
Advances in Water Resources 96 (2016) 323–338 

Contents lists available at ScienceDirect 

Advances in Water Resources 

journal homepage: www.elsevier.com/locate/advwatres 

A central-upwind scheme with artificial viscosity for shallow-water 

flows in channels 

Gerardo Hernandez-Duenas a , c , ∗, Abdelaziz Beljadid 

b 

a Instituto de Matemáticas - Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, México 
b Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA 
c Investigación realizada gracias al Programa UNAM-DGAPA-PAPIIT IA103015 

a r t i c l e i n f o 

Article history: 

Received 10 March 2016 

Revised 4 July 2016 

Accepted 30 July 2016 

Available online 5 August 2016 

Keywords: 

Hyperbolic systems of conservation and 

balance laws 

Semi-discrete central-upwind schemes 

Shallow-Water equations 

Channels with irregular geometry 

a b s t r a c t 

We develop a new high-resolution, non-oscillatory semi-discrete central-upwind scheme with artificial 

viscosity for shallow-water flows in channels with arbitrary geometry and variable topography. The ar- 

tificial viscosity, proposed as an alternative to nonlinear limiters, allows us to use high-resolution re- 

constructions at a low computational cost. The scheme recognizes steady states at rest when a delicate 

balance between the source terms and flux gradients occurs. This balance in irregular geometries is more 

complex than that taking place in channels with vertical walls. A suitable technique is applied by prop- 

erly taking into account the effects induced by the geometry. Incorporating the contributions of the arti- 

ficial viscosity and an appropriate time step restriction, the scheme preserves the positivity of the water’s 

depth. A description of the proposed scheme, its main properties as well as the proofs of well-balance 

and the positivity of the scheme are provided. Our numerical experiments confirm stability, well-balance, 

positivity-preserving properties and high resolution of the proposed method. Comparisons of numeri- 

cal solutions obtained with the proposed scheme and experimental data are conducted, showing a good 

agreement. This scheme can be applied to shallow-water flows in channels with complex geometry and 

variable bed topography. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

The shallow-water equations, also called Saint-Venant system

odel a large class of geophysical flows, characterized by their

arge length scale relative to their depth. The system consists of

on-linear hyperbolic balance laws governed by conservation of

ass and balance of momentum. The nonlinearity has important

onsequences, such as the generation of shock waves in finite time.

xact solutions are not available in general, and we need to rely

n numerical approximations. An exception of this lies in a class

f equilibrium solutions independent of time, arising when a deli-

ate balance between source terms and flux gradients takes place.

here are examples of geophysical flows in nature that are in fact,

mall perturbations to steady states. Although it is not within the

cope of this paper, transoceanic tsunami propagation is one such

ituation ( LeVeque et al., 2011 ). Equilibrium solutions can be com-

uted exactly, to machine precision, and are used for reference

hen comparing to numerical solutions. 
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Numerical algorithms aimed at accurately computing shallow-

ater flows have been developed over the years. Different ap-

roaches achieving a number of desirable properties in the nu-

erical schemes show the increasing interest in the community in

he challenges hidden in this balance law. The treatment of jump

iscontinuities, near steady-state flows and the positivity of the

ater’s depth is the focus of this study. Shock waves are usually

orrectly captured with the use of conservative schemes, which

anage to carry out the conservation form of the law to the dis-

rete level. When the initial data corresponds to an equilibrium

tate, one would expect that the numerical scheme recognizes such

quilibrium. That does not always happen by itself unless we in-

lude a mechanism in the numerical algorithm to recognize all or

 subclass of steady states. Schemes of that nature are called well

alanced ( Gosse and Leroux, 1996; Greenberg and Leroux, 1996 ).

imulations of small perturbations to steady states with schemes

hat are not well balanced can generate numerical errors of the

ame order of magnitude as the propagating perturbation. Well-

alanced schemes have shown to be very accurate when com-

uting near steady states. There are important geophysical flows

hat are not small perturbations to steady states, such as hy-

raulic jumps. See Figure 5.28 in Khan and Lai (2014) . Even in such

http://dx.doi.org/10.1016/j.advwatres.2016.07.021
http://www.ScienceDirect.com
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Fig. 1. Left: Schematic of channel with a description of the variables involved in the model. Right: Channel used in the dam break problem in Section 4.4 . 
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situations, the well-balance property adds accuracy to the numer-

ical approximations. Numerically maintaining the positivity of wa-

ter’s depth is another challenging task. Assuming that we start

with positive values of water’s depth in our flow, we would like to

maintain that positivity as the flow evolves in time. This positivity-

preserving property is desirable in any scheme treating near dry

states ( Audusse et al., 2004; Kurganov and Levy, 2002; Perthame

and Simeoni, 2001 ). 

As it is the case for other conservation and balance laws,

Roe-type upwind schemes are popular and successful in shallow-

water simulations. Upwind schemes developed in Roe (1987) , are

based on local linearizations of the flux Jacobian and its eigen-

spectrum. They have shown to have a great performance near

shock waves by capturing jump and contact discontinuities very

accurately. Many numerical difficulties can be solved using upwind

schemes by directly treating the waves’ families in the local lin-

earizations and their amplitudes. For instance, wave-propagation

algorithms with Riemann problems at the center of each grid cell

are used for near steady-state flows ( LeVeque, 1998 ), where the

flux difference at the center exactly cancels the source terms.

Other approaches for near steady-state flows include capturing

methods using interface values ( Jin, 2001 ), hydrostatic reconstruc-

tions ( Audusse et al., 2004 ), and WENO reconstructions ( Noelle

et al., 20 06; 20 07 ). An augmented Rieman solver that uses wave-

propagation algorithms is described in George (2008) . See also the

book ( Bouchut, 2004 ) and references therein. The Q-schemes intro-

duced in Castro et al. (2001) were used in Castro et al. (2004) to

solve two layer shallow-water systems. There are several other

classes of schemes that have been used to solve the shallow-water

equations. For instance, a kinetic scheme with an elegant and natu-

ral way of achieving the positivity-preserving property was derived

in Perthame and Simeoni (2001) . 

Another category of successful schemes in a variety of bal-

ance laws is the class of central-upwind schemes, introduced in

Kurganov et al. (2001) , Kurganov and Tadmor (20 0 0) , and fur-

ther developed in Kurganov and Lin (2007) , Kurganov and Tad-

mor (2002) . The central-upwind schemes are designed for bal-

ance laws in general, and are free of Riemann solvers. The

schemes use, however, spectral information in the one-sided lo-

cal speeds in the numerical flux. See Russo (2001) , Vukovi ́c

and Sopta (2003) and references therein. Central-upwind schemes

achieving both the well-balance and the positivity-preserving

property in shallow-water flows were presented in Kurganov and

Levy (2002) , Kurganov and Petrova (2007) , Beljadid et al. (2016) . 

In open channel flows the component of the velocity vector par-

allel to the channel axis is dominant and the flow has relatively

uniform distribution over the channel’s cross sections. Thus, it is
ssumed that the parameters of the flow depend on the spatial

oordinate along the channel axis and time ( Szymkiewicz, 2010 ).

he flow can be characterized using the cross-sectional wet area

nd averaged quantities such as the discharge, representing the

ass of water flowing through cross-sections per unit time and

he average flow velocity in each of these sections. This leads

o a 1D model of shallow-water equations for flows through

hannels which has many applications in hydraulics for which

everal numerical schemes have been developed ( Garcia-Navarro

nd Vazquez-Cendon, 20 0 0; Khan and Lai, 2014; Russo, 2005;

zymkiewicz, 2010; Vázquez-Cendón, 1999 ). The governing equa-

ions can be written as a system of non-linear hyperbolic con-

ervation laws. The corresponding shallow-water equations were

rst presented in Garcia-Navarro and Vazquez-Cendon (20 0 0) ,

ázquez-Cendón (1999) , and can actually be derived from the

uler equations by cross-sectional averaging under appropriate

oundary conditions at the bottom topography, walls and sur-

ace ( Hernández-Dueñas and Karni, 2011 ). The channel’s geome-

ry extends in one horizontal direction ( x ). At each location x of

he channel, its width changes vertically according to an arbitrary

unction σ ( x, z ) of height. See Fig. 1 for a complete description of

he channel and variables. The bottom elevation, denoted by B ( x ),

aries along x and it is uniform in each cross section. The model

s valid for flows traveling in the direction of the channel ( x ), and

he zonal velocity at time t and location x is given by u ( x, t ). The

ater’s depth is denoted by h ( x, t ), with total height w = h + B .

he conserved variables are the cross-sectional wet area given by

he vertical integral of the width from the bottom to the water’s

urface A = 

∫ w 

B σ (x, z) dz, and the discharge Q = Au . Stationary (at

est) and other steady-state flows (in motion) arise when a deli-

ate balance between the source terms and flux gradients occurs.

he irregular geometry and the integration involved in the expres-

ion for the wet area calculation originates a richer family of equi-

ibrium solutions than those compared to channels with vertical

alls. 

