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Abstract

In [Ge1] it was proved that all tame distributive 2-point algebras are
factors of algebras contained in a small list given in that paper. Also
there were given tameness proofs for the algebras of that list with the
exception of essentially two cases. It was pointed out already in that
paper that in order to complete the tameness proofs one essentially had
to study two 2-point algebras with homogenous relations, call them Λ
and Γm,A, see 1.2 for details. The subject of this paper is to supply these
proofs. Indeed we manage in the case of Λ to show that the universal
Galois covering with group Z is locally support-finite and tame, thus so is
Λ. In the case of Γm,A we use the generalized 1-point extensions of [Dr3],
to prove that the universal Galois covering with group Z is tame, and the
tameness of the algebra Γm,A itself will follow from a result announced
by Drozd ([Dd]).

1 Introduction

1.1. Let us first fix some notations. k will be an algebraically closed field.
In this paper by a k-algebra we mean a locally bounded spectroid in the sense
of [GR]. Usually we present such a category Λ in the form k[Q]/I where k[Q]
is the k-linear hull of the path category of a quiver Q and I is an admissable
ideal. We denote by Λ-mod the category of contravariant k-linear functors
Λ → k-mod. We compose k-linear maps from right to left but morphisms in
other categories as well as arrows from left to right.

The (Jacobson) radical of a locally bounded spectroid Λ is denoted by
Rad Λ.

1.2. Consider the quiver Q :
�


�
��

σ a
-�

ν

γ
b

�
�

�
�

 ρ and the categories

Λ9′m,A := k[Q]/〈σν−νρ, νγ−σ2, ργ−γσ, γν−ρm(1b−Aρ), σ2ν, ρ2γ, σ4, ρm+2〉

Λ9′′m,A := k[Q]/〈σν − Aνρ, νγ − σ2, ργ − γσ, γν − ρm, σ2ν, ρ2γ, σ3, ρm+1〉
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Γm,A := k[Q]/〈σν − Aνρ, νγ − σ2, ργ − γσ, γν, σ3, ρm+1〉

Λ10 := k[Q]/〈σν − νρ, νγ − σ2, γν − ρ2, ργ〉

Λ10′1 := k[Q]/〈σν − νρ, νγ − σ2, γν − ρ2, ργ, σ2ν〉

Observe that Λ9′m,A is selfinjective, modulo its socle it is isomorphic to Λ9′′

m,A,
and this in turn degenerates into Γm,A, thus by [Ge2] the tameness of Γm,A

will imply the tameness of Λ9′′m,A and Λ9′m,A. Similarily Λ10 has a projective-
injective module, modulo its socle it is isomorphic to Λ10′

1; see [Ge1, 4.2, 4.3].
For brevity we write Λ10′1 =: Λ. Concerning Γm,A we note that m ∈ N with
m ≥ 3 and 0 6= A ∈ k. We point out that Rad 3Λ = 0 and that the elements of
Rad 3Γm,A are polynomials in ρ.

Now consider the quiver Q̃:

· · ·
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ρ
−1- b0
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ρ1 - b2

· · ·

and the categories

Λ̃ := k[Q̃]/〈σiνi+1 − νiρi+1, νiγi+1 − σiσi+1, γiνi+1 − ρiρi+1, ρiγi+1,

σiσi+1νi+2 | i ∈ Z〉

Γ̃m,A := k[Q̃]/〈σiνi+1 − Aνiρi+1, νiγi+1 − σiσi+1, ρiγi+1 − γiσi+1, γiνi+1,

σiσi+1σi+2, ρi · · · ρi+mρi+m+1 | i ∈ Z〉

There is a natural action of the (additive) group Z on these categories inducing
Galois coverings Λ̃ → Λ and Γ̃m,A → Γm,A.

2 Λ is tame

2.1. We will show, that the Galois-covering Λ̃ of Λ is locally support-finite
and tame, which implies by [Pe, 3.2] (see also [DS], [DLS]) the tameness of Λ
(the hypothesis k uncountable may be omitted).

