zero. The homology dimension vector of a complex X from Db(mod Λ) is the

vector h-dimX = (dimK H
i(X))i∈Z, where H i(X) is the i-th homology space of X.

Following [21] the derived category Db(mod Λ) is said to be discrete provided for every

vector n = (ni)i∈Z of natural numbers there are only finitely many isomorphism classes

of indecomposable complexes in Db(mod Λ) of homology dimension vector n. Recall also

that by a result due to J. Rickard [16] two derived categories Db(modA) and Db(modB)

are equivalent (as triangulated categories) if and only if A = EndDb(modB)(T ) for a tilting

complex T in Db(modB), that is, a perfect (consisting of finite dimensional projective

modules) complex T with HomDb(modB)(T, T [i]) = 0 for all i 6= 0 such that the additive

category addT of T generates Db(modB) as a triangulated category.

1.4. The repetitive category [13] of a bounded category (algebra) Λ is the selfinjective

locally bounded category Λ̂ whose objects are formed by the pairs (n, x) = xn, x ∈ Λ,

n ∈ Z, and Λ̂(xn, yn) = {n}×Λ(x, y), Λ̂(xn+1, yn) = {n}×DΛ(y, x), and Λ̂(xp, yq) = 0 if

p 6= q, q + 1, where DV denotes the dual space HomK(V,K). The repetitive category Λ̂

was introduced as a Galois covering of the trivial extension T (Λ) = Λ n DΛ of Λ by its

injective cogenerator DΛ. Then the category mod Λ̂ of finite dimensional right Λ̂-modules

can be regarded as the category of finite dimensional Z-graded modules over T (Λ). We

view every module M in mod Λ̂ as a family M = (Mn)n∈Z of modules from mod Λ such

that M(xn) = Mn(x) for each x ∈ Λ and n ∈ Z. The stable module category mod Λ̂

is a triangulated category where the suspension functor Ω− serves as the translation

functor mod Λ̂→ mod Λ̂, and hence the distinguished triangles in mod Λ̂ are of the form

X → Y → Z → Ω−X. We will usually denote Ω−X by X[1]. The Auslander–Reiten

translation in mod Λ̂ is of the form τ = νΩ2, where ν is the Nakayama translation induced

by the canonical shift xn 7→ xn+1, x ∈ R, n ∈ Z, in Λ̂ (see [10] for details). We have

the canonical inclusion mod Λ → mod Λ̂ which sends a Λ-module X into a Λ̂-module

M = (Mn) concentrated at degree 0 (that is, M0 = X and Mn = 0, n 6= 0).

An essential role in our investigations will be played by the Happel functor

F : Db(mod Λ)→ mod Λ̂

which is full, faithful, exact, and sends a complex X = (X i)i∈Z concentrated in degree

0 to the Λ̂-module Y = (Yi)i∈Z concentrated in degree 0 with Y0 = X0, see [10, 14] for

details. Moreover, F is an equivalence of triangulated categories if and only if gl. dim Λ <

∞ [10, 11]. In general, by the image of F we will mean the triangulated subcategory of

mod Λ̂ generated by objects of the from F (X), X ∈ Db(mod Λ). Note that if Y ∈ mod Λ̂

is nonzero and Y belongs to the image of F then Y [n] 6' Y for n 6= 0.

1.5. Recall that two finite dimensional algebras A and B are called tilting-cotilting

equivalent if there is a sequence of algebras A = A0, A1, . . . , Am, Am+1 = B and a

sequence of modules T
(i)
Ai

, (0 ≤ i ≤ m) such that Ai+1 = EndT
(i)
Ai

and T
(i)
Ai

is either a
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tilting or a cotilting Ai-module. Observe that two Morita equivalent algebras are tilting-

cotilting equivalent, because every projective generator is a tilting module. Further, every

algebra A is tilting-cotilting equivalent to its opposite algebra Aop because the injective

cogenerator DA of modA is a cotilting A-module and Aop = EndADA. We need in

our considerations APR-tilting modules and APR-cotilting modules introduced in [4].

Namely, for an algebra A = KQ/I and a simple projective noninjective A-module SA(i),

the module T i = τ−ASA(i) ⊕ (
⊕

j∈Q0\{i}
PA(j)) is a tilting A-module, called the APR-

cotilting module associated to SA(i). Dually, for each simple injective nonprojective A-

module SA(i) the module iT = τASA(i)⊕ (
⊕

j∈Q0\{i}
IA(j)) is a cotilting A-module called

the APR-cotilting module associated to SA(i). Finally, recall that if A and B are tilting-

cotilting equivalent algebras then the derived categories Db(modA) and Db(modB) are

equivalent but in general the converse is not true.

1.6. The one-point extension (respectively, coextension) of an algebra A by an A-module

M will be denoted by A[M ] (respectively, by [M ]A). Let A = KQ/I and i be a sink of

Q. Following [13] the reflection S+
i A of A is defined to be the quotient of the one-point

extension A[IA(i)] by the two-sided ideal generated by the idempotent ei. Then the sink

i of Q is replaced in the quiver of S+
i A by a source i′. Dually, for a source j of Q, the

reflection S−
j A of A at j is the quotient of the one-point coextension [PA(j)]A by the

two-sided ideal generated by the idempotent ej. Moreover, the source j of Q is replaced

in the quiver of S−
j A by a sink j ′. It has been proved in [22] that S+

i A (respectively,

S−
j A) is tilting-cotilting equivalent to A.

1.7. Assume Λ = KQ/I is a bound quiver algebra of finite global dimension. Then the

Cartan matrix

CΛ = (dimK HomA(PΛ(i), PΛ(j)))i,j∈Q0

is invertible over Z, and we have a nonsymmetric bilinear form

〈−,−〉Λ : K0(Λ)×K0(Λ)→ Z

given by 〈x,y〉 = xC− t
Λ yt for x,y ∈ K0(Λ) = ZQ0 . It has been proved by C. M. Ringel [17]

that for modules X and Y from mod Λ we have

〈dimX,dimY 〉Λ =
∑

i≥0

(−1)i dimK ExtiΛ(X,Y ),

where dimZ denotes the dimension vector of a module Z in mod Λ. The associated

integral quadratic form χΛ : K0(Λ) → Z, given by χΛ(x) = 〈x,x〉Λ, for x ∈ K0(Λ), is

called the Euler form of Λ. Using the isomorphism K0(Λ) ' K0(D
b(mod Λ)) induced by

the natural inclusion K0(Λ) ⊂ K0(D
b(mod Λ)) we can consider χΛ as the form defined

on K0(D
b(mod Λ)). It is known that if an algebra A is tilting-cotilting equivalent to Λ

(respectively, Db(modA) ' Db(mod Λ)) then the Euler forms χA and χΛ are Z-equivalent.

Moreover, there exists a Z-invertible map σ : K0(A) → K0(Λ) such that 〈σx, σy〉Λ =
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〈x,y〉Λ. Finally, we note that if χΛ is positive semi-definite then radχΛ = {x ∈ K0(Λ) |

χ(x) = 0} is a subgroup of K0(Λ) such that K0(Λ)/ radχΛ is torsionfree and the form

induced on K0(Λ)/ radχΛ by χΛ is Z-equivalent to the Euler form χH , where H is the

path algebra K∆ of a Dynkin quiver ∆ uniquely determined by χΛ, called the Dynkin

type of χΛ. The rank of radχΛ is called the corank of χΛ. The Z-equivalence class of χΛ

is uniquely determined by its corank and Dynkin type (see [5]).

2 Gentle one-cycle algebras

The purpose of this section is to prove the equivalence of the conditions (i), (ii) and (iii)

in Theorem A.

Following [2] a bound quiver algebra KQ/I is said to be gentle if the bound quiver

(Q, I) satisfies the following conditions:

1) Q is connected and the number of arrows in Q with a prescribed source or sink is

at most two,

2) I is generated by a set of paths in Q of length two,

3) For any arrow α ∈ Q1 there are at most one β ∈ Q1 and one γ ∈ Q1 such that αβ

and γα do not belong to I,

4) For any arrow α ∈ Q1 there are at most one ξ ∈ Q1 and η ∈ Q1 such that αξ and

ηα belong to I.

Examples of gentle algebras are the algebras tilting-cotilting equivalent to the hereditary

algebras of type An and Ãn, classified respectively in [1] and [2].

By a gentle one-cycle algebra we mean a gentle algebra A = KQ/I whose quiver

contains exactly one cycle, or equivalently |Q0| = |Q1|. Observe that the bound quiver

(Q, I) of a gentle one-cycle algebra A = KQ/I consists of a single cycle together with

some branches, each of which is the bound quiver of an algebra tilting-cotilting equivalent

to a hereditary algebra of type At, that is, a full connected finite bound subquiver of the

infinite tree
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bound by all possible relations ϕψ = 0 = ψϕ; also, each branch is joined to the cycle

at a single point, which we shall call the root of the branch. It has been proved by

J. Nehring [15] that the trivial extension Λ nDΛ of a non-simply connected algebra Λ is

of polynomial growth if and only if Λ is Morita equivalent to a gentle one-cycle algebra.