For many practical hydraulic applications, the use of 1D shallow

ater model is relevant. We need to choose a good compromise

etween the benefit of using 2D shallow water models, its com-

lexity and accuracy of numerical methods and their simplicity in

he case of 1D shallow water models. Shallow water flows in chan-

els can be seen as one-dimensional flows with two-dimensional

spects when the geometry and topography are irregular. In this

ense, the flows studied here can be considered as an intermediate

ase between the one- and two- dimensional flows. One advantage

f this intermediate case is the availability of a rich variety of exact

on-trivial steady state solutions. This is more difficult to analyze

n two-dimensional flows. The variety of steady-state flows in the
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ntermediate case is much richer than the class of steady states

hat can be found in channels with vertical walls. Furthermore,

he expression for the wet area involves an integral of the width

rom the bottom topography to the water’s surface. As a conse-

uence, the balance between the flux gradients and source terms

n steady states becomes very delicate. This makes more difficult to

atisfy the well-balance and positivity-preserving properties simul-

aneously. For all of the above reasons, we chose flows in channels

o implement the artificial viscosity technique. The present setting

s suitable for analyzing the viability of the new technique to adapt

o systems where the conserved variables have more complicated

xpressions. 

A well-balanced upwind scheme for channels with irregular ge-

metries was derived in Hernández-Dueñas and Karni (2011) . Al-

hough theoretically it does not formally preserve positivity, the

ntropy fix usually implemented in upwind schemes showed to

e efficient in treating near-dry states. A central-upwind scheme

or channels with vertical walls and horizontally varying width

as considered in Balbás and Karni (2009) , and it was based

n the schemes in Kurganov and Levy (2002) , Kurganov and

etrova (2009) . The positivity-preserving property first achieved

n Kurganov and Petrova (2007) was extended to channels in

albás and Hernandez-Duenas (2014) , where the flux and source

erms involved integral terms. Such extension was not trivial since

he integration involved in the expression for the flux and source

erms is now more coupled together with the geometry and to-

ography. Other central schemes for flows in channels are found

n Črnjari ́c-Žic et al. (2004) . 

The central-upwind scheme proposed for shallow-water flows

n channels in Balbás and Hernandez-Duenas (2014) is based on

on-oscillatory second order reconstructions. The non-oscillatory

econstructions are made with the use of nonlinear limiters. See

arten (1983) , Shu (2009) , Sweby (1984) and references therein.

xtending this technique to higher orders is difficult and com-

utationally expensive when nonlinear limiters come into play.

or instance, in Shu (2009) it was reported that higher order

ENO schemes may be 3 to 10 times computationally more ex-

ensive, compared to the second order high resolution scheme. In

urganov and Liu (2012) , the use of an adaptive artificial viscosity

s proposed as an alternative for hyperbolic systems of conserva-

ion laws and the special case of the shallow-water system is re-

roduced in detail in Chen et al. (2013) . The artificial viscosity im-

lementation consists of using diffusion coefficients that are very

mall in smooth regions according to the formal order of accuracy

f the scheme, and it becomes strong enough near shock waves

o avoid oscillations. This is done maintaining the consistency of

he numerical discretization, and it is conservative by construction.

he adaptive artificial viscosity is proposed as an alternative to

eep high accuracy and resolution power at a low computational

ost. In particular, it was reported in Kurganov and Liu (2012) that

he scheme with artificial viscosity is 54.1% faster compared

o a WENO5 reconstruction in the efficiency tests considered

here. 

In this paper, we extend the above approach to shallow-water

ows along channels with non-uniform cross sections of arbitrary

hape and bottom topography, as described above. Such extension

s not trivial since the artificial viscosity interacts with the source

erms, flux differences and conserved variables which now have in-

egral forms dictated by the geometry and topography. In particu-

ar, the artificial viscosity coefficients need to be computed care-

ully so that they vanish for steady states at rest (see Eq. (21) ),

hich ensures that the new artificial viscosity term in the nu-

erical scheme does not interfere with the well-balance property.

n the other hand, the CFL condition needs to be modified in a

ery special way to satisfy the positivity-preserving property, and

he inequality that usually involves spectral information now also
ncludes the artificial viscosity coefficients. See Proposition 1 for

ore details. 

The paper is structured as follows. In Section 2 we provide a

escription of the system of shallow-water flows in channels, de-

cribe its main and basic properties while explaining the numeri-

al challenges in each of them. In Section 3 we describe the nu-

erical scheme, the desirable properties one can achieve with the

lgorithm, and the order of the steps we need to follow. We ex-

lain how it can be implemented to create a numerical scheme

hat satisfies the well-balance and positivity-preserving properties.

ifferent numerical tests in Section 4 corroborate the merits of the

cheme, including comparisons of our numerical results with real

xperimental data. Section 5 is devoted to the discussion of the

ain contributions of the paper. Finally, Section 6 provides some

oncluding remarks. 

. The model equations and properties 

The shallow-water equations for flows through channels with

ariable cross-section are given by Garcia-Navarro and Vazquez-

endon (20 0 0) , Hernández-Dueñas and Karni (2011) , 

 t A + ∂ x Q = 0 (1a) 

 t Q + ∂ x 
(
Au 

2 + p 
)

= I − gσB hB 

′ , (1b) 

here h denotes the depth of the layer, u the cross-sectional ve-

ocity, B ( x ) the bottom topography, B ′ = 

dB 
dx 

, σ ( x, z ) the width of

he channel at a cross section x and height z , A = 

∫ B + h 
B σ (x, z) dz is

he cross-sectional wet area, Q = Au is the flow rate or discharge,

B (x ) = σ (x, B (x )) denotes the channel’s width at the bottom to-

ography z = B (x ) , and g the acceleration of gravity. The cross-

ectional integrated hydrostatic pressure is given by 

p = g 

∫ w 

B 

(w − z) σ (x, z) dz, (2)

here w = h + B denotes the total water elevation. The cross-

ectional averaged pressure-geometry variation I ( x, t ) that appears

s a source term is given by 

(x, t) = g 

∫ w 

B 

(w − z) σx (x, z) dz. (3)

e note that this source term involves x -derivatives of the geom-

try only, which does not alter the Rankine-Hugoniot conditions,

ssuming that σ is smooth with respect to x and z . 

For reference to the standard 1D shallow-water equations, we

rovide in Table 1 the definitions and their more familiar value in

he case of rectangular channels with no width variation σ = 1 .

he corresponding equations are 

 t + (hu ) x = 0 (4a) 

(hu ) t + 

(
hu 

2 + 

gh 

2 

2 

)
x 

= −ghB x . (4b) 

.1. Properties of the system 

Hyperbolicity and many other properties of the system can be

nalyzed by writing it in quasilinear form U t + A (U) U x = S. A sim-

le manipulation of the equations, valid for smooth flows, gives 

A 

Q 

)
t 

+ 

(
0 1 

c 2 − u 

2 2 u 

)(
A 

Q 

)
x 

= 

(
0 

c 2 
(
hσvar (x, t) − σB B 

′ )
)

, (5) 

here σvar (x, t) = 

1 
h 

∫ w 

B σx (x, z) dz is the averaged width variation,

 = 

√ 

gA/σT is the speed of sound, and σT = σ (x, w ) is the width

f the channel at the water’s surface. We note that c reduces to

he familiar expression c = 

√ 

gh for rectangular channels. 
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Table 1 

Variables’ definitions. 