We first have to introduce some notation. For i ≤ j we set

Λ̃(i,j) := Λ̃{ai, bi, ai+1, . . . , aj+1, bj+1},

the full subcategory of Λ̃ that contains the objects {ai, . . . , bj+1}; for brevity

write Λ̃(i,i) =: Λ̃(i),

Λ̃[i] := Λ̃{ai−1, ai, bi, ai+1, bi+1, bi+2}.

We also give names to some indecomposable regular Λ̃(i)-modules. For C ∈

P1(k) := k ∪ {∞} we set M
(i)
C (x) := k for x ∈ Λ̃(i), and for C ∈ k we take
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M
(i)
C (γi) := C · idk, M

(i)
C (σi) = M

(i)
C (ρi) = M

(i)
C (νi) = idk, while M

(i)
∞ (ρi) = 0,

M
(i)
∞ (γi) = M

(i)
∞ (νi) = M

(i)
∞ (σi) = idk; note that M

(i)
0 and M

(i)
∞ lie in different

inhomogenous tubes R
(i)
0 and R

(i)
∞ of Λ̃(i)-mod, while the modules M

(i)
C for

C ∈ k \ {0, 1} lie in the mouths of the homogenous tubes R
(i)
C .

2.2. Note that Λ̃[i] ∼= [M
(i)
1 ]

(

Λ̃(i)[M
(i)
1 ]

)

. Thus it is not hard, to determine

Λ̃[i]-mod with the methods developed in [Ri1] and [Ri2]. We find Λ̃[i]-mod =
P [i] ∨R[i] ∨ I [i], with P [i] a preprojective and I [i] a preinjective component of
type D̃3, while

R[i] =
∨

C∈P1(k)

R
[i]
C with R

[i]
C = R

(i)
C for C 6= 1.

R
[i]
1 is an inhomogenous tube of rank 2 with a projective and an injective

module in its mouth. Note that the indecomposable sincere modules all lie
in this tube. Moreover R[i] is a separating tubular family. Finally, M ∈ P [i]

implies M(bi+2) = 0 and M ∈ I [i] implies M(ai−1) = 0.

2.3. We will show by induction on j ≥ i + 2 the following claim which will
imply that Λ̃ is locally support-finite:
Let M ∈ Λ̃(i,j)-mod be indecomposable, then

M(bj+1) 6= 0 and M(aj+1) = 0 =⇒ M ∈ Λ̃[j−1]-mod

M(aj+1) 6= 0 =⇒ M ∈ Λ̃(j−1,j)-mod

We start with j = i + 2 and see

Λ̃(i,i+2) = [M
(i+1)
0 ]

(

Λ̃[i+1][M (i+1)
∞

]
)

.

Now, let X be an indecomposable Λ̃[i+1]-module. For the first case we only have

to observe that HomΛ̃[i+1](X, M
(i+1)
0 ) 6= 0 implies X(bi+3) = 0 (thus for M ∈

[M
(i+1)
0 ]Λ̃[i+1]-mod indecomposable, we have M(bi+3) = 0 or M(bi) = 0). In

the second case our assertion follows from the fact that HomΛ̃[i+1](M
(i+1)
∞ , X) 6=

0 implies X(ai) = 0 and HomΛ̃[i+1](X, M
(i+1)
0 ) = 0, compare [GP, 1.4,ii)].

Suppose now our assertion to be true for some j ≥ i + 2 and
let M ∈ Λ̃(i,j+1)-mod be indecomposable with M(aj+2) ⊕ M(bj+2) 6=
0. Decompose M |Λ̃(i,j)= ⊕m

t=1Mt into indecomposable summands, then

HomΛ̃(i,j) (M
(j)
∞ , Mt) 6= 0 or HomΛ̃(i,j) (M

(j)
1 , Mt) 6= 0 for every t ∈ {1, . . . , m}.

It is easy to see that this is only possible if Mt(aj+1) 6= 0 6= Mt(bj+1), thus

by induction hypothesis Mt ∈ Λ̃(j−1,j)-mod and M ∈ Λ̃(j−1,j+1)-mod. Now we
can apply the first part of the proof again.