Finally, we say that a gentle one-cycle algebra A = KQ/I satisfies the clock condition

provided in the unique cycle of (Q, I) the number of clockwise oriented relations equals

the number of counterclockwise oriented relations. The following two theorems give

characterizations of gentle one-cycle algebras in terms of the derived categories.

Theorem 2.1 ([2]). For an algebra Λ the following conditions are equivalent:

(i) Db(mod Λ) ' Db(modK∆) for a quiver ∆ of Euclidean type Ãn.

(ii) Λ is tilting-cotilting equivalent to a hereditary algebra of type Ãn.

(iii) Λ is Morita equivalent to a gentle one-cycle algebra satisfying the clock condition.

Theorem 2.2 ([21]). The derived category Db(mod Λ) of an algebra Λ is discrete but

not of Dynkin type if and only if Λ is Morita equivalent to a gentle one-cycle algebra not

satisfying the clock condition.

Observe that the algebras Λ(r, n,m), (r, n,m) ∈ Ω, defined in the introduction are

gentle one-cycle algebras not satisfying the clock conditions. Recall also that two tilting-

cotilting equivalent algebras have equivalent derived categories, and two Morita equivalent

algebras are trivially tilting-cotilting equivalent. Hence, in order to show the equivalence

of the conditions (i), (ii) and (ii) in Theorem A, it remains to prove the following fact.

Proposition 2.3. Let A be a gentle one-cycle algebra which does not satisfy the clock

condition. Then there is a triple (r, n,m) ∈ Ω such that A is tilting-cotilting equivalent

to Λ(r, n,m).

Proof 2.4. Let A = KQ/I, where the bound quiver (Q, I) contains exactly one cycle and

satisfies the conditions (1)–(4) of gentle algebra. A path of length two in Q belonging to

I is called a zero-relation. We shall prove that there exists a sequence of algebras A = A0,

A1, . . . , As, As+1 = Λ(r, n,m), for some (r, n,m) ∈ Ω, such that the algebras Ai and

Ai+1, 0 ≤ i ≤ s, are tilting-cotilting equivalent. This will be done in several steps.

(a) In the first step we prove that A is tilting-cotilting equivalent to a gentle one-

cycle algebra A1 = KQ(1)/I(1) such that all external branches of the unique cycle are not

bound, and consequently are linear quivers without zero-relations. Assume that one of

the external branches of (Q, I) is bound be a zero-relation. By passing, if necessary, to

the opposite algebra, we may assume that (Q, I) is of the following form

a1
α1←− a2 ←− · · · ←− al−1

αl−1
←−−

@
@@�

��Q′
A

al
αl←− al+1

�
��

@
@@

Q′′
A
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where αlαl−1 ∈ I, αl−1αl−2 6∈ I, . . . , α2α1 6∈ I, one of Q′
A and Q′′

A is a branch, while

the other contains the cycle. We define a module TA =
⊕

b∈Q0
T (b), where T (ai) =

P (al)/P (ai), for i ∈ {1, . . . , l− 1}, and T (b) = P (b) for b ∈ Q0 \ {a1, . . . , al−1}. Then TA
is a tilting A-module and B = EndTA = KQB/J , where the bound quiver (QB, J) has

the form

@
@@

�
��

Q′
B al

βl←− a1 ←− · · · ←− al−1
β1
←− al+1

�
��

@
@@

Q′′
B

Q′
B = Q′

A is bound by the same relations as Q′
A, while Q′′

B = Q′′
A is bound by the same

relations as Q′′
A. Moreover, the linear quiver al ← al−1 ← · · · ← a1 ← al+1 is not bound,

and νβ1 ∈ J , for some ν ∈ Q′′
B = Q′′

A, if and only if ναl ∈ I. We refer for details to the

proof of [3, Lemma 2.4]. Observe that we have replaced the branch of (Q, I) containing

the sink a1 by a branch having the same number of vertices, but exactly one zero-relation

less. Thus by an obvious induction on the number of zero-relations occurring in the

branches of (Q, I) we reduce A = KQ/I to a gentle one cycle algebra A1 = KQ(1)/I(1)

whose branches are not bound by zero-relations.

(b) The second step in our procedure consists in replacing the algebra A1 = KQ(1)/I(1)

by a gentle one-cycle algebra A2 = KQ(2)/I(2), tilting-cotilting equivalent to A1, and

whose all branches are equioriented linear quivers without zero-relations. This is done

by a suitable iterated application of APR-tilting (respectively, APR-cotilting) modules

at the simple projective (respectively, simple injective) modules corresponding to sinks

(respectively, sources) of the linear branches (Q(1), I(1)).

(c) In the third step we replace the algebra A2 = KQ(2)/I(2) by a gentle one-cycle

algebra A3 = KQ(3)/I(3) which is tilting-cotilting equivalent to A2, all zero-relations are

on the unique cycle of (Q(3), I(3)), and the branches of (Q(3), I(3)) are equioriented linear

quivers. We have some cases to consider. Assume first that (Q(2), I(2)) admits a bound

subquiver of the form

c

�

a1 −→ a2 −→ · · · −→ at
α
−→ b

β↘

d

where b, c, d lie on the cycle, αβ ∈ I (2), and a1 is a source of Q(2). Suppose the cycle of

(Q(2), I(2)) contains a bound subquiver

b→ c→ · · · · · · → u
γ
−→ v

σ
−→ w



10 G. Bobiński, Ch. Geiß, A. Skowroński / Central European Journal of Mathematics 1 (2004) 1–31

with γσ ∈ I (2), and the quiver b → c → · · · · · · → u
γ
−→ v is not bound. Then the

iterated reflection S−
at
· · ·S−

a2
S−
a1
A2 is a gentle one-cycle algebra given by the bound quiver

obtained from (Q(2), I(2)) by replacing the branch a1 → a2 → · · · → at by a subpath of

an equioriented branch v → · · · → a1 → a2 → · · · → at rooted to the cycle in the middle

point of the path u
γ
−→ v

σ
−→ w belonging to I (2). Moreover, S−

at
· · ·S−

a2
S−
a1
A2 is tilting-

cotilting equivalent to A2 (see 1.6). Assume now that the cycle of (Q(2), I(2)) contains a

subquiver of the form

b→ c→ c1 → · · · → cq ← cq+1

which is not bound, and possibly is of the reduced form b = c−1 ← c0 = c. Then

S−
at
· · ·S−

a2
S−
a1
A2 is a gentle one-cycle algebra given by the bound quiver obtained from

(Q(2), I(2)) by replacing the branch a1 → a2 → · · · → at by a subpath of an equioriented

line

at ← · · · ← a2 ← a1 ← · · · ← u
γ
←− cq

σ
←− cq+1

bound by σγ = 0, with cq and cq+1 lying on the cycle, and the remaining ones not on the

cycle. Further, assume that (Q(2), I(2)) contains a bound quiver of the form (Σ, R)

d

�

b1 ←− b2 ←− · · · ←− br
η
←− a

ξ↖

c

with ξη ∈ I (2), and a, c, d lying on the cycle. Then the Auslander–Reiten quiver

Γ(modA2) admits a full translation subquiver

P (b1) τ−P (b1) · · · τ−r+1P (b1) τ−rP (b1)

↘ ↗ ↘ ↗ ↘ ↗

P (b2)
. . . . . . τ−r+1P (b2)

↘ ↘ ↗ ↗

. . . τ−P (br−1) . . .

↘ ↗ ↘ ↗

P (br) τ−P (br)

↘ ↗

P (a)
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where τ−rP (b1) is the direct summand of the radical of P (c). Let TA2 =
⊕

x∈(QA2
)0
T (x),

where T (bi) = τ−r+i−1P (bi) for i ∈ {1, . . . , r}, and T (x) = P (x) for x ∈ (QA2)0 \

{b1, . . . , br}. Then TA2 is a tilting A2-module and EndTA2 is given by the bound quiver

obtained from (Q(2), I(2)) by replacing the bound quiver (Σ, R) by the following linear

quiver

d −− a←− br ←− · · · ←− b2 ←− b1 ←− c

without relations. Observe that EndTA2 is a gentle one-cycle algebra, and is clearly

tilting-cotilting equivalent to A2. Finally assume that (Q(2), I(2)) contains a bound sub-

quiver (∆, J) of the form

e

↓α

a1 −→ a2 −→ · · · −→ at
γ
−→ d

σ
−→ br −→ · · · −→ b2 → b1

↓β

c

with r, t ≥ 1, c, d, e lying on the cycle, and αβ, γσ ∈ I (2). Then Γ(modA2) admits a full

translation subquiver

P (b1) τ−P (b1) · · · τ−r+1P (b1) τ−rP (b1)

↘ ↗ ↘ ↗ ↘ ↗

P (b2)
. . . . . . τ−r+1P (b2)

↘ ↘ ↗ ↗

. . . τ−P (br−1) . . .