Variable Definition/Notation Vertical walls 

Channel’s width σ ( x, z ) 1 

Bottom topography B ( x ) B ( x ) 

Water’s depth/Total height h (x, t) , w = h + B h (x, t) , w = h + B 

Wet area A = 

∫ w 
B σ (x, z) dz h 

Velocity u ( x, t ) u ( x, t ) 

Bottom channel’s width σB (x ) = σ (x, z = B (x )) 1 

Surface channel’s width σT (x, t) = σ (x, z = w (x, t)) 1 

Speed of sound c = 

√ 

gA/σT c = 

√ 

gh 

Cross-sectional averaged pressure p = g 
∫ w 

B (w − z) σ (x, z) dz gh 2 

2 

Cross-sectional averaged 

pressure-geometry variation I = g 
∫ w 

B (w − z) σx (x, z) dz 0 
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The system (1) is hyperbolic, with eigenvectors and eigenvalues

R = 

(
1 1 

u − c u + c 

)
� = 

(
u − c 0 

0 u + c 

)
. (6)

The system looses hyperbolicity in the so-called dry states with

vanishing water’s depth ( h = 0 ). The shallow-water flows are char-

acterized by the nondimensional Froude number F = | u | /c. Sub-

critical flows have Froude numbers less than one, which occurs

when the flow speed does not exceed the speed of sound. Froude

numbers larger than one define supercritical flows ( Farmer and

Armi, 1986 ). 

Special solutions that can be computed exactly are those inde-

pendent of time, or steady states. Such steady states occur due

to a delicate balance between the flux gradients and the source

terms, as described in the introduction. Simple manipulations of

the equations, valid when the flow is smooth, characterize the

steady states by two invariants. One of them is the flow rate Q ,

which accounts for the volume of fluid per unit time crossing at a

given channel’s cross section. The other invariant is E , the energy

per unit of cross sectional area, and both quantities are given by 

Q ≡ Au = Const, E ≡ 1 

2 

u 

2 + g(h + B ) = Const, (7)

among which it is easy to recognize the steady state of rest 

u = 0 , h + B = Const. (8)

Exact solutions for smooth steady-states can be found by solving 

E = 

1 

2 

Q 

2 

A 

2 
+ g(h + B ) , (9)

for a given Q, E, B ( x ), σ ( x, z ). A rootfinding method easily gives us

exact solutions to machine precision. 

As it occurs in hyperbolic balance laws, discontinuities can form

in finite time, giving rise to weak solutions. This can happen to

equilibrium solutions as well. In such cases, it is easy to verify

that the discharge is still constant. On the contrary, the energy

is piecewise constant, changing across shock waves. These solu-

tions for channels with (non-uniform) rectangular cross-sections

are analyzed in Armi (1986) , Armi and Farmer (1986) , Farmer and

Armi (1986) . 

3. The numerical central upwind scheme and details 

Numerically computing the shallow-water system (1) poses a

number of challenges. One consequence of the nonlinearity of the

flux is the presence of shock waves that appear in finite time even

if the initial conditions are smooth. Robust conservative numeri-

cal schemes are required to accurately compute discontinuous so-

lutions. Equilibrium solutions arise when a delicate balance occurs

between the flux gradients and the source terms. Some flows of in-

terest are in fact small perturbations to such steady states. Numer-

ical schemes that do not have those considerations in mind may
roduce numerical errors of the same order of magnitude as the

volving perturbations. A common strategy to avoid unaccepted

umerical errors is to enable the scheme to recognize steady states

t rest so that it remains constant in time in such flows. Numerical

chemes that enjoy that property are called well-balanced meth-

ds, and such property has shown to be crucial in the computation

f near steady state flows. 

Dam-break and other problems involving near dry states is an-

ther challenge we include in this study. Numerical errors in near

ry states may make the water’s depth negative, which is not

hysically relevant or allowed. The system looses hyperbolicity and

he numerical computation can fail. Positivity-preserving numerical

chemes enjoy the property that if we start with positive values

f h , the data maintains the positivity of it in subsequent steps.

umerical schemes with that property enhance stability near dry

tates. 

In this section, we describe a central-upwind scheme to accu-

ately compute shallow-water flows in channels as modelled by

1) . In our numerical approach we take into consideration the well-

alance and positivity-preserving properties. The approach here is

ifferent from existing schemes for shallow-water flows in chan-

els as it avoids the use of nonlinear limiters and instead con-

tructs an artificial viscosity to be negligible in smooth regions and

trong enough near shock waves to control oscillations near jumps.

he scheme extends the works in Chen et al. (2013) , Kurganov and

iu (2012) where artificial viscosity is used for shallow-water flows

not in channels). Here we consider a shallow-water system in

hannels with irregular geometries, not necessarily rectangular, in-

ucing more strongly coupled steady states with the geometry and

opography. The use of artificial viscosity introduces one more el-

ment interplaying with the rest of the properties. The implemen-

ation of artificial viscosity instead of the nonlinear limiters allows

s to consider higher order numerical schemes at a low computa-

ional expense. 

.1. The semi-discrete form of the proposed central-upwind scheme 

ith artificial viscosity 

The description of the proposed scheme can be done for bal-

nce laws in general. We write our system (1) in the general form

 t + f (v ) x = S (v , x ) , (10)

ith 

 = 

(
A 

Q 

)
, f (v ) = 

(
Q 

Au 

2 + p 

)
, (11)

n the left hand side, and a source term given by 

 = 

(
0 

I − gσB hB 

′ 

)
. (12)
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i  
e partition the spatial domain into the grid cells I j :=
 x 

j− 1 
2 
, x 

j+ 1 
2 

] , where �x is the spatial scale, x 
j± 1 

2 
= x j ± �x 

2 and x j 

s the center of the grid cell. Let us denote by v j (t) the computed

ell average of v ( x, t ) over the cell I j , 

 j (t) = 

1 

�x 

∫ x 
j+ 1 

2 

x 
j− 1 

2 

v (x, t) dx. (13)

ntegrating Eq. (10) over each cell I j , we obtain the semidiscrete

ormulation 

d 

dt 
v j (t) + 

1 

�x 

(
f (v (x j+ 1 2 

, t)) − f (v (x j− 1 
2 
, t)) 

)
= 

1 

�x 

∫ x 
j+ 1 

2 

x 
j− 1 

2 

S (v (x, t) , x ) dx, (14) 

hich is approximated by 

d 

dt 
v j (t) = −

H j+ 1 2 
− H j− 1 

2 

�x 
+ 

1 

�x 

∫ x 
j+ 1 

2 

x 
j− 1 

2 

S (v , x ) dx. (15)

ere H 

j± 1 
2 

is the numerical flux at the cell interfaces x 
j± 1 

2 
. Typical

emidiscrete central-upwind schemes consider flux values at the

nterfaces obtained by non-oscillatory polynomial reconstructions.

he non-oscillatory behavior is usually achieved by the use of non-

inear limiters, as in Kurganov and Tadmor (20 0 0) . Higher order

pproximations require the implementation of expensive and com-

licated nonlinear limiters. An alternative procedure requires the

se of artificial viscosity, proposed in Chen et al. (2013) . We in-

orporate those ideas to the shallow-water flows in channels. The

rtificial viscosity is added to the system, and Eq. (10) becomes 

 t + f (v ) x = S (v , x ) + (ε(v ) v x ) x , (16)

here ε( v ) vanishes as we refine the grid. This assures that the

esulting method is consistent with the system. The resulting ap-

roximation in (15) becomes 

d 

dt 
v j (t) = −

H j+ 1 2 
− H j− 1 

2 

�x 
+ 

1 

�x 

∫ x 
j+ 1 

2 

x 
j− 1 

2 

S (v , x ) dx 

+ C 

(
ε j+ 1 2 

�v j+ 1 2 
− ε j− 1 

2 
�v j− 1 

2 

(�x ) 2 

)
, (17) 

here �v 
j± 1 

2 
= v 

j± 1 
2 

+ 1 
2 

− v 
j± 1 

2 
− 1 

2 
. Here C is a positive viscosity co-

fficient whose size is adjusted depending on the local properties

f the primitive variables of our system. 