2.4. By the foregoing subsections it remains to show that Λ̃(i,i+1) is tame.
This was done already in [Ge1, 4.4]; alternatively we can use generalized 1-point
extensions.
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3 Vector space categories

3.1. The proof of the tameness of Γ̃m,A will be done in the next section by
reduction to a vector space category using the generalized 1-point extension
technique. In this section we will recall the needed notions about vector space
categories and prove some auxiliary results.

A vector space category over k is a pair (K, |− |) consisting of an aggregate
K and a k-linear functor |−| : K → k-mod. The vector space category is called
faithful provided the functor | − | is faithful. The associated subspace category
has as objects the triples X = (X0, Xω, γX) where X0 ∈ K, Xω ∈ k-mod and
γX ∈ HomK(Xω, |X0|). Morphisms are just the pairs (f0, fω) where f0 is a
morphism in K and fω is a k-linear map satisfying the obvious commutativity
conditions. The subspace category is again an aggregate. For basic results
about this category and in particular for the proper definition of tameness for
a vector space category we refer to [Si].

3.2. An aggregate K is frequently decribed by the quiver ∆ of its spectroid
ind K. One obtains a display functor k[∆] → ind K whose kernel will be an
admissible ideal I of k[∆]. If we dispose of a full display functor then we even
obtain k[∆]/I ∼= ind K. Conversely it is possible to define an aggregate by
setting its spectroid as k[∆]/I .

In the the study of a vector space category attached to Γ̃m,A in the next
section we will encounter the following quiver ∆.
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· · ·

In [Dr2] vector space categories whose quivers resemble the patterns from [Ri2]
were studied. For this reason the concept of a pattern-like quiver (Γ, T ) was
introduced. In general Γ is a quiver with particular properties and T is a
subset of the vertex set of Γ satisfying certain axioms. We only will need the
following pattern-like quiver Γ which will turn out to be closely related to ∆.
Note that in this example T = TΓ is just the set of vertices having at least 5
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direct neighbours in Γ.
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Let us denote by RΓ the set of all relations
∑3

j=1 αi
jβ

i
j ,

∑3
j=1 γi

jδ
i
j and βi

jγ
i
j .

In [Dr2, 2.3] an admissible ideal JΓ of k[Γ] and a faithful functor | − |Γ :
k[Γ]/JΓ → k-mod were constructed such that RΓ ⊆ JΓ and furthermore |x| is
2-dimensional for x ∈ TΓ and 1-dimensional for all other vertices.

It is shown in [Dr3, 3.5] that this construction is unique in the following
sense: If J is another admissible ideal of k[Γ] containing RΓ, | − | : k[Γ]/J →
k-mod is a faithful functor taking values 2 on all elements of T whereas 1 on
all other vertices and finally the images of the k-linear maps |β̄i

j | are pairwise
different subspaces for j = 1, 2, 3, then up to an automorphism of k[Γ] which
fixes the vertices the ideal J coincides with JΓ and up to a natural isomorphism
the functor | − | coincides with | − |Γ.

3.3. We want to transfer the construction of JΓ and | − |Γ to ∆. For this
purpose we define a functor Φ : k[∆] → k[Γ] by sending εi

j to γi
j , ϕi

j to −γi
3α

i−1
j ,

µi
j to δi+1

j βi
3 and νi

j to βi
j for j = 1, 2. It is easy to see that this functor happens

to be fully faithful.
By R∆ we denote the set of relations in k[∆] given by εi

1µ
i−1
1 + εi

2µ
i−1
2 +

ϕi
1ν

i−1
1 + ϕi

2ν
i−1
2 , µi

jϕ
i
j and νi

jε
i
j . By T∆ we denote the set of all vertices of ∆

which have at least 6 direct neighbours in ∆. Defining as J∆ the preimage of
IΓ under Φ we obtain an admissible ideal of k[∆] which contains R∆. Let us
denote the induced faithful functor k[∆]/J∆ → k[Γ]/JΓ by Φ̄. The composition
| − |∆ := | − |ΓΦ̄ will be a faithful functor again which maps all vertices in T∆

to 2-dimensional and all other vertices to 1-dimensional spaces. Moreover, the
construction of |−|Γ shows that Im |µ̄i

1|Γ = Im |µ̄i
2|Γ, Ker |ϕ̄i

1|Γ = Ker |ϕ̄i
2|Γ and

Im |µ̄i
1|Γ, Im |ν̄i

2|Γ, Im |ν̄i
1|Γ are three pairwise different subspaces for all i ∈ N0.