↘ ↗ ↘ ↗

P (br) τ−P (br)

↘ ↗

P (d)

↗ ↘

P (c) τ−P (c)

where τ−rP (b1) = radP (at), . . . , P (ai) = radP (ai−1), 2 ≤ i ≤ t − 1, and P (d)/P (c) =

radP (e). Let T ′
A2

=
⊕

x∈(QA2
)0
T ′(x), where T ′(bi) = τ−r+i−1P (bi) for i ∈ {1, . . . , r},

and T ′(x) = P (x) for x ∈ (QA2)0 \ {b1, . . . , br}. Then T ′
A2

is a tilting A2-module and

EndT ′
A2

is given by the bound quiver obtained from (Q(2), I(2)) by replacing the bound
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quiver (∆, J) by the bound quiver of the form

e

↓α

a1 −→ a2 −→ · · · −→ at −→ b1 −→ b2 −→ · · · → br −→ d

↓β

c

bound only by αβ = 0. Therefore, applying the above procedure to all branches of

(Q(2), I(2)) which are not rooted to the cycle in the middle point of a zero-relation (lying

entirely on the cycle), we obtain the required gentle one-cycle algebra A3 = KQ(3)/I(3),

tilting-cotilting equivalent to A2, and whose all zero-relations lie on the cycle.

(d) The fourth step in our procedure consists in replacing A3 by a gentle one-cycle

algebra A4 = KQ(4)/I(4) such that all (equioriented) branches of (Q(4), I(4)) are oriented

toward the cycle, that is, have a source not lying on the cycle. Assume (Q(3), I(3)) contains

a bound subquiver of the form

e

α↓

d −→ br −→ · · · → b2 −→ b1

β↓

c

Taking as above the tilting A3-module T ′
A3

=
⊕

x∈(QA3
)0
T ′(x), where we put T ′(bi) =

τ−r+i−1P (bi) for i ∈ {1, . . . , r}, and T ′(x) = P (x) for x ∈ (QA3)0 \ {b1, . . . , br}, we obtain

a gentle one-cycle algebra EndT ′
A3

given by the bound quiver obtained from (Q(3), I(3))

by replacing the above bound subquiver by the following one

e

α↓

b1 −→ b2 −→ · · · → br −→ d

β↓

c

and bound only by αβ = 0, and which is tilting-cotilting equivalent to A3. Applying the

iterated reflections (as above) to all branches of (Q(3), I(3)) which are not oriented toward

the cycle, we obtain the required gentle one-cycle algebra A4 = KQ(4)/I(4).
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(e) The fifth step in our procedure consists of removing in (Q(4), I(4)) all consecu-

tive zero-relations oriented in opposite directions on the cycle, together with (eventual)

branches rooted in the midpoints of those relations. Assume (Q(4), I(4)) admits a full

subquiver of the form

c

↓α

a1 −− · · · −− at−1
β
←− at←− · · · ←− al

↙

a0 = b0

↖

b1 −− · · · −− bs−1
σ
←− bs←− · · · ←− bk

↑γ

d

bound only by αβ = 0 and γσ = 0, the vertices c, at, . . . , a1, a0 = b0, b1, . . . , bs, d

lie on the cycle, and possibly l = t or k = s. Let H be the path algebra of the full

linear subquiver of the above quiver formed by all vertices except c and d. Then H is

a hereditary algebra of Dynkin type Al+k−1 and the Auslander–Reiten quiver Γ(modH)

contains a complete section Σ containing the simple modules S(at) and S(bs), belonging

to the opposite border orbits in Γ(modH). Let T ′
A4

be the direct sum of modules lying

on Σ, considered as A4-modules. Consider the A4-module

TA4 = T ′
A4
⊕

⊕

x∈Q
(4)
0 \(QH)0

P (x).

Then TA4 is a tilting A4-module and EndTA4 is a gentle one-cycle algebra given by the

bound quiver obtained from (Q(4), I(4)) by replacing the above bound subquiver by a

quiver of the form

c→ u1 → u2 → · · · → ui → w ← vj ← · · · ← v2 ← v1 ← d

with i + j = l + k, and not bound. Therefore, we incorporated the linear quivers al →

· · · → at+1 and bk → · · · → bs+1 inside the cycle and erased simultaneously the two zero-

relations with midpoints at and bs (thus a clockwise and a counterclockwise zero-relations

on the cycle). Applying systematically the above procedure we erase completely all the

consecutive zero-relations of opposite directions on the cycle. Thus we obtain a gentle one-

cycle algebra A5 = KQ(5)/I(5), where all zero-relations in (Q(5), I(5)) are either clockwise

oriented or counterclockwise oriented zero-relations on the cycle, all branch of (Q(5), I(5))

are lines oriented toward to the cycle and rooted in the midpoints of zero-relations, and

A5 is tilting-cotilting equivalent to A4.
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(f) Our next objective is to replace A5 by a gentle one-cycle algebra A6 = KQ(6)/I(6),

tilting-cotilting equivalent to A5, and such that all zero-relations in (Q(6), I(6)) are clock-

wise oriented zero-relations on the cycle. Suppose all zero-relations (Q(5), I(5)) are coun-

terclockwise oriented zero-relations on the cycle. Observe that the opposite algebra Aop
5

is tilting-cotilting equivalent to A5 (see 1.5). Moreover, Aop
5 is a gentle one-cycle algebra

where all zero-relations are clockwise oriented zero-relations on the cycle but all (equior-

iented) branches are oriented outside the cycle. Applying now the procedure described

in (d), we obtain the required gentle one-cycle algebra A6 = KQ(6)/I(6), obtained from

Aop
5 by reversing orientations of all arrows in the branches.

(g) We now replace A6 by a gentle one-cycle algebra A7 = KQ(7)/I(7), tilting-cotilting

equivalent to A6, such that all zero-relations in (Q(7), I(7)) are consecutive clockwise ori-

ented zero-relations on the cycle, and all branches are oriented toward the cycle. Assume

that the cycle of (Q(6), I(6)) admits a full bound subquiver Σ of the form

a
α
−→ b

β
−→ c = u0 − u1 − · · · − ul−1 − ul = d

γ
−→ e

σ
−→ f

with l ≥ 0, and bound only by αβ = 0 = γσ. We have two cases to consider.

Suppose first that the above walk contains a subquiver of the form ui−1 → ui ← ui+1,

for some i ∈ {0, . . . , l − 1} (where u−1 = b). Consider the path algebra H of the quiver

given by the vertices c = u0, u1, . . . , ul−1, ul = d. Then Γ(modH) admits a complete

section of the form

P (c)

↘

. . .

↘

V

↗

. . .

↗

P (d)

Denote by T ′
A6

the direct sum of modules, considered as A6-modules, lying on this section,

by P the direct sum of all projective A6-modules P (x), for x ∈ Q
(6)
0 \ (QH)0, and put

TA6 = T ′
A6
⊕ P . Then B = EndTA6 is a gentle one-cycle algebra K∆/J , where (∆, J) is

obtained from (Q(6), I(6)) by replacing Σ by a quiver Σ′ of the form

a
α
−→ b

β
−→ c← v1 ← · · · ← vt → vt+1 → · · · → vl−1 → vl = d

γ
−→ e

σ
−→ f

and bound only by αβ = 0 = γσ. Let C = S−
vl
· · ·S−

vt+1
S−
v1
· · ·S−

vt
B be the iterated

reflection. Then C is a gentle one-cycle algebra K∆′/J ′, where (∆′, J ′) is obtained from
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(∆, J) by replacing the above quiver Σ′ by a quiver Σ′′ of the form

a vl

α↘ ↗

b . . .

β↘ ↗

c vt+1

ξ↘
η↗

vt

↗ρ ω↘

e vt−1

σ↘ ↘

f
. . .

↘

v1

bound by αβ = 0, βξ = 0, ξη = 0, ρω = 0, and νρ = 0 for the arrow ν in Q(6) (if exists)

with sink e and different from γ. Observe that the vertices a, b, c, vt, e and f lie on the

cycle of (∆′, J ′), while the quivers vt−1 → · · · → v1 and vt+1 → · · · → vl are branches.