The flux at the cell interfaces, f (v (x 
j± 1 

2 
) , t) , is approximated by

he numerical flux H 

j± 1 
2 
(t) given by, , 

 j± 1 
2 
(t) = 

a + 
j± 1 

2 

f 

(
v −

j± 1 
2 

(t) 
)

− a −
j± 1 

2 

f 

(
v + 

j± 1 
2 

(t) 
)

a + 
j± 1 

2 

− a −
j± 1 

2 

+ 

a + 
j± 1 

2 

a −
j± 1 

2 

a + 
j± 1 

2 

− a −
j± 1 

2 

(
v + 

j± 1 
2 

(t) − v −
j± 1 

2 

(t) 
)
, (18) 

here the one-sided local speeds in this scheme are approximated

sing the eigenvalues of the Jacobian: 

 

+ 
j± 1 

2 

= max 

{ 

u 

+ 
j± 1 

2 

+ c + 
j± 1 

2 

, u 

−
j± 1 

2 

+ c −
j± 1 

2 

, 0 

} 

 

−
j± 1 

2 

= min 

{ 

u 

+ 
j± 1 

2 

− c + 
j± 1 

2 

, u 

−
j± 1 

2 

− c −
j± 1 

2 

, 0 

} 

. (19) 

e note that a + 
j± 1 

2 

− a −
j± 1 

2 

> 0 is always positive unless h ±
j± 1 

2 

, u ±
j± 1 

2 

ll vanish in a dry state with “no fluid motion”. However, we al-

ays start with positive values of h . Even in dam-break problems,
nitial dry states are represented by a threshold (see Eq. (50) ). Fur-

hermore, the velocity is given by the regularization process in

35) near dry states, and it is usually not negligible. 

The last term in Eq. (16) is ignored in second order semi-

iscrete central-upwind scheme with polynomial reconstructions 

nd nonlinear limiters. Their higher order versions require more

omplicated and computationally expensive techniques when non-

inear limiters are used. Here, the interface point-values v ±
j± 1 

2 

(t)

re recovered from a non-limited conservative fifth order piece-

ise polynomial reconstruction as in Kurganov and Liu (2012) 

 

+ 
j+ 1 2 

: = 

1 

60 

(−3 ̄r j−1 + 27 ̄r j + 47 ̄r j+1 − 13 ̄r j+2 + 2 ̄r j+3 ) , 

 

−
j+ 1 2 

: = 

1 

60 

(2 ̄r j−2 − 13 ̄r j−1 + 47 ̄r j + 27 ̄r j+1 − 3 ̄r j+2 ) , (20) 

here r ∈ { w, Q }. From the reconstructed w and Q , we can re-

over the rest of the variables according to the definitions above.

or instance, the cross-sectional wet area is given by A 

±
j+ 1 

2 

=

 

w 

±
j+ 1 

2 
B 

j+ 1 
2 

σ (x 
j+ 1 

2 
, z) dz. We note that A is a strictly increasing func-

ion of w because σ ( x, z ) ≥ 0. The dependance of A in w might

e complicated if σ is non-trivial. In practice, each cross section is

onsidered piecewise trapezoidal. We can then numerically invert

he formula to recover w from A when needed. 

The artificial viscosity in Eq. (16) is discretized in

hen et al. (2013) by plugging in the approximated solution

n a discretized equation and computing the residual, at time t

nd t − �t, to obtain ε. The diffusion coefficient ε obtained this

ay, as numerically observed in Kurganov and Liu (2012) , satisfies

= O (�x ) near shock waves, ε = O (�x α) , 1 < α < 2 near contact

aves, and ε = O (�x p ) , p = min (r + 2 , 4) , in smooth regions,

here r is the formal order of accuracy of the scheme. For the

ake of simplicity, we consider 

1 
j+ 1 2 

= �x 

( | w j − w j−1 | 
[ w ] 

) r−1 
2 

, ε2 
j+ 1 2 

= �x 

( | Q j − Q j−1 | 
[ Q] 

) r−1 
2 

, (21)

here ε1 

j+ 1 
2 

, ε2 

j+ 1 
2 

are applied to the first and second entries of

quation (1) respectively, [ w ], [ Q ] are reference scales for the to-

al height w and discharge Q , and r is the formal order of accuracy

f the scheme. The reference scales are kept constant in space and

ime. We choose the total height in the approximation of ε
j+ 1 

2 
in-

tead of the conserved variable A to maintain well-balance, as ex-

lained below. The diffusion coefficient ε
j+ 1 

2 
, is approximated at

 

j+ 1 
2 

using a centered difference approximation for the derivative

f w and Q . Formally, ε = O (�x ) near shock waves and ε = O (�x r )

n smooth regions. In practice, C is a positive viscosity coefficient

hose size is adjusted depending on the local properties of the

rimitive variables, as explained in Chen et al. (2013) . 

Desirable properties in the scheme such as precision near shock

aves, well-balance, and positivity are all coupled with each other

nd to the geometry and topography. Achieving particular proper-

ies may be more difficult in some numerical approaches than in

thers. Putting all properties together in one might be even harder.

eplacing nonlinear limiters by artificial viscosity requires adapt-

ng and fitting this new term in all of the properties and consid-

rations. In the rest of this section, we describe how we incorpo-

ate artificial viscosity and high resolution to the proposed central-

pwind scheme while still preserving all the other desirable prop-

rties. 

.2. Well balance property of the proposed numerical scheme 

A scheme for shallow-water flows is said to be well-balanced if

t is able to preserve steady-state flows at rest. The first equation is
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easy to treat because Q = 0 at rest. In the second equation, there

has to be a balance between the flux gradient and the source term.

The discretization of the source term has to be carefully chosen so

as to balance with the numerical flux gradient in Eq. (17) in those

flows. Reconstructing the point-values from the data { w j } instead

of { ̄A j } is a key point in the well-balance property. In a “lake at

rest”, the total height w j is constant while Ā j changes. In this sit-

uation, the reconstruction from { w j } is trivial. This is a first step

in achieving the well-balance property. As it can be observed in

Eq. (21) , the adaptive viscosity coefficients ε1 , ε2 vanish in steady

states at rest since w is constant throughout the domain, and the

discharge vanishes. The numerical artificial viscosity treated this

way does not affect the well-balance property. 

We will often use the discretized form of Leibniz’s rule for dif-

ferentiation under the integral sign, which states that 

�

[∫ b(x ) 

a (x ) 
f (x, z) dz 

]
= 

1 

2 

(∫ b L 

a L 

+ 

∫ b R 

a R 

)
�[ f (·, z)] dz 

+ 

∫ b R 

b L 

f (z) dz −
∫ a R 

a L 

f (z) dz, (22)

where (·) L (z) = (·)(x L , z) , (·) R (z) = (·)(x R , z) , �[ f (·, z)] = f (x R , z) −
f (x L , z) , f̄ (z) = 

f L (z)+ f R (z) 
2 . 

Consider a steady state at rest w = Const., u = 0 . Applying the

rule above, the flux difference amounts to 

H 

Q 

j+ 1 2 

− H 

Q 

j− 1 
2 

�x 
= 

1 

�x 

g 

2 

( ∫ w 

j− 1 
2 

B 
j− 1 

2 

+ 

∫ w 

j+ 1 
2 

B 
j+ 1 

2 

) 

�[(w − z) σ ](z) dz 

+ 

1 

�x 
g 

∫ w 

j+ 1 
2 

w 

j− 1 
2 

(w − z) σ (x, z) dz 

− 1 

�x 
g 

∫ B 
j+ 1 

2 

B 
j− 1 

2 

(w − z) σ (x, z) dz 

The second term in the right-hand side vanishes when w is con-

stant. Ignoring that term, we obtain a consistent discretization of

the source term 

S 
Q 

j (t) = 

1 

�x 

g 

2 

( ∫ w 

j− 1 
2 

B 
j− 1 

2 

+ 

∫ w 

j+ 1 
2 

B 
j+ 1 

2 

) 

(w j − z)�σ j (z) dz 

− 1 

�x 
g 

∫ B 
j+ 1 

2 

B 
j− 1 

2 

(w j − z) σ j (z) dz, (23)

which ensures a balance with the flux differences in steady states

at rest. 