Lemma. Let I be an admissible ideal of k[∆] containing R∆ and let
| − | : k[∆] → k-mod be a faithful functor which maps all vertices in T∆ to 2-
dimensional and all other vertices to 1-dimensional spaces. Moreover, suppose
that Im |µ̄i

1| = Im |µ̄i
2|, Ker |ϕ̄i

1| = Ker |ϕ̄i
2| and Im |µ̄i

1|, Im |ν̄i
1|, Im |ν̄i

2| are three
pairwise different subspaces for all i ∈ N0. Then up to an automorphism of
k[∆] fixing the vertices I coincides with J∆ and up to a natural isomorphism
| − | coincides with | − |∆.

Proof: We consider the ideal J of k[Γ] generated by Φ(I) and consider the
induced faithful functor Ψ : k[∆]/I → k[Γ]/J . One checks that RΓ ⊆ J and
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constructs in the obvious way a faithful functor |−|′ : k[∆] → k-mod satisfying
|−|′Ψ = |−|. Observing that |−|′ has the properties needed to apply the above
cited uniquenss result from [Dr3], we obtain that up to trivial modifications
J = JΓ and | − |′ = | − |Γ. But this shows that I = J∆ and | − | = | − |∆.

3.4. The category k[∆]/I∆ above has an obvious fully faithful endofunctor
given by shifting i to i + 2. In the next section we will have to apply the
following lemma to the restriction of the inverse τ of this shift functor to a
certain subcategory M .

Lemma. Let (K, | − |) is be faithful vector space category and L, M , N
be full additive subcategories of K such that L ∩ M = L ∩ N = 0. Suppose
that there exists an isomorphism τ = (τ0, τω) : (M, | − |) → (N, | − |) and
moreover there exist objects x1, . . . , xn in a spectroid of M and non-zero maps
ui : xi → yi := τ0xi such that the following properties are satisfied:
(a) dimk|xi| = 1 and |ui| = (τω)xi

for all i = 1, . . . , n.
(b) K(M, L) = K(N, L) = 0.
(c) K(z, x) =

∑n
i=1 K(z, xi)K(xi, x) for all z in a spectroid of L and x in a

spectroid of M .
(d) K(z, y) =

∑n
i=1 K(z, yi)K(yi, y) for all z in a spectroid of L and y in a

spectroid of N .
(e) K(z,⊕n

i=1yi) = K(z,⊕n
i=1xi)u for all z in a spectroid of L where u :

⊕n
i=1xi → ⊕n

i=1yi is the map whose components are uii = ui and uij = 0
for i 6= j.
If all these conditions are satisfied, then (L ∨ M, | − |) ∼= (L ∨ N, | − |).

Proof: We only sketch the proof and skip the technical details. We have
to define an isomorphism ϕ = (ϕ0, ϕω) : (L∨M, |− |) → (L∨N, |− |) of vector
space categories.

The equivalence ϕ0 : L ∨ M → L ∨ N is defined to send indecomposables
z in L to themselves and indecomposables x in M to τ0(x). Morphisms inside
L resp. M are mapped in the obvious way. Thus it only remains to define
ϕ0 on maps f : z → x where z is an indecomposable object in L and x
is an indecomposable object in M . Using condition (c) we write f as f =
(f1, . . . , fn)(g1, . . . , gn)T where fi ∈ K(z, xi) and gi ∈ K(xi, x). We define
ϕ0(f) := f = (f1, . . . , fn)u(τ0(g1), . . . , τ0(gn))T .

In additon the natural isomorphism ϕω : |−| → |ϕ0(−)| is given by (ϕω)z :=
idz for all indecomposables z in L and (ϕω)x := (τω)x for all indecomposables
x in M .