Applying now the procedure from (c) we may replace the algebra C by a gentle one-cycle

algebra D = K∆′′/J ′′, where (∆′′, J ′′) is obtained from (∆′, J ′) by replacing the above

quiver Σ′′ by the quiver Σ′′′

a
α
−→ b

β
−→ c

γ
−→ vl → · · · → vt+1 → vt ← vt−1 ← · · · ← v1

ϕ
←− e

σ
−→ f

bound by αβ = 0 = βγ. Moreover, if we have in (∆′, J ′) a path wp → · · · → w2 → w1
ψ
−→ e

then also ψϕ ∈ J ′′. Finally, applying again the procedure from (c) we may replace D

by a gentle one-cycle algebra E = K∆′′′/J ′′′, tilting-cotilting equivalent to D (hence also

to A6) given by a bound quiver obtained from the bound quiver (∆′′, J ′′) by insertion

the path wp → · · · → w1 → e into the cycle. Observe that in our process we replaced

the zero-relation γσ = 0 in (Q(7), I(7)) by a zero-relation βγ = 0 which is consecutive

to αβ = 0, all zero-relations in (∆′′′, J ′′′) are clockwise oriented zero-relations on the

cycle, and all branches are lines oriented toward the cycle and rooted to the cycle in the

midpoints of zero-relations.

Assume now that Σ is the equioriented quiver

a
α
−→ b

β
−→ c = u0 → u1 → · · · → ul−1 → ul = d

γ
−→ e

σ
−→ f,
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with l ≥ 0 and bound only by αβ = 0 = γσ. Observe that we may have branches in
(Q(6), I(6)) rooted to the cycle in the vertices b and e. Denote by Σ the subquiver of
(Q(6), I(6)) consisting of Σ and the branch xk → xk−1 → · · · → x1 → x0 = b rooted to the
cycle in the vertex b, where possible k = 0 (Σ = Σ) if such a branch do not exist. Then
the Auslander–Reiten quiver Γ(modA6) admits a full translation subquiver of the form

P (xk)

↗ ↘

. .
. . . .

↗ ↘

P (x1) I(d)

↗ ↘ ↘

P (b)
. . . . .

.
I(ul−1)

↗ ↘ ↘ ↗ ↗ ↘

P (c)
. . . • . .

. . . .

↗ ↘ ↘ ↗ ↘ ↗ ↘

P (u1)
. . . • • I(u1)

↗ ↘ ↘ ↗ ↘ ↗ ↘ ↗ ↘

. .
. . . . • •

. . . . .
.

I(c)

↗ ↘ ↗ ↘ ↗ ↘ ↘ ↗ ↗ ↘

P (ul−1) • •
. . . • . .

.
Nk

↗ ↘ ↗ ↘ ↗ ↘ ↘ ↗ ↘ ↗ ↗

P (d)
. . . . .

.
•

. . . • • . .
.

↘ ↘ ↗ ↗ ↘ ↘ ↗ ↘ ↗ ↘ ↗

. . . • . .
. . . . • • N1

↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗

S(d) S(ul−1) · · · S(u1) S(c) S(b)

↘

P (a)

Let M be the direct sum of the indecomposable A6-modules I(ul−1), . . . , I(u1), I(c), Nk,

. . . , N1, S(b) (respectively, I(ul−1), . . . , I(u1), I(c), S(b), if Σ = Σ). Further, denote by

P the direct sum of the indecomposable projective A6-modules P (z), for all z ∈ Q
(6)
0 \{d,

ul−1, . . . , u1, c, b, x1, . . . , xk−1}, and put T = M ⊕ P . Observe that T is a direct sum

of |Q
(6)
0 | pairwise nonisomorphic indecomposable A6-modules. Moreover, it follows from

our choice of M that we have Ext1
A6

(T, T ) = Ext1
A6

(M,T ) = DHomA6(T, τA6M) = 0,
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and HomA6(D(A6), τA6T ) = HomA6(D(A6), τA6M) = 0, and so pdA6
T ≤ 1. Thus T is

a tilting A6-module. A simple checking shows that F = EndA6(T ) is a gentle one-cycle

algebra K∆/J , where (∆, J) is obtained from (Q(6), I(6)) by replacing the subquiver Σ

by the subquiver

a
α
−→ b← x1 ← · · · ← xk → u0 → · · · → ul−1

β
−→ d

γ
−→ e

σ
−→ f

if Σ 6= Σ, and by the subquiver

a
α
−→ b→ u0 → · · · → ul−1

β
−→ d

γ
−→ e

σ
−→ f

is Σ = Σ, and bound only by zero-relations βγ = 0 = γσ (in both cases). Observe that

in this process we replaced the zero-relation αβ = 0 by the zero-relation βγ = 0 which is

consecutive to γσ = 0, and inserted the branch xk → · · · → x1 → x0 = b into the cycle,

if such a subquiver of (Q(6), I(6)) exists.

Iterating the above two types of procedures, we obtain a gentle one-cycle algebra

A7 = KQ(7)/I(7), tilting-cotilting equivalent to A6, and such that all zero-relations of

(Q(7), I(7)) are consecutive clockwise oriented zero-relations on the cycle, and all branches

of (Q(7), I(7)) are lines oriented toward the cycle and rooted to the cycle in midpoints of

zero-relations.

(h) Assume now that the cycle of (Q(7), I(7)) is not an oriented cycle with I (7) generated

by all paths of length 2 on it. We shall prove that then A7 is tilting-cotilting equivalent

to an algebra A8 = A(r, n,m) = K∆(r, n,m)/J(r, n,m), where ∆(r, n,m) is the quiver

(−1)
σ2←− · · ·

σm−1
←−−− (−m+ 1)

σ1↙ ↖σm

0 (−m)

γn−1
↖ ↙γ0

(n− 1)
γn−2
←−−− · · ·

γn−r
←−−− n− r

γn−r−1
←−−−− · · ·

γ1
←− 1

for some n > r ≥ 1 and m ≥ 0, equivalently (r, n,m) ∈ Ωf , and J(r, n,m) is generated

by the paths γn−r−1γn−r, . . . , γn−2γn−1. It follows from our assumption that the cycle of

(Q(7), I(7)) admits a subquiver

ar+1
βr
−→ ar

βr−1
−−→ ar−1 → · · · → a3

β2
−→ a2

β1
−→ a1

β0
−→ a0

α

−− b

with r ≥ 1 and such that βrβr−1, . . . , β2β1, β1β0 ∈ I
(7) are all zero-relations in (Q(7), I(7)).

Moreover, beside the cycle, we may have in the quiver (Q(7), I(7)) lines oriented toward

the cycle and rooted to the cycle in the vertices ar, . . . , a2, a1. We first show that A7 is

tilting-cotilting equivalent to a gentle one-cycle Λ = K∆/J where (∆, J) has the same

bound cycle as (Q(7), I(7)) but additionally at most one external line, and such a line is

oriented toward the cycle and rooted in the vertex a1. Thus we shall insert all lines rooted
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in the vertices ar, . . . , a2 into a line rooted in a1. Suppose t is the maximal element from

{1, . . . , r} such that there is a nontrivial line rooted in the vertex ar, and assume t ≥ 2. Let

wp → · · · → w2 → w1 be the branch rooted to the cycle in at, that is, there exists an arrow

w1 → at different from βt. Taking the iterated reflection S−
w1
S−
w2
· · ·S−

wp
A7 we obtain a

gentle one-cycle algebra given by the bound quiver obtained from (Q(7), I(7)) by replacing

the line wp → · · · → w2 → w1 → at by the line at−1
ξ
−→ wp → · · · → w2 → w1, and

moreover we create a zero-relation ηξ = 0 if there exists in (Q(7), I(7)) an arrow c
η
−→ at−1

different from βt−1. Applying now the corresponding procedures from (c) and (d) we may

replace the algebra S−
w1
S−
w2
· · ·S−

wp
A7 by a gentle one-cycle algebra having the same bound

cycle as (Q(7), I(7)) but the lines rooted only in the vertices at−1, . . . , a1. Hence, by an

obvious induction we obtain the required gentle one-cycle algebra Λ = K∆/J . Suppose

(∆, J) admits a subquiver xk → xm−1 → · · · → x1
γ
−→ x0 = a1 with γ 6= β1. Applying

now the constructions from (g), we may replace Λ by a gentle one-cycle algebra Λ′ =

K∆′/J ′, tilting-cotilting equivalent to Λ (and hence to A7), such that (∆′, J ′) consists

of a gentle cycle bound by r consecutive clockwise oriented zero-relations and having

m consecutive counterclockwise oriented arrows. Applying now APR-tiling and APR-

cotilting modules at the simple projective and simple injective Λ′-modules respectively,

we obtain an algebra A8 isomorphic to an algebra A(r, n,m) = K∆(r, n,m)/J(r, n,m),

for some (r, n,m) ∈ Ωf , which is tilting-cotilting equivalent to A7. We finally note that

A8 = A(r, n,m) = EndTA9 , where A9 = Λ(r, n,m) is the algebra KQ(r, n,m)/I(r, n,m)

described in the introduction and TA9 is the tilting A9-module constructed in the second

part of (g). In particular, A8 is tilting-cotilting equivalent to A9 = Λ(r, n,m).