3.3. Time evolution of the numerical scheme 

Since we have used a high order spatial discretization, it is sen-

sible to use a high order time discretization as well. Once the flux

gradient and the averaged source terms are calculated, the ODE

system (15) is integrated in time using the third order Strong Sta-

bility Preserving Runge–Kutta scheme ( Gottlieb et al., 2001 ), 

v 
(n +1) 
1 = v 

(n ) + �t RK [ v 
(n ) 

] (24a)

v 
(n +1) 
2 = 

3 

4 

v 
(n ) + 

1 

4 

(
v 

(n +1) 
1 + �t RK [ v 

(n +1) 
1 ] 

)
(24b)

v 
(n +1) 

:= 

1 

3 

v 
(n ) + 

2 

3 

(
v 

(n +1) 
2 + �t RK [ v 

(n +1) 
2 ] 

)
(24c)
ith the Runge–Kutta fluxes 

K [ v (t)] = −
H j+ 1 2 

(v (t)) − H j− 1 
2 
(v (t)) 

�x 
+ S j (t) 

+ C 

(
ε j+ 1 2 

�v j+ 1 2 
− ε j− 1 

2 
�v j− 1 

2 

(�x ) 2 

)
. (25)

ere S j (t) is calculated according to (23) . The time step �t is

etermined so as to satisfy a CFL restriction. As described in

roposition 1 , a separate restriction on the time step �t is needed

o ensure positivity. We verify that such restriction is met in each

f the stages (24a),(24b) , and (24c) . 

.4. Positivity-preserving property 

The interface values h ±
j± 1 

2 

= w 

±
j± 1 

2 

− B 
j± 1 

2 
obtained with the fifth

rder reconstruction (20) does not guarantee the positivity of h ±
j± 1 

2 

,

r equivalently, A 

±
j± 1 

2 

≥ 0 , which is important for the positivity-

reserving property in the water’s depth time evolution. To prevent

his numerical artifact, we follow ( Kurganov and Petrova, 2007 )

nd check the reconstructed point-values w 

±
j± 1 

2 

, correcting them

if necessary– as follows 

f w 

+ 
j− 1 

2 

< B j− 1 
2 

+ h δ �⇒ 

⎧ ⎪ ⎨ 

⎪ ⎩ 

w 

+ 
j− 1 

2 

= B j− 1 
2 

+ h δ, 

w 

−
j+ 1 2 

= w j + 

1 
2 

w 

′ 
j 
, 

where w 

′ 
j 
= 2( w j − B j− 1 

2 
− h δ ) , 

(26)

lse 

f w 

−
j+ 1 2 

< B j+ 1 2 
+ h δ �⇒ 

⎧ ⎪ ⎨ 

⎪ ⎩ 

w 

−
j+ 1 2 

= B j+ 1 2 
+ h δ, 

w 

+ 
j− 1 

2 

= w j − 1 
2 

w 

′ 
j 
, 

where w 

′ 
j 
= 2(B j+ 1 2 

+ h δ − w j ) , 

(27)

hich yields 

 

−
j+ 1 2 

:= w 

−
j+ 1 2 

− B j+ 1 2 
≥ 0 , (28)

nd 

 

+ 
j− 1 

2 

:= w 

+ 
j− 1 

2 

− B j− 1 
2 

≥ 0 . (29)

ere h δ = 10 −5 is a threshold we use in the positivity of the wa-

er’s depth. We note that this goes back to the second order re-

onstruction which is used only near dry states. This approxima-

ion does not have a large impact on the global accuracy of the

roposed scheme. 

The correction to the reconstruction in Eqs. (26) and (27) guar-

ntees the positivity of the reconstructed interface values but it

oes not guarantee the positivity of the solution at the next time

tep. We need one more correction in some cases (see the proof of

he proposition below). Following ( Chen et al., 2013 ), the second

orrection can be explained by defining 

ˆ 
 j = 3 A j − A 

−
j+ 1 2 

− A 

+ 
j− 1 

2 

, (30)

hich is yet another approximation for A ( x j , t ), and it will be neg-

tive only near dry states. In that situation, we correct the recon-

truction at the cell interfaces by distributing the wet area to make
ˆ 
 j vanish instead of being negative. We note that if ˆ A j is negative,
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s

 

−
j+ 1 

2 

+ A 

+ 
j− 1 

2 

≥ − ˆ A j , so at least one of the interface values A 

−
j+ 1 

2 

or

 

+ 
j− 1 

2 

have to be greater than − ˆ A j / 2 . The second correction is then

s follows 

If ˆ A j < 0 , redefine 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

if min (A 

−
j+ 1 2 

, A 

+ 
j− 1 

2 

) ≥ − ˆ A j / 2 , ˆ A 

−
j+ 1 2 

= A 

−
j+

if A 

+ 
j− 1 

2 

≤ − ˆ A j / 2 ≤ A 

−
j+ 1 2 

, ˆ A 

−
j+ 1 2 

= 3 A

if A 

−
j+ 1 2 

≤ − ˆ A j / 2 ≤ A 

+ 
j− 1 

2 

, ˆ A 

−
j+ 1 2 

= 0 , 

and recover w 

−
j+ 1 2 

, w 

+ 
j− 1 

2 

from 

ˆ A 

−
j+ 1 2 

and 

ˆ A 

+ 
j− 1 

2 

. (32) 

entral-upwind schemes usually compute its time step according

o a CFL condition 

FL = 

a �t 

�x 
≤ 1 

2 

, (33) 

here a = max j (a + 
j+ 1 

2 

, −a −
j+ 1 

2 

) , and CFL is known as the Courant

umber. In order to satisfy the positivity-preserving property

 Proposition 1 below), a more restrictive condition is required 

FL ε = max (a, 2 C max 
j 

ε j± 1 
2 
/ �x ) 

�t 

�x 
≤ 1 

2 

, (34) 

here CFL ε is a modified Courant number. 

.5. Regularization of flow velocity and discharge for small A 

While the reconstruction and corrections described above guar-

nties positivity of the water’s depth at the cell interfaces, these

oint-values may still be very small ( i.e. , arbitrarily close to zero)

nd may lead to large values of the velocity of the flow, u . We

an prevent this with a regularization technique suggested by

urganov and Petrova (2007) , 

 

±
j± 1 

2 

= 

√ 

2 Q 

±
j± 1 

2 

A 

±
j± 1 

2 √ (
A 

±
j± 1 

2 

)4 

+ max 

(
(A 

±
j± 1 

2 

) 4 , δ4 

) , (35) 

ith 

 

±
j± 1 

2 

= 

∫ w 

±
j± 1 

2 

B 
j± 1 

2 

σ j± 1 
2 
(z) dz, σ j±1 / 2 (z) := σ (x j±1 / 2 , z) . (36) 

or consistency, the discharge has to be recalculated as 

 

±
j± 1 

2 

= A 

±
j± 1 

2 

u 

±
j± 1 

2 

. (37) 

he value of δ was empirically determined, usually choosing δ =
x in this paper. 

Each desirable property has been analyzed separately. We now

how that all properties can be put together, as stated in the fol-

owing proposition. 

roposition 1. Let B 
j± 1 

2 
= B (x 

j± 1 
2 
) , and σ

j± 1 
2 
(z) = σ (x 

j± 1 
2 
, z) be

he topography and geometry at the interfaces x 
j± 1 

2 
, and define the

ollowing approximation of the cell average S 
Q 

j in (23) 

1 

�x 

∫ x 
j+ 1 

2 

x 
j− 1 

2 

∫ w 

B 

g (w − z) σx (x, z) d z d x 

≈ 1 

�x 

g 

2 

( ∫ w 

+ 
j− 1 

2 

B 
j− 1 

2 

+ 

∫ w 

−
j+ 1 

2 

B 
j+ 1 

2 

) (
w j − z 

)
�σ j (z) dz, (38) 

nd 

1 

�x 

∫ x 
j+ 1 

2 

x 
j− 1 

g σB (x ) hB x dx ≈ g 

�x 

∫ B 
j+ 1 

2 

B 
j− 1 

(
w j − z 

)
σ j (z) dz, (39) 
2 2 
ˆ A j / 2 , ˆ A 

+ 
j− 1 

2 

= A 

+ 
j− 1 

2 

+ 

ˆ A j / 2 

ˆ A 

+ 
j− 1 

2 

= 0 , 

ˆ A 

+ 
j− 1 

2 

= 3 A j , 

(31) 

here w 

±
j∓ 1 

2 

are the reconstructed point-values of w = h + B at the

nterfaces x 
j± 1 

2 
(in the interior of the cell I j ), 

σ j (z) = σ j+ 1 2 
(z) −σ j− 1 

2 
(z) , and σ j (z) = 

σ j− 1 
2 
(z) + σ j+ 1 2 

(z) 

2 

.

hen the scheme (15) –(18) is well balanced. Furthermore, consider the

orrections (26) , (27) , (31) and (32) , and the CFL condition (34) . If the

ell averages A ( t ) are such that 

 j (t) ≥
B j− 1 

2 
+ B j+ 1 2 

2 

∀ j, 

hen the cell averages A (t + �t) as evolved with forward Euler’s

ethod (24a) , under the CFL limitation (34) with 

 