4 Γm,A is tame

4.1. To prove the tameness of Γ̃m,A we will consider this algebra as a general-
ized 1-point extension, a concept which was introduced in [Dr3]. As background
we also need some results on fiber sum functors and tameness which are taken
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from [Dr1].
Using the notation for full subcategories introduced in section 2, we put

Γ̃n
m,A := Γ̃m,A{a0, b0, . . . , an, bn}.

To prove the tameness of Γ̃m,A it suffices to prove the tameness of Γ̃n
m,A for all

n ∈ N which will be achieved by induction on n. It not hard to see that Γ̃2
m,A

is still tame. This means that the essential part is to show that Γ̃n+1
m,A is tame

provided Γ̃n
m,A is tame and n ≥ 2.

If not mentioned otherwise the Hom and Ext spaces considered in this sec-
tion are taken with respect to Γ̃n+1

m,A. Let us denote by P the indecomposable

projective Γ̃n+1
m,A-module induced by the vertex bn. Let K be the full sub-

category supported by all V ∈ Γ̃n+1
m,A-mod satisfying Ext1(V, fac P ) = 0. We

are interested in the vector space category (Kred, Hom(P,−)) where Kred :=
K/KerHom(P,−). Hence by construction this vector space category is faithful.
By ind Kred we mean a spectroid of the full subcategory of K supported by
the indecomposable objects V such that Hom(P, V ) 6= 0. Of course this gives
also rise to a spectroid of Kred.

Using the fiber sum functor with respect to P it was shown in [Dr1, 3.3]
that Γ̃n+1

m,A is tame if and only if Γ̃n+1
m,A/P is tame, the vector space category

(Kred, Hom(P,−)) is tame and moreover for any natural number n0 there are
only finitly many objects V in ind Kred satisfying dimkV ≤ n0. Here we denote
by Γ̃n+1

m,A/P the factor algebra of Γ̃n+1
m,A by the trace ideal attached to P .

4.2. To verfiy the above properties we will convince ourselves that
Γ̃n+1

m,A is a generalized 1-point extension with respect to the vertex s :=

bn. In order to explain this notion we consider the categories Γ̃s :=
Γ̃m,A{a0, b0, . . . , an−1, bn−1, an} and Γ̃s := Γ̃m,A{an, an+1, bn+1} which may be

considered as factor algebras of Γ̃n+1
m,A/P . Hence Γ̃n+1

m,A/P -mod contains Γ̃s-mod

and Γ̃s-mod. In fact in our case Γ̃n+1
m,A/P -mod is just the union of these two sub-

categories which means by definition (see [Dr3, 3]) that Γ̃n+1
m,A is a generalized

1-point extension with respect to s.
Note that as a factor algebra of Γ̃n

m,A the algebra Γ̃s is tame and obviously

Γ̃s is of finite representation type. Thus we also obtain that Γ̃n+1
m,A/P is tame

which is already the first property to be checked.

4.3. We call R+ the radical of the module P and R− the radical of the
indecomposable projective (Γ̃n+1

m,A)op-module induced by the vertex s = bn.

Note that R+ is a Γ̃s-module and R− is a Γ̃op
s -module. We will be interested in

the vector space categories (Γ̃s-mod, HomΓ̃s(R+,−)) and (Γ̃s-mod, R−⊗
Γ̃s

−)

respectively their faithful versions.
It is shown in [Dr3, 3.3] that ind Kred is the disjoint union of {P}, ind K+

red

and ind K−

red where (K+
red, Hom(P,−)) ∼= (Γ̃s-modred, HomΓ̃s(R+,−)) and

(K−

red, Hom(P,−)) ∼= (Γ̃s-modred, R
−⊗

Γ̃s

−). Moreover there do not exist any
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non-zero maps from K−

red to K+
red.

We point out that the preceding isomorphisms of vector space categories will
also enable us to evaluate the function dimkHom(P,−) on the indecomposable
objects of Kred.