(i) Finally, assume that the cycle of (Q(7), I(7)) has cyclic orientation and I (7) is

generated by all paths of lengths 2 on the cycle. Applying arguments as above (changing

of equioriented lines), we conclude that A7 is tilting-cotilting equivalent the gentle one-

cycle algebra A8 = KQ(8)/I(8), where (Q(8), I(8)) has the same bound cycle as (Q(7), I(7))

but at most one external line, and this line is not bound and oriented toward the cycle.

Observe that A8 is isomorphic to an algebra Λ(r, n,m) = KQ(r, n,m)/I(r, n,m).

Therefore, we have proved that A is tilting-cotilting equivalent to Λ(r, n,m), for some

(r, n,m) ∈ Ω. This finishes the proof of the proposition.

3 Structure of Γ(Db(mod Λ(r, n,m)))

Fix (r, n,m) ∈ Ω and let Λ = Λ(r, n,m). We also denote by Q the quiver Q(r, n,m).

Our aim in this section is to describe the quiver Γ(Db(mod Λ)). In particular, we are

interested in the action of the suspension functor on Γ(Db(mod Λ)).

Recall that we have the Happel functor F : Db(mod Λ) → mod Λ̂ which is full and

faithful. Moreover, F is an equivalence of triangulated categories if the global dimension of

Λ is finite, that is, if r < n. We know that Λ̂ is special biserial (see [2]) and the Auslander–

Reiten quiver of mod Λ̂ consists of 2r components X (0), . . . , X (r−1), Y (0), . . . , Y (r−1) of

type ZA∞ and r components Z (0), . . . , Z (r−1) of type ZA∞
∞ (see [9, Propostion (3.1)]).

However, in order to determine which parts of them belong to the image of F we need a
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more precise knowledge about their structure. This information will be also useful in the

next section.

First we give a precise description of Λ̂. Let Q̂ be the quiver whose vertices are (i, k),

i ∈ Z, k = −m, . . . , n− 1. For each i ∈ Z and k = −m, . . . , n− 1, we have in Q̂ an arrow

αi,k : (i, k)→ (i, k + 1). Next, for i ∈ Z and k = n− r + 1, . . . , n− 1, we have an arrow

α∗
i,k : (i, k + 1) → (i + 1, k) in Q̂. Finally, we have an arrow α∗

i,n−r : (i, n − r + 1) →

(i + 1,−m) in Q̂ for any i ∈ Z. In all above formulas (i, n) denotes the vertex (i, 0). It

is known that Q̂ is the quiver of Λ̂.

Let ωi,−m be the path αi,−m · · ·αi,n−r and we put ωi,k = αi,k · · · αi,n−r α
∗
i,n−r αi+1,−m

· · · αi+1,k−2, k = −m + 1, . . . , n − r + 1. Let Î be the ideal in KQ̂ generated by all the

relations of the forms

αi,kαi,k+1, k = n− r, . . . , n− 1,

α∗
i,kα

∗
i+1,k−1, k = n− r + 1, . . . , n− 1,

α∗
i,n−rα

∗
i+1,n−1 if m = 0,

αi,−1α
∗
i+1,n−1 if m > 0,

αi,n−r+1α
∗
i,n−r+1 − α

∗
i,n−rωi+1,−m if r > 1,

αi,kα
∗
i,k − α

∗
i,k−1αi+1,k−1, k = n− r + 2, . . . , n− 1,

α∗
i,n−1αi+1,n−1 − αi,0ωi,1 if r > 1,

α∗
i,n−1ωi+1,−m − αi,0ωi,1 ifr = 1,

αi,kωi,k+1αi+1,k, k = −m, . . . ,−1, 1, . . . , n− r,

Then Λ̂ ' KQ̂/Î (see for example [18]). We may also identify Λ with the full subcategory

of Λ̂ formed by (0, k), k = −m, . . . , n− 1.

For each string ω in Λ̂ we denote by Mω the corresponding string Λ̂-module. If

ω = e(i,k) is the trivial path at the vertex (i, k) then we write Mi,k instead of Me(i,k)
.

Fix k ∈ {0, . . . , r − 1}. We denote the vertices of X (k) by X
(k)
i,j , i ≤ j, i, j ∈ Z, in

such a way that τX
(k)
i,j = X

(k)
i−1,j−1 and we have arrows X

(k)
i,j → X

(k)
i,j+1 and X

(k)
i,j → X

(k)
i+1,j

(provided i + 1 ≤ j). Similarly, we denote the vertices of Y
(k)
i,j , i ≥ j, i, j ∈ Z, in such a

way that τY
(k)
i,j = Y

(k)
i−1,j−1 and we have arrows Y

(k)
i,j → Y

(k)
i+1,j and Y

(k)
i,j → Y

(k)
i,j+1 (provided

i ≥ j + 1). Finally, we denote the vertices of Z (k) by Z
(k)
i,j , i, j ∈ Z, in such a way

that τZ
(k)
i,j = Z

(k)
i−1,j−1 and we have arrows Z

(k)
i,j → Z

(k)
i+1,j and Z

(k)
i,j → Z

(k)
i,j+1. Using the

general Auslander–Reiten theory for special biserial algebras the above numbering can

be arranged in such a way we have the following chains of morphism coming from the

natural ordering of strings

X
(k)
i,i −→ X

(k)
i,i+1 −→ · · · −→ Z

(k)
i,i−1 −→ Z

(k)
i,i −→ Z

(k)
i,i+1 −→

· · · −→ X
(k)
i,i−1[1] −→ X

(k)
i−1,i−1[1],

Y
(k)
i,i −→ Y

(k)
i+1,i −→ · · · −→ Z

(k)
i−1,i −→ Z

(k)
i,i −→ Z

(k)
i+1,i −→

· · · −→ Y
(k)
i−1,i[1] −→ Y

(k)
i−1,i−1[1].
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Moreover, we have distinguished triangles

X
(k)
i,i+d −→ Z

(k)
i,j −→ Z

(k)
i+d+1,j −→ X

(k)
i,i+d[1], (1)

Y
(k)
i+d,i −→ Z

(k)
i,j −→ Z

(k)
i,j+d+1 −→ X

(k)
i+d,i[1], (2)

which will play an important role. We may also assume that X
(k)
i,j [1] = X

(k+1)
i,j , Y

(k)
i,j [1] =

Y
(k+1)
i,j and Z

(k)
i,j [1] = Z

(k+1)
i,j for k = 0, . . . , r− 2. (We will see in Lemmas 3.1 and 3.2 that

with this convention we have X
(r−1)
i,j [1] = X

(0)
i+r+m,j+r+m and Y

(r−1)
i,j [1] = Y

(0)
i+r−n,j+r−n.)

The above numbering is uniquely determined by the above conditions if we assume that

Z
(0)
0,0 = SΛ(0),

and thus

X
(0)
0,0 [1] =















Mω−1,0 if m = 0 and r = 1

Mα−1,n−r+1 if m = 0 and r > 1

SΛ(−1) if m > 0,

(3)

Y
(0)
0,0 [1] =



























Mα∗

0,1
if r = 1 = n,

SΛ(n− 1) if r = 1 and n > 1,

Mω0,n−1 if r = 2,

Mα∗

0,n−2
if r > 2.

(4)

It is known (see [9]) that the modules X
(k)
i,i and Y

(k)
i,i are of the form Mi,k, k = −m, . . . ,

−1, 1, . . . , n− r, Mαi,k
, Mα∗

i,k
, k = n− r+1, . . . , n−1, and Mωi,k

, k = −m, . . . , n− r+1.

Thus in order to describe the action of the suspension functor on Γ(mod Λ̂) we need to

calculate the action of τ = τΛ̂ and the suspension functor on the above modules.

Using the above description of Λ̂ and our convention M [−1] = ΩM we can easily

calculate the following:

Mi,k[−1] = Mωi,k+1
, k = −m, . . . ,−1, m ≥ 1,

Mi,k[−1] = Mωi,k+1
, k = 1, . . . , n− r, n ≥ r + 1,

Mαi,n−r+1
[−1] = Mωi+1,−m

, r ≥ 2,

Mαi,k
[−1] = Mαi+1,k−1

, k = n− r + 2, . . . , n− 1, r ≥ 3,

Mα∗

i,k
[−1] = Mα∗

i,k+1
, k = n− r + 1, . . . , n− 2, r ≥ 3,

Mα∗

i,n−1
[−1] = Mωi,1

, r ≥ 2,

Mωi,k
[−1] = Mi+1,k, k = −m, . . . ,−1, m ≥ 1,

Mωi,0
[−1] =

{

Mαi+1,n−1
r ≥ 2

Mωi+1,−m
r = 1

,

Mωi,k
[−1] = Mi+1,k, k = 1, . . . , n− r, n ≥ r + 1,

Mωi,n−r+1
[−1] =

{

Mωi,1
r = 1

Mα∗

i,n−r+1
r ≥ 2

.
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Since τ = νΩ2, νMi,k = νMi−1,k, νMαi,k
= Mαi−1,k

, νMα∗

i,k
= Mα∗

i−1,k
and νMωi,k

=

Mωi−1,k
, we can calculate the rules for τ which are a little bit more tricky and we will not

present them in all details. Note that we haveM0,k = SΛ(k), k = −m, . . . ,−1, 1, . . . , n−r,

Mω0,−m
= PΛ(−m) and Mα0,k

= PΛ(k), k = n− r + 1, . . . , n− 1. As the result we get

τSΛ(k)[j] = SΛ(k + 1)[j], k = −m, . . . ,−2, m ≥ 2,

τSΛ(1)[j] =

{

PΛ(n− 1)[j] r ≥ 2

PΛ(m)[j] r = 1
, m ≥ 2,

τSΛ(k)[j] = SΛ(k + 1)[j], k = 1, . . . , n− r − 1, n ≥ r + 2,

τSΛ(n− r)[j] = SΛ(1)[j + r], n ≥ r + 1,

τPΛ(−m)[j] =















PΛ(−m)[j − 1] m = 0, r = 1

PΛ(n− 1)[j − 1] m = 0, r ≥ 2

SΛ(−m)[j − 1] m ≥ 1

, m ≥ 0,

τPΛ(k)[j] = PΛ(k − 1)[j − 1], k = n− r + 2, . . . , n− 1, r ≥ 3,

τPΛ(n− r + 1)[j] = PΛ(−m)[j − 1], r ≥ 2.