+ 
j± 1 

2 

= max { u 

+ 
j± 1 

2 

+ c j± 1 
2 
+ , u 

−
j± 1 

2 

+ c −
j± 1 

2 

, 0 } , c + 
j± 1 

2 

= 

√ √ √ √ g 
A 

+ 
j± 1 

2 

σ T, + 
j± 1 

2 

, and σ T, + 
j± 1 

2 

= σ
(

x j± 1 
2 
, w 

+ 
j± 1 

2 

)
, (40) 

ill yield 

 j (t + �t) ≥
B j− 1 

2 
+ B j+ 1 2 

2 

∀ j. 

roof. The well-balance property was already shown and the cor-

ections do not have any impact on it. For the positivity of the

cheme, and defining λ = 

�t 
�x 

, the updated cell average of the wet

rea A satisfies 

 j (t + �t) = A j 

−
λ(a + 

j+ 1 2 

A 

−
j+ 1 2 

u 

−
j+ 1 2 

− a −
j+ 1 2 

A 

+ 
j+ 1 2 

u 

+ 
j+ 1 2 

+ a + 
j+ 1 2 

a −
j+ 1 2 

(A 

+ 
j+ 1 2 

− A 

−
j+ 1 2 

)) 

a + 
j+ 1 2 

− a −
j+ 1 2 

+ 

λ(a + 
j− 1 

2 

A 

−
j− 1 

2 

u 

−
j− 1 

2 

− a −
j− 1 

2 

A 

+ 
j− 1 

2 

u 

+ 
j− 1 

2 

+ a + 
j− 1 

2 

a −
j− 1 

2 

(A 

+ 
j− 1 

2 

− A 

−
j− 1 

2 

)) 

a + 
j− 1 

2 

− a −
j− 1 

2 

+ 

Cλ

�x 

(
ε j+ 1 2 

A j+1 + ε j− 1 
2 
A j−1 

)
− Cλ

�x 
A j (ε j+ 1 2 

+ ε j− 1 
2 
) , 

hich can be rewritten as 

 j (t + �t) = 

1 

4 

ˆ A j + 

[ 

1 

4 

− λa + 
j+ 1 2 

u 

−
j+ 1 2 

− a −
j+ 1 2 

a 
j+ 1 2 

+ − a −
j+ 1 2 

] 

A 

−
j+ 1 2 

+ 

[ 

1 

4 

+ λa −
j− 1 

2 

a + 
j− 1 

2 

− u 

+ 
j− 1 

2 

a + 
j− 1 

2 

− a −
j− 1 

2 

] 

A 

+ 
j− 1 

2 

−λa −
j+ 1 2 

a + 
j+ 1 2 

− u 

+ 
j+ 1 2 

a + 
j+ 1 2 

− a −
j+ 1 2 

+ λa + 
j− 1 

2 

u 

−
j− 1 

2 

− a −
j− 1 

2 

a + 
j− 1 

2 

− a −
j− 1 

2 

+ 

Cλ

�x 

[ 
ε j+ 1 2 

A j+1 + ε j− 1 
2 
A j−1 

] 
+ 

[
1 

4 

− Cλ

�x 
(ε j+ 1 2 

+ ε j− 1 
2 
) 

]
A j 

nd applying the CFL restriction (34) , we conclude the proof. �

Note: The positivity is still valid in any time integration which

s a convex combination (with nonnegative coefficients) of Euler

teps such as in RK3 ( Shu and Osher, 1989 ). 
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4. Numerical results 

In this section, we present the numerical results obtained with

the proposed scheme, choosing a variety of tests to show its mer-

its. Each test chosen is aimed at demonstrating different aspects

and properties of the numerical approach. In some of the tests,

comparisons with other alternatives are considered. In the first nu-

merical test, a perturbation to a steady state at rest is taken to

illustrate the importance of the well-balance property. Following

this, we analyze the convergence to more general steady states

for long periods of time. Here we select both subcritical flows

and transcritical flows with stationary shock waves. The positivity-

preserving property is then examined for three dam-break prob-

lems. The first test is a numerical experiment to test the aforemen-

tioned property. The last two examples were taken from a real lab-

oratory experiment, and comparisons with our numerical solutions

are shown. The acceleration of gravity is g = 9 . 81 , unless otherwise

stated. 

4.1. Perturbations of steady state of rest and efficiency test 

Proposition 1 shows that if we start with a “lake at rest”

( h + B constant , u = 0 ), the scheme will recognize and respect such

equilibrium, regardless of the complicated geometry or topogra-

phy. We argue that such property enables the scheme to accu-

rately compute near steady state flows. In particular, if we intro-

duce a perturbation to the state at rest, we expect the perturba-

tion to evolve and eventually leave the domain, recovering the ini-

tial state. Schemes that do not respect such equilibrium relations

might present large errors when trying to converge at large com-

putational times. The initial conditions are given by 

u (x, t = 0) = 0 , w (x, t = 0) = 

{
h out if x ∈ [0 , 1] \ [0 . 4 , 0 . 5] 

h out + ε if x ∈ [0 . 4 , 0 . 5] 
, 

(41)

where h out = 1 . 1 , ε = 0 . 3 . The perturbation for the steady state at

rest is given by the parameter ε. Numerical schemes that are not

in balance might generate numerical errors of the same order of

magnitude as the perturbation itself. Here we test the numerical

scheme for flows that are near steady states. 

The physical domain in the horizontal x -direction is [0, 1], and

the topography and geometry are given by 

B (x ) = max 

(
1 − 8 

(
x − 1 

2 

)2 

, 0 

)
, σ (x, z) 

= 1 − 0 . 8 exp 

(
−5 

(
x − 1 

2 

)2 

− 5 ( z − 1 ) 
2 

)
. (42)

Regarding the artificial viscosity constant, C = 100 is chosen in all

numerical tests unless otherwise stated. Following ( Chen et al.,

2013; Guermond et al., 2011; Kurganov and Liu, 2012 ) the value

of C was tuned using a very coarse mesh to estimate the smallest

value that best controls the oscillations. Once that value is esti-

mated, we then proceed with the high resolution simulations on

finer meshes. Free boundary conditions are used for this simula-

tion. Fig. 2 shows the numerical evolution of the perturbation at

time t = 0 . 05 , using a resolution of �x = 1 / 500 . The solid black

line denotes the topography. The red dashed line represents the

computed solution using the proposed scheme. Exact solutions to

perturbations from steady states at rest are not available in gen-

eral. For comparison, we compute a separate approximation us-

ing the Roe-type upwind scheme as in Hernández-Dueñas and

Karni (2011) , which uses nonlinear limiters. Small differences due

to the high-order reconstruction can be observed. To quantify the

differences, we com pute a “relative error”. That is, for any quantity
 defined on a domain [ a, b ], the relative error, using the L 2 norm,

s computed as 

rr (t) = 

√ 

1 

b − a 

∫ b 

a 

(
q (x, t) − q ref (x, t)) 

q ref (x, t) 

)2 

dx , (43)

here q ref is the exact solution or reference quantity. The relative

rror for the total height computed according to (43) is 1 . 2 × 10 −3 

t t = 0 . 05 , with a maximum value of 2 . 1 × 10 −2 . The artificial vis-

osity is acting only where needed, and the shock wave is correctly

aptured, as the comparison indicates. One can get a better sense

f the channel’s shape in the 3D view of the channel in the right

anel. The interplay between the topography and the walls, which

ffects the evolution of the flow is evident in that plot. 

We have claimed that the adaptive artificial viscosity offers a

igh order accuracy at a low computational cost, and this is the

riginal motivation in Chen et al. (2013) , Kurganov and Liu (2012) .

ere we compare the computational cost of the current method

nd the upwind scheme. The time step for all the numerical tests

re computed according to the condition in (34) , with a modified

ourant number of CFL ε = 0 . 45 . In both schemes, the time step is

bout �t = 2 . 34 × 10 −4 , which indicates that the time step con-

ition (34) is not reducing the time step according to the stan-

ard CFL condition (33) . Fixing that time step, the CPU time for

he current scheme is 44.2 s. Regarding the upwind scheme, we

ave used the same Courant number and RK3 time integration to

airly compare the computational cost. The CPU time for the ref-

rence Roe-type upwind scheme is 58.0 s. We have then achieved

igher order approximations at a lower computational cost in this

umerical test. 