4.4. Since P is a maximal object in Kred for proving the tamenss of
(Kred, Hom(P,−)) we only need to prove the tameness of (K ′

red, Hom(P,−))
where K ′ := K+ ∨ K−. Let us first calculate the quiver of K ′

red which has to

be the union of two convex subquivers which are just the quivers of Γ̃s-modred

and Γ̃s-modred. This means that we have to calculate the full subquivers of the
Auslander-Reiten quivers of the algebras Γ̃s resp. Γ̃s supported by the inde-
composable modules on which the functors HomΓ̃s(R+,−) resp. and R−⊗

Γ̃s

−

do not vanish. In principle we might have to cancel some arrows as well but
using [Dr3, 4.5] in our situation this turns out not to be necessary. In fact for
the representation finite algebra Γ̃s the resulting quiver ∆′′ easily turns out to
be:

���*










�J
J
J

JĴ
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∆′′

The Auslander-Reiten quiver of the algebra Γ̃s has a preinjective component
which gives rise to a component ∆′ of the quiver of Γ̃s-modred which altogether
has the shape
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where Θ comprises all components different from ∆′.
[Dr3, 4.4] gives the rule how we have to draw arrows beteen the two quivers

constructed above to obtain the quiver of K ′

red. it turns out that we only
have to insert arrows from ∆′ to ∆′′ yielding a new component ∆ whereas
the components in Θ remain unchanged. Altogether we arrive at the following
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picture where we distinguish the inserted arrows by circles.
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JĴ

HHHj
���*

J
J

J
JĴ
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JĴ

HHHj

J
J
J
JĴ
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4.5. We encounter the quiver ∆ considered in section 3. Moreover, since
∆′ comes from a preinjective component, the relations in R∆ are obviously
satisfied inside this part of ∆. To check that these relations are also satisfied at
the right end, we have to calculate the modules there explicitely which is an easy
exercise. As mentioned above, we can calculate the value of dimkHom(P,−)
on the vertices of ∆ and obtain the value 2 on all nodes and 1 else.

The algebra Γ̃n
m,A is the 1-point extension of the algebra Γ̃s by the mod-

ule R+. This implies that the vector space category (K+
red, Hom(P,−)) ∼=

(Γ̃s-modred, HomΓ̃s(R+,−)) has to be tame as well. We will see that this shows
the tameness of (K ′

red, Hom(P,−)). In fact, using lemma 3.4 we will prove that
any vector space category (W, Hom(P,−)) where W is a subaggregate of K ′

red

with finite spectroid is isomorphic to some (W ′, Hom(P,−)) where W ′ happens
to be a subaggregate of K+

red.
More precisely, we intersect W with the subaggregate D of K ′

red supported
by the vertices of ∆ to obtain the category N appearing in lemma 3.4 and put
L as the complement of N in W . Observe that any display functor of D is full
since by [Dr3, 4.3] the category K ′

red has almost split maps and the quiver ∆
is interval finite. Hence, by lemma 3.3 we know D precisely. The category M
will be the image of N under the canonical shift functor of D mentioned at the
beginning of 3.4 and τ will be the inverse of this shift. In order to apply lemma
3.4 we possibly have to increase N by finitely many indecompsables from D in
order to dispose of the needed objects x1, . . . , xn.

Finally we wish to prove the validity of the required property concerning
the dimensions of the indecomposables in Kred. But the tame algebra Γ̃n

m,A is
a 1-point extension and hence also a generalized 1-point extension with respect
to the vertex bn. Thus we can use the converse implication of our tameness
criterion in [Dr1, 3.3] to establish that the corresponding K+

red has only finitely
many indecomposable objects whose dimensions are bounded by a given integer
n0. On the other hand by [Dr3, 2.4] the categories K+ do not differ if considered
with respect to Γ̃n

m,A or with respect to Γ̃n+1
m,A. Since Kred differs from K+

red

only by finitely many indecomposable objects, this finishes the proof.

4.6. Remark. The factor algebra Γ̃m,A/〈σiσi+1, σiνi+1, ρiγi+1 : i ∈ Z〉 is
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special biserial. Hence the infinite word . . . ρiν
−1
i σiγ

−1
i ρiρi+1ν

−1
i+1σi+1 . . . gives

rise to indecomposable Γ̃m,A-modules with arbitrarily large support. Thus

Γ̃m,A is not locally support finite and we cannot invoke the classical results to
push tameness down to Γm,A (see e.g. [Pe]) but have to invoke more general
results announced in [Dd].
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