Each module of one of the forms Mi,k, with k = −m, . . . ,−1, Mαi,k
, with k = n −

r + 1, . . . , n − 1, Mωi,k
, with k = −m, . . . ,−1, is the shift of one of the modules SΛ(k),

k = −m, . . . , 0, PΛ(−m), PΛ(k), k = n− r + 1, . . . , n− 1. It follows from the formulas

Mωi,−m
[−2k + 1] = Mi+k,−m+k−1, k = 1, . . . ,m,

Mωi,−m
[−2k] = Mωi+k,−m+k

, k = 1, . . . ,m,

Mωi,−m
[−2m− k] = Mαi+m+1,n−k

, k = 1, . . . , r − 1,

Mωi,−m
[−2m− r] = Mωi+m+1,−m

.

Taking into account the above calculations and the assumption (3) we get the following

statement about the components X (k).

Lemma 3.1. We have the following formulas

X
(k)
q(r+m)+m,q(r+m)+m = PΛ(−m)[qr + k],

X
(k)
q(r+m)+p,q(r+m)+p = SΛ(−1− p)[qr + k − 1], p = 0, . . . ,m− 1,m > 0,

X
(k)
q(r+m)−p,q(r+m)−p = PΛ(n− p)[qr + k − p], p = 1, . . . , r − 1,

k = 0, . . . , r − 1, q ∈ Z. In particular, X
(k)
i,j [r] = τ−m−rX

(k)
i,j for any k = 0, . . . , r − 1,

i, j ∈ Z, i ≤ j.

Similarly as above, one can show that for r < n each module of one of the forms Mi,k,

k = 1, . . . , n− r, M ∗
αi,k

, k = n− r + 1, . . . , n− 1, Mωi,k
, k = 1, . . . , n− r + 1, is the shift

of one of the modules SΛ(k), k = 1, . . . , n− r. On the other hand, if r = n we have

Mα∗

i,k
[r] = Mα∗

i,k
, k = n− r + 1, . . . , n− 1, r ≥ 2,
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Mωi,1
[r] = Mωi,1

,

and

τMα∗

i,k
= Mα∗

i−1,k+2
, k = n− r + 1, . . . , n− 3, r ≥ 4,

τMα∗

i,n−2
= Mωi−1,1

, r ≥ 3,

τMα∗

i,n−1
= Mα∗

i−1,n−r+1
, r ≥ 2,

τMω∗

i,1
=

{

Mωi−1,1
r = 1, 2

Mα∗

i−1,n−r+2
r ≥ 3

.

Hence, we get the following information about the components Y (k) using the assump-

tion (4).

Lemma 3.2. If r < n then we have the following formulas

Y
(k)
q(n−r)+p,q(n−r)+p = SΛ(n− r − p)[r − 2− qr + k], p = 0, . . . , n− r − 1,

If r = n then the modules Y
(k)
i,i , k = 0, . . . , r− 1, i ∈ Z, coincide with the modules Mα∗

i,k
,

k = n − r + 1, . . . , n − 1, Mωi,1
, i ∈ Z. In both cases we get Y

(k)
i,j [r] = τn−rY

(k)
i,j for any

k = 0, . . . , r − 1, i, j ∈ Z, i ≥ j.

Part (i) of Theorem B follows immediately from the above lemmas, since the Happel

functor F is an equivalence if r < n. For part (ii) note first that the components X (0),

. . . , X (r−1) are contained in the image of F . It follows, because each module X
(k)
i,i is the

shift of a Λ-module and we the X
(k)
i,j , i 6= j, are iterated extension of some X

(k)
l,l .

On the other hand, we have Y [r] ' Y for Y ∈ Y (0)∨· · ·∨Y (r−1), hence the components

Y(0), . . . , Y (r−1) are not contained in the image of F . Using triangles

X
(k)
i,−1 −→ Z

(k)
i,0 −→ Z

(k)
0,0 = SΛ(0)[k] −→ X

(k)
i,0 [1], i < 0,

X
(k)
0,i −→ Z

(k)
0,0 = SΛ(0)[k] −→ Z

(k)
i+1,0 −→ X

(k)
0,i [1], i ≥ 0,

we get that the modules Z
(k)
i,0 , k = 0, . . . , r − 1, i ∈ Z, belong to the image of F . Finally,

using triangles

Y
(k)
−1,j → Z

(k)
i,j → Z

(k)
i,0 → Y

(k)
−1,j [1], j > 0, j < 0, i ∈ Z,

Y
(k)
j−1,0 → Z

(k)
i,0 → Z

(k)
i,j → Y

(k)
j−1,0[1], j > 0, i ∈ Z,

we obtain that the modules Z
(k)
i,j , k = 0, . . . , r − 1, i, j ∈ Z, j 6= 0, do not belong to the

image of F .

4 Properties of the Euler form

Fix (r, n,m) ∈ Ωf and put Λ = Λ(r, n,m). We will also use notation introduced in

the previous section. Our aim in this section is to describe the properties of the Euler
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form χ = χΛ and dimension vectors of indecomposable objects in Db(mod Λ). We put

〈−,−〉 = 〈−,−〉Λ. One can easily calculate that

〈x,y〉Λ =
n−1
∑

i=−m

xiyi −

n−1
∑

i=−m

xiyi+1 +
r+1
∑

k=2

[

(−1)k
n+1−k
∑

i=n−r

xiyi+k
]

,

where yn = y0 and yn+1 = y1. Consequently

χΛ(x) = 〈x,x〉Λ =
n−1
∑

i=−m

x2
i −

n−1
∑

i=−m

xixi+1 +
r+1
∑

k=2

[

(−1)k
n+1−k
∑

i=n−r

xixi+k
]

,

where xn = x0 and xn+1 = x1.

We introduce the following notation:

si = −dimX
(0)
i,i , i = 0, . . . ,m+ r − 1,

ti = −dimY
(0)
i,i , i = 0, . . . , n− r − 1,

h1 = s0 + · · ·+ sm+r−1,

h2 = t0 + · · ·+ tn−r−1.

Since the objects X
(0)
i,i and Y

(0)
i,i have been described in Lemmas 3.1 and 3.2 we can give

more direct formulas for si and ti. In particular, we have h2 = h1 if r is even. We will

write just h for this common value in this case. If r is odd then h2 = −h1 − 2e0, where

ei = dimSΛ(i), i = −m, . . . , n− 1. Moreover, we get the following basis in K0(Λ)

d1 = e0,

di = si−2, i = 2, . . . ,m+ r,

di = ti−m−r−1, i = m+ r + 1, . . . ,m+ n− 1,

dm+n = h1.

In order to describe the dimension vectors of indecomposable objects in Db(mod Λ)

we introduce the following construction. The shift functor T : Db(mod Λ) → Db(mod Λ)

acts on Γ(Db(mod Λ)) in a natural way. Let Σ = ΣΛ be the quiver obtained from

Γ(Db(mod Λ)) by dividing by T 2. Since dimX = dimX[2] with each vertex x of Σ we

can associate the dimension vector of the corresponding object of Db(mod Λ), which we

will call the dimension vector of x.