.2. Convergence to smooth subcritical steady states 

A delicate balance between the geometry, topography and the

ux gradients give rise to a variety of interesting steady states

esides those at rest considered in the previous section. Smooth

teady states satisfy that both the discharge Q and the energy E are

onstant throughout the domain, as indicated by Eq. (7) . The ex-

ressions for both quantities provide a way to compute such flows

s follows. Given Q, E, B ( x ), σ ( x , ·), one needs to solve the equation

n h 

1 

2 

Q 

2 + (g(h + B ) − E) A 

2 = 0 , (44)

here A = A (h ) = 

∫ h + B 
B σ (x, z) dz. The wet area A is an increasing

unction of h . As a result, in general we have only three roots avail-

ble. One can choose the physically relevant root according to re-

trictions such as positivity and Froude numbers (subcritical or su-

ercritical flows). Cooked-up solutions are available with this pro-

edure. 

Under appropriate boundary conditions, a flow must converge

o a steady state for long computational times. In our case, one

mposes the corresponding discharge Q in of the cooked-up steady-

tate solution and extrapolates h at the left boundary. Here Q in is

he constant discharge chosen a priory in Eq. (44) . At the right

oundary, we extrapolate Q . Furthermore, we impose h out at in-

ow ( u − c < 0 ) and extrapolate h at outflow ( u − c ≥ 0 ). Here h out

s the outward water’s depth of the equilibrium state. The water’s

epth h out is special in the sense that any other value imposed at

he boundary creates equilibrium states that jump somewhere in

he domain to match the right boundary condition. Of course the

ow jumps where the Rankine-Hugoniot conditions are satisfied.

uch scenario is the topic of the next numerical test. 

We illustrate the merits of incorporating the well-balance prop-

rty in the numerical scheme. One important consequence of rec-

gnizing steady states at rest is the ability of the scheme to be
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Fig. 2. Perturbation from a steady state at rest at t = 0 . 05 . Left: 2D view of the numerical results with an upwind scheme (blue “+” signs) and the proposed scheme using 

artificial viscosity (red dashed line). The topography is in solid black. Right: 3D-view showing the topography at the bottom (grey), the walls (“camel” color) and the water’s 

total height (light blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

m  

i

 

i{
i  

s  

w  

i

σ

T  

d  

b  

b  

t  

l  

f  

"  

e  

a  

e  

f  

p

 

s  

b  

4  

o  

i  

r  

n  

t  

t  

t

 

m  

fi  

s  

a  

i  

i  

Q  

m  

fi  

L  

c  

t  

s  

m  

c

4

 

p  

b  

e  

w  

t  

r  

a

B

T

 2 ) + 

T  

2  

a  

r  
uch more accurate near those steady states. It also seems to help

n accurately computing steady states that are not in rest. 

In the test case here, we start our simulation with the following

nitial conditions 

w (x, 0) = B (x ) + h (x, 0) = w out = 0 . 8 , 

u (x, 0) = 0 , 
(45) 

mposing Q in = 0 . 3343 at inflow and h out = 0 . 8 at outflow, as de-

cribed above. The topography is given by a spline of degree three

ith nodes (0.2, 0) ,(0.3, 0.6), (0.4, 0.4), (0.5, 0.5), (0.6, 0.2), (0.7, 0)

n the domain x ∈ [0, 1]. 

The geometry is given by 

(x, z) = 

(
1 + 

3 

4 

cos (πx ) 
)(

1 − z 

2 

)
, 

0 ≤ x ≤ 1 , 0 ≤ z ≤ H max = 2 . (46) 

here is a unique subcritical steady-state flow with the given con-

itions. Such solution has constant energy E out = 10 . 0748 and can

e computed exactly by solving Eq. (44) . The exact solution will

e used for comparison with the numerical solution to evaluate

he precision of the scheme computing near steady-state flows. The

eft panel of Fig. 3 shows the topography, and the total water’s sur-

ace w at time T = 20 , with a resolution of �x = 1 / 200 . The blue

+" signs indicate the exact steady state solution. By looking at the

xact and numerical water’s surface, we see that the two graphs

re on top of each other. A more detailed analysis of the numerical

rror is conducted below. The computed solutions are oscillation-

ree and highly resolved which demonstrates the ability of the pro-

osed method to accurately capture quasi-steady state solutions. 

The computational time is long to allow for convergence to a

teady state, with a CPU time of 3.1 × 10 3 s. The time steps given

y (33) and (34) vary from 5 . 8 × 10 −4 s to 7 . 5 × 10 −4 s and from

 . 8 × 10 −4 s to 7 . 5 × 10 −4 s respectively. The final time steps levels

ff at about 4 . 95 × 10 −4 . The extra constraint in the CFL condition

n (34) did not significantly decrease the time step in this test. The

ight panel provides a 3D view of the channel. The grey surface de-

otes the topography. The channel walls are in “camel” color, and

σ (x, z) = 

{ 

1 
2 

+ 

(
1 
2 

− ( cos ( π(x − 0 . 7) / 0 .

1+ √ 

z 
2 
he total surface’s height in light blue. The channel narrows down

owards the end of it, causing the flow to accelerate and reduce its

otal height. 

Fig. 4 exhibits more details of the simulations. A challenging

easure for convergence to steady states is the relative error of the

nal discharge and energy. The corresponding graphs for smooth

teady state flows are flat. Other measures may extend vertically

nd small errors might be hard to visualize. For the current numer-

cal test, the top panel of Fig. 4 shows final discharge of the numer-

cal solution (dashed red line) and the exact value of the discharge

 in (blue “+” signs) . We see small variations of the discharge that

ight misleadingly seem large. However, the relative error for the

nal discharge computed according to (43) is 5 . 77 × 10 −4 using the

 

2 norm, with a maximum value of 1 . 8 × 10 −3 . The figure’s verti-

al axis extends 1% in each direction, [0 . 99 Q in , 1 . 01 Q in ] . The bot-

om panel shows the equivalent quantities for the energy of the

olution. The corresponding relative error is 6 . 21 × 10 −5 , with a

aximum of 1 . 4 × 10 −4 , which is much smaller than the final dis-

harge. The vertical axis is again [0 . 99 E out , 1 . 01 E out ] . 

.3. Convergence to a transcritical steady state with shock wave 

The parameters Q in , h out used as boundary conditions in the

revious numerical example were chosen in a way that the two

oundaries are connected by a smooth equilibrium state. A differ-

nt outward water’s depth at the right boundary creates a flow

ith a stationary shock wave. The flow jumps in a location where

he Rankine-Hugoniot conditions are satisfied so as to match the

ight boundary condition. The details of this numerical experiment

re as follows. The topography is given by 

 (x ) = max 

(
1 

2 

(
1 + cos 

(
π(x − 0 . 5) 

0 . 4 

))
, 0 

)
, 0 ≤ x ≤ 1 . (47) 

he geometry is 

1 ) / 8 

)√ 

z if x ∈ [0 . 5 , 0 . 9] , 

if x ∈ [0 , 1] \ [0 . 5 , 0 . 9] . 
(48) 

he corresponding discharge and outflow water’s depth are Q in =
 . 5561 and h out = 1 . 9968 , respectively. Similar to the previous case,

t the left boundary we impose Q in and extrapolate h ; and at the

ight boundary we extrapolate Q and either impose h out at inflow
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Fig. 3. Convergence to a steady state. Left: 2D view shows the numerical solution obtained using the proposed scheme (dashed red line) and the exact solution(blue “+”

signs). The topography is in solid black. Right: 3D view with the walls in “camel” color, topography in grey and water’s depth in light blue. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Convergence to a steady state. Top: Final discharge (dashed red line) and 

exact discharge Q in (blue “+” signs). Bottom: Energy of the solution (dashed red 

line) and exact value for the steady state E out (blue “+” signs). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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( u − c < 0 ) or extrapolate h at outflow ( u − c > 0 ). The flow is dis-

continuous and transcritical. The flow is subcritical for 0 ≤ x ≤
0.53, supercritical for 0.53 ≤ x ≤ 0.75 and it jumps back to the

subcritical regions at 0.75 ≤ x ≤ 1. 

Fig. 5 (left) compares the exact solution (blue solid line) and the

numerical approximation (red dashed line). The artificial viscosity

is strong enough to keep the oscillations near shock waves under

control and it is very small away from discontinuities. Away from

the shock wave, the difference between the numerical and exact

solutions is not distinguishable. However, near the jump disconti-

nuity we can observe differences that are even more clear when

we compare exact and numerical discharge and energy. This is ex-

plained below in Fig. 6 , and it is due to the viscosity needed near

shock waves. However, this is not particular of the artificial viscos-

ity technique, and similar numerical errors are aso observed when

nonlinear limiters are implemented. The right panel shows the 3D

view. One can see how the flow accelerates as it passes through

the top of the topography and channel trough. The flow eventually

jumps to match the right boundary conditions, where the channels

is wider again. 
Fig. 6 exhibits more details of the numerical results (red “+”

igns). For comparison, we also include a reference solution us-

ng a central-upwind scheme with nonlinear limiters as developed

n Balbás and Hernandez-Duenas (2014) (blue dashed line), and

he exact solution (black solid line). The left panel has the dis-

harge, which must be constant throughout the domain. The nu-

erical approximation computes the correct value very accurately,

xcept near the shock wave. The piecewise constant exact energy

solid black line) is shown in the right panel, changing across

hock waves. Again, the energy of the numerical solution is cor-

ectly computed away from the shock wave (red line), and presents

rrors near the discontinuity. We must say, however, that this

s not particular of the artificial viscosity technique. The dashed

lue lines show the approximations computed with a central-

pwind scheme that uses nonlinear limiters, and it also presents

rrors near the discontinuity. Similar errors are also observed in

albás and Karni (2009) (see Figure 11). A more quantitative anal-

sis of the accuracy is the relative error given by (43) , which con-

iders the L 2 norm. Since the local error is significant only very

lose to the shock wave, we believe the L 2 norm is an appropriate

easure for the error. In this simulation, the relative error for the

ischarge and energy are 8 . 9 × 10 −3 and 6 . 4 × 10 −3 respectively. 

.4. Dam-break problem 

So far we have tested the well-balance property, and the accu-

acy of the scheme near shock waves by controlling the oscillations

ith the artificial viscosity. In this test, we verify numerically that

ur scheme enjoys the positivity-preserving property. The geome-

ry is again a spline of degree three with nodes (0.1, 1), (0.2, 1),

0.4, 0.5), (0.6, 0.5), (0.8, 0), (1, 0). The geometry is given by 

(x, z) = 

1 

2 

+ B (x )(z − B (x )) , B (x ) ≤ z ≤ 2 , (49)

hich describes a channel with a topography with two decreas-

ng bumps and walls with decreasing width from left to right. The

nitial conditions are 

 = 0 , w = 

{
1 . 2 if x ≤ 0 . 7 

B (x ) + 10 

−5 otherwise , 
(50)

hich represent a dam break at x = 0 . 3 . The dry region is rep-

esented by small values of the water’s depth. Here we use a

hreshold of h = 10 −5 due to the loss of hyperbolicity when the
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Fig. 5. Convergence to a steady state. Left: 2D view of the numerical solution obtained using the proposed scheme (dashed red line) and the exact solution (solid blue line). 

The topography is in solid black. Right: 3D-view of the channels showing the topography in grey, walls in “camel” color and water’s surface in light blue. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Convergence to a steady state. The discharge (left) and energy (right) are shown. Black solid line: Exact solution. Dashed blue line: Central-upwind scheme with 

nonlinear limiters. Red “+” signs: Numerical solution. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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ater’s depth is zero, and to the positivity-preserving property.

 similar threshold is used in the correction (26) and (27) . Fi-

ally, the boundary conditions here are as follows. The fifth or-

er reconstruction of the solution points v (1: N , 1: 2), where N

s the number of grid points requires 5 ghost cells in each direc-

ion v (−4 : 0 , 1 : 2) , v (N + 1 : N + 5 , 1 : 2) . At the left boundary, we

mpose reflecting boundary conditions. That is, we extrapolate A ,

 (−1 : 4) = A (1) and the velocity of the ghost cells change sign

ith their reflective cells u ( j) = −u (1 − j) , j = −4 : 0 . At the right

oundary, we extrapolate u and either impose h out = 10 −5 at out-

ow ( u − c > 0 ) or extrapolate h at inflow ( u − c < 0 ). 

Fig. 7 shows the evolution of the flow in a dam-break prob-

em at times t = 0 . 01 , 0 . 1 , 0 . 5 , 5 with a resolution of �x = 1 / 200

dashed red lines). Here we have used an artificial viscosity co-

fficient of C = 50 . For comparison, we have included a reference

olution using the central-upwind scheme with nonlinear limiters

eveloped in Balbás and Hernandez-Duenas (2014) . We observe a

rainage towards the right, where interactions between wet and

ry states occur at all times. The positivity-preserving property al-

ows us to consider simulations of dam breaks, flooding and any

ype of problems involving wet and dry states. No oscillations

re observed despite interactions between wet and dry states or

c  
hock waves formed. The final time t = 5 is long enough to drain

ll the water through the right boundary, except for the trapped

uid in both bumps. The total height’s relative error according

o (43) is computed at t = 0 . 5 , before the drainage is completed,

iving a value of 1 . 5 × 10 −3 . The CPU time is 800.1 s. The time

tep varies from 1 . 19 × 10 −4 to 9 . 96 × 10 −4 according to (34) with

FL ε = 0 . 45 . 

Fig. 8 shows a 3D view of the channel at times t = 0 . 01 (top

eft), t = 0 . 1 (top right), t = 0 . 5 (bottom left), and t = 5 (bottom

ight). The top left panel exhibits the beginning of the dam break.

he water starts moving to the right. As it evolves in time, it faces

 topography with decreasing bumps and walls that narrow down.

he dam is almost dry at t = 5 , except at the two places where the

ater was trapped, as shown in the bottom right panel. The pro-

osed numerical scheme guaranties the positivity of the computed

alues of the water depth in each point of the part of the domain

hich is almost dry at all times. 

.5. Laboratory and numerical experiments: Dam break over wet bed 

Laboratory experiments of dam breaks have been conducted in

onverging/diverging channels. See for instance, Chapter 5 of the
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Fig. 7. Dam-break problem. Topography (solid black line) and total height ( w ) at time t = 0 . 01 (top left), t = 0 . 1 (top right), t = 0 . 5 (bottom left), and t = 5 (bottom right). 

Blue “+” signs: central upwind scheme with slope limiters. Dashed red line: Current scheme. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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book ( Khan and Lai, 2014 ) for a list of experiments in channels

with different bed slopes and different wet and dry conditions.

We note that in the numerical modeling of those experiments, a

friction term has been added to the momentum equation, and the

source term now reads 

S = 

(
0 

I − ghσB B 

′ − g AS f 

)
, S f = 

n 

2 Q | Q | 
R 

4 / 3 A 

2 
, (51)

where S f is the friction slope, n is the Manning roughness coef-

ficient, and R is the hydraulic radius (ratio between the wet area

and the wetted perimeter). In the case of rectangular channels

with width σ , the hydraulic radius is R = σh/ (σ + 2 h ) . We note

that the friction slope vanishes in steady state at rest, which con-

sequently does not affect the well-balance property. On the other

hand, since it appears in the momentum equation, it does not af-

fect the positivity-preserving property either. 

The experiments in Khan and Lai (2014) Section 5.3.4 were

taken from Bellos et al. (1992) . The channel has vertical walls

and width variations along the x -axis, approximately given by the

graph in the top panel of Fig. 9 . The channel’s length is 21.2 m,

and its width is 1.4 m from 0 to 5 m, 16.8 to 21.2 m. The mini-

mum width is 0.6 m at x m 

= 8 . 5 m . The topography in this exper-

iment is flat B = 0 . 
The dam-break problem, taken from Bellos et al. (1992) , con-

iders a channel that is initially wet everywhere. Two depths are

eparated by a gate. Measurements at five different locations and

ifferent times are available. The initial conditions are given by 

 (x, t = 0) = 0 , w (x, t = 0) 

= 

{
0 . 3 m if x < x m 

= 8 . 5 m , 

0 . 101 m otherwise . 
(52)

he gate is assumed to be instantaneously removed. The left

oundary is a solid wall. That is, we assume zero Dirichlet bound-

ry conditions for the velocity, with zero Neumann boundary con-

itions for the height. In reality, a weir is installed at the right

oundary. In the numerical simulations