Assume first r is even. Recall, we assumed that X
(k)
i,j [1] = X

(k+1)
i,j , Y

(k)
i,j [1] = Y

(k+1)
i,j and

Z
(k)
i,j [1] = Z

(k+1)
i,j , k = 0, . . . , r − 2. Finally, from Lemmas 3.1 and 3.2 we get X

(r−1)
i,j [1] =

X
(0)
i+r+m,j+r+m and Y

(r−1)
i,j [1] = Y

(0)
i−r+n,i−r+n. As the consequence, using triangle (1) and (2)

we obtain that Z
(r−1)
i,j [1] = Z

(0)
i+r+m,j−r+n. Hence, we get that in this case Σ is the disjoint

union of four stable tubes, two of them of rank m + r and two of them of rank n − r,

and two components of type ZÃn−r,m+r. The dimension vectors of vertices lying on the

mouth of tubes of rank m + r are by definition s0, . . . , sm+r−1 and −s0, . . . , −sm+r−1,

respectively, while the dimension vectors of vertices lying on the mouth of tubes of rank
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n − r are t0, . . . , tn−r−1 and −t0, . . . , −tn−r−1. Finally, using the triangles (1) and (2)

for i = 0 = j we get in the components of type ZÃn−r,m+r sections of the forms

e0→ e0 + s0→· · · → e0 + s0 + · · ·+ sm+r−2

↘ ↘

e0 + t0→· · · → e0 + t0 + · · ·+ tn−r−2 → e0 + h

and

−e0→−e0 − s0→· · · →−e0 − s0 − · · · − sm+r−2

↘ ↘

−e0 − t0→· · · → e0 − t0 − · · · − tn−r−2 →−e0 − h

,

respectively, where we replaced the vertices by their dimension vectors.

We get the following description of dimension vectors of indecomposable objects in

Db(mod Λ) in this case.

Lemma 4.1. If r is even and X is an indecomposable object in the derived category

Db(mod Λ) then dimX is of one of the forms

ph, p ∈ Z,

ph +
k+l−1
∑

i=k

si, 0 ≤ k ≤ m+ r − 1, 0 < l ≤ m+ r − 1, p ∈ Z,

ph +
k+l−1
∑

i=k

ti, 0 ≤ k ≤ n− r − 1, 0 < l ≤ n− r − 1, p ∈ Z,

± (e0 + ph +
k−1
∑

i=0

si +
l−1
∑

i=0

ti), 0 ≤ k ≤ m+ r − 1, 0 ≤ l ≤ n− r − 1, p ∈ Z,

where sm+r+i = si and tn−r+i = ti. On the other hand, if x is one of the above dimension

vectors then:

(a) there exist up to shift n+m isomorphism classes of indecomposable objects X in

Db(mod Λ) such that dimX = x if x = ph, p ∈ Z,

(b) there exists a uniquely determined up to shift indecomposable objectX inDb(mod Λ)

such that dimX = x, otherwise.

Proof 4.2. It follows from the well-known properties of stable tubes and quivers of the

form ZÃp,q.

Suppose now r is odd. Similarly as above we get now that the quiver Σ consists

of two tubes of ranks 2(m + r) and 2(n − r), respectively, and one component of type

ZÃ2(n−r),2(m+r). The vertices lying on the mouth of the tube of rank 2(m + r) have

dimension vectors s0, . . . , sm+r−1, −s0, . . . , −sm+r−1, the vertices lying on the mouth of
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the tube of rank 2(n− r) have dimension vectors t0, . . . , tn−r−1, −t0, . . . , tn−r−1, and in

the component of type ZA2(n+m) we have a section

e0 → e0 + s0 → · · · → e0 + s0 + · · ·+ sm+r−2 → e0 + h1

↓ ↓

e0 + t0 e0 + s1 + · · ·+ sm+r−1

↓ ↓

...
...

↓ ↓

e0 + t0 + · · ·+ tn−r−2 e0 + sm+r−1

↓ ↓

e0 + h2→ e0 + t1 + · · ·+ tn−r−1 → · · · → e0 + tn−r−1 → e0

,

where again we replaced vertices by their dimension vectors.

By the same arguments as above we get the following.

Lemma 4.3. If r is odd and X is an indecomposable object in Db(mod Λ) then dimX

is of one of the forms

±
k+l−1
∑

i=k

si, 0 ≤ k ≤ m+ r − 1, 0 < l ≤ m+ r − 1,

±
k+l−1
∑

i=k

ti, 0 ≤ k ≤ n− r − 1, 0 < l ≤ (n− r)− 1,

e0 +
k−1
∑

i=0

si +
l−1
∑

i=0

ti, 0 ≤ k ≤ 2(m+ r)− 1, 0 ≤ l ≤ 2(n− r)− 1,

and 0, where sm+r+i = −si, s2(m+r)+i = si, i = 0, . . . ,m+ r− 1, tn−r+i = −si, s2(n−r)+i =

si, i = 0, . . . , n− r − 1.

On the other hand, if x is one of the above dimension vectors then there exists up to

shift infinitely many indecomposable objects in Db(mod Λ) with dimension vector x.

Let Γ = Γm+r,n−r be the path algebra of the quiver

2 ←· · · ← m+ r

↙ ↖

1 n+m

↖ ↙

m+ r + 1←· · · ←n+m− 1

.
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We have the following.

Lemma 4.4. Assume r is even. Let σ : K0(Λ)→ K0(Γ) be the map given by

σ(di) = dimSΓ(i), i = 1, . . . ,m+ n− 1,

σ(dm+n) =
m+n
∑

j=1

dimSΓ(j).

Then σ is the isomorphism of K0(Λ) and K0(Γ) such that 〈σx, σy〉Γ = 〈x,y〉 for x,y ∈

K0(Λ).

Proof 4.5. It is easily to check by direct calculations that the vectors σdi, i = 1, . . . ,m+

n, form a basis of K0(Γ) and 〈σdi, σdj〉Γ = 〈di,dj〉Λ, i, j = 1, . . . ,m+ n.

The following description of χ is the immediate consequence of the above lemma.

Corollary 4.6. If r is even then χ is Z-equivalent to the form of the Euclidean diagram

of type Ãn+m−1. In particular, χ is positive semidefinite with corank 1 and of Dynkin

type An+m−1.

We also get the following description of dimension vectors of indecomposable objects

in Db(mod Λ) in terms of the Euler form.

Proposition 4.7. Let r be even. If x is the dimension vector of an indecomposable

object in Db(mod Λ) then χΛ(x) ∈ {0, 1}. On the other hand, given x ∈ K0(Λ) we have:

(a) if χ(x) = 0 then there exist up to shift n+m isomorphism classes of indecompos-

able objects X in Db(mod Λ) such that dimX = x,

(b) if χ(x) = 1 then there exists a uniquely determined up to shift indecomposable

object X in Db(mod Λ) such that dimX = x.

Proof 4.8. The proposition follows from the description of dimension vectors of indecom-

posable objects in Db(mod Λ) presented in Lemma 4.1, the formula for the isomorphism

σ : K0(Λ)→ K0(Γ) given in Lemma 4.4, and well-know description of 0-roots and 1-roots

of the form χΓ.

Now we turn our attention to the case r odd.

Proposition 4.9. If r is odd then χ is Z-equivalent to the form of the Dynkin diagram

of type Dn+m, hence is positive definite.

Proof 4.10. Since r is odd we can rewrite χ in the form

χ(x) =
1

2

[

x2
−m+

−1
∑

i=−m

(xi−xi+1)
2+

n−r−1
∑

i=1

(xi−xi+1)
2+

n−1
∑

i=n−r+1

x2
i+(xn−r−xn−r+1+· · ·+x1)

2
]

.
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Hence χ(x) ≥ 0 and χ(x) = 0 if and only if the following equations are satisfied

x−m = 0,

xi − xi+1 = 0, i = −m, . . . ,−1,

xi − xi+1 = 0, i = 1, . . . , n− r − 1,

xi = 0, i = n− r + 1, . . . , n− 1,

xn−r − xn−r+1 + · · ·+ x1 = 0.

As a consequence we get x−m = · · · = x0 = 0 and there exists a ∈ Z such that xi = a,

i = 1, . . . , n − r. Finally, taking into account the last equation, we get 2a = 0, and so

a = 0. Hence χ is positive definite.

Using the same arguments as above we can show that, for each a ∈ Zn+m with
∑n+m

i=1 ai is even, there exists a unique solution x ∈ Zn+m of the system

x−m = a1,

xi − xi+1 = ai+m+2, i = −m, . . . ,−1,

xi − xi+1 = ai+m+1, i = 1, . . . , n− r − 1,

xi = ai+m, i = n− r + 1, . . . , n− 1,

xn−r − xn−r+1 + · · ·+ x1 = an+m.

(5)

In particular, χ has exactly 2(n+m− 1)(n+m) roots. Indeed, χ(x) = 1 if and only if x

is a solution of the system (5), where |ak| = |al| = 1 for some k < l and ai = 0, i 6= k, l.

As the consequence we get that χ is of type Dn+m since the Dynkin type of a positive

definite form is uniquely determined by the number of roots.

The connection of the Euler form χ with dimension vectors of indecomposable objects

in Db(mod Λ) is described by the following proposition.

Proposition 4.11. Let r be odd. If x is a dimension vector of an indecomposable object

in Db(mod Λ), then χ(x) ∈ {0, 1, 2}. Moreover, for each 1-root x of χ, there exists an

indecomposable object X in Db(mod Λ) such that dimX = x.

Proof 4.12. Since we have a description of the dimension vectors of indecomposable

objects in Db(mod Λ) given in Lemma 4.3, by direct calculations we obtain

χ(0) = 0,

χ(±
k+l−1
∑

i=k

si) = 1, 0 ≤ k ≤ m+ r − 1, 0 < l < m+ r − 1,

χ(±
k+m+r−1

∑

i=k

si) = 2, 0 ≤ k ≤ m+ r − 1,
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χ(±
k+l−1
∑

i=k

ti) = 1, 0 ≤ k ≤ n− r − 1, 0 < l < n− r − 1,

χ(±
k+n−r−1

∑

i=k

si) = 2, 0 ≤ k ≤ n− r − 1,

χ(e0 +
k−1
∑

i=0

si +
l−1
∑

i=0

ti) = 1, 0 ≤ k ≤ 2(m+ r)− 1, 0 ≤ l ≤ 2(n− r)− 1,

where sm+r+i = −si, s2(m+r)+i = si, i = 0, . . . ,m + r − 1, tn−r+i = −si, s2(n−r)+i = si,

i = 0, . . . , n− r − 1, and hence the first part follows. The second part also follows, since

we have exactly 2(m+r)(m+r−1) different dimension vectors of indecomposable objects

in Db(mod Λ) which are 1-roots.

The statement of the above proposition is not true for 2-roots of χ, that is in general

not each 2-root is a dimension vector of an indecomposable object in Db(mod Λ). Indeed,

we have 24
(

m+n
4

)

+2(m+n) 2-roots of χ, while there are only 2(m+n) dimension vectors

of indecomposable objects in Db(mod Λ) which are 2-roots (these numbers are equal if

and only if m+ n < 4).

We finish our consideration by pointing out how much information can be derived

from the knowledge of the Auslander–Reiten quiver and the bilinear Ringel from. Let

Φ = ΦΛ be the Coxeter transformation of Λ. Moreover, for nonzero integers a and b,

denote by gcd(a, b) the greatest common divisor of a and b, and by lcm(a, b) the least

common multiplicity of a and b.

Lemma 4.13. Let r be odd. Then there are m+ n− 2 + 2 gcd(m+ r, n− r) Φ-orbits of

1-roots of χ. There are m + r − 1 Φ-orbits with 2(m + r) elements, n − r − 1 Φ-orbits

with 2(n− r) elements and 2 gcd(m+ r, n− r) Φ-orbits with 2 lcm(m+ r, n− r) elements.

Proof 4.14. Using the formula Φ(dimX) = dim τDb(mod Λ)X, which holds for any object

X ∈ Db(mod Λ), and the knowledge of the Auslander–Reiten quiver Db(mod Λ) we easily

get the following

Φs0 = −sm+r−1,

Φsi = si−1, i = 1, . . . ,m+ r − 1,

Φt0 = −tn−r−1,

Φti = ti−1, i = 1, . . . , n− r − 1.

It follows immediately from the above formulas that, for each l = 1, . . . ,m + r − 1,

l 6= m + r, the vectors
∑k+l−1

i=k si, k = 0, . . . , 2(m + r)− 1, form a Φ-orbit, and, for each

l = 1, . . . , n − r − 1, the vectors
∑k+l−1

i=k ti, k = 0, . . . , 2(n − r) − 1, form a Φ-orbit.

Recall that we use the convention sm+r+i = −si, s2(m+r)+i = si, i = 0, . . . ,m + r − 1,

tn−r+i = −si, s2(n−r)+i = si, i = 0, . . . , n− r − 1.

In order to analyze the action of Φ on the dimension vectors of the form e0+
∑k−1

i=0 si+
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∑l−1
i=0 ti note that

Φe0 = e0 + sm+r−1 + tn−r−1 = e0 +

2(m+r)−2
∑

i=0

si +

2(n−r)−2
∑

i=0

ti,

since Φ−1e0 = e0 + s0 + t0. Consequently, we get

Φ(e0 +
k−1
∑

i=0

si) = e0 +
k−2
∑

i=0

si +
n−r−1
∑

i=0

ti, k ≥ 1,

Φ(e0 +
l−1
∑

i=0

ti) = e0 +
m+r−2
∑

i=0

si +
l−2
∑

i=0

ti, l ≥ 1,

Φ(e0 +
k−1
∑

i=0

si +
l−1
∑

i=0

ti) = e0 +
k−2
∑

i=0

si +
l−2
∑

i=0

ti, l, k ≥ 1.

Note that the above dimension vectors are in a natural correspondence with the elements

of the set R = R2(m+r),2(n−r) = {0, . . . , 2(m+ r)− 1} × {0, . . . , 2(n− r)− 1}. According

to the above formulas the action of Φ induces the action on R given by the formula

(i, j) 7→ (i− 1, j − 1), where the result on the first coordinate is taken modulo m+ r and

the result on the second coordinate is taken module n− r. It is an easy combinatorics to

notice that this action has exactly gcd(2(m + r), 2(n − r)) = 2 gcd(m + r, n − r) orbits,

each of them with 4(m+r)(n−r)
2 gcd(m+r,n−r)

= 2 lcm(m+ r, n− r) elements.

Note that it follows from the above lemma that in general the bilinear form 〈−,−〉

is not Z-equivalent to the form 〈−,−〉D, where D is a hereditary algebra of type Dn+m.

Indeed, there are m + n orbits of the action of ΦD on 1-roots of χD and each orbit has

exactly 2(m+ n− 1) elements.

Proposition 4.15. If (r′, n′,m′) ∈ Ωf then the bilinear forms 〈−,−〉 and 〈−,−〉Λ(r′,n′,m′)

are Z-equivalent if and only if r ≡ r′ (mod 2) and either m+r = m′+r′ and n−r = n′−r′

or m+ r = n′ − r′ and n− r = m′ + r′.

Proof 4.16. It follows from Corollary 4.6 and Proposition 4.9 that the bilinear forms

〈−,−〉 and 〈−,−〉Λ(r′,n′,m′) can be Z-equivalent only if r ≡ r′ (mod 2). If r and r′ are

even then the claim follows from Lemma 4.4, since the bilinear forms of the algebras Γp,q
and Γp′,q′ are Z-equivalent if and only if either p = p′ and q = q′ or p = q′ and q = p′.

Assume now that both r and r′ are odd. If neither one of the conditions formulated

in the proposition is satisfied then using the previous lemma we get that the actions of

the corresponding Coxeter transformations on 1-roots differ, hence the forms 〈−,−〉 and

〈−,−〉Λ(r′,n′,m′) cannot be Z-equivalent.

Finally, assume that either m+ r = m′ + r′ and n− r = n′− r′ or m+ r = n′− r′ and

n−r = m′+r′. Then n′+m′ = n+m. If m+r = m′+r′ and n−r = n′−r′ then the map

G : K0(Λ) → K0(Λ(r′, n′,m′)) given by G(di) = d′
i is an isomorphism of abelian groups

such that 〈Gx, Gy〉Λ(r′,n′,m′) = 〈x,y〉, where d′
1, . . . , d′

n+m is the basis of K0(Λ(r′, n′,m′))
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defined in the analogous way as the basis d1, . . . , dn+m of K0(Λ). Similarly, if m + r =

n′ − r′ and n− r = m′ + r′ then we define the map H : K0(Λ)→ K0(Λ(r′, n′,m′)) by the

formulas

H(d1) = d′
1,

H(di) = d′
m′+r′+i−1, i = 2, . . . ,m+ r,

H(di) = d′
i−m−r+1, i = m+ r + 1, . . . ,m+ n− 1,

H(dn+m) = −d′
n+m − 2d′

1.

A direct checking shows that H is the required isomorphism.

An important information which follows from the above proposition is the follow-

ing. Given (r′, n′,m′) ∈ Ωf such that the Auslander–Reiten quivers of Db(mod Λ) and

Db(Λ(r, n,m)) are isomorphic as the translation quivers, and the bilinear forms 〈−,−〉

and 〈−,−〉Λ(r′,n′,m′) are Z-equivalent, then either (r′, n′,m′) = (r, n,m) or (r′, n′,m′) =

(r,m+ 2r, n− 2r). Obviously the second possibility may appear only if n ≥ 2r.
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Copernicus University in Toruń. The authors gratefully acknowledge support from Polish

Scientific Grant KBN No 2PO3A 012 14 and Foundation for Polish Science. The second

named author acknowledges also support from habilitation grant of DFG (Germany).

References

[1] I. Assem and D. Happel: ”Generalized tilted algebras of type An”, Comm. Algebra,
Vol. 9, (1981), pp. 2101–2125.

[2] I. Assem and A. Skowroński: ”Iterated tilted algebras of type Ãn”, Math. Z., Vol.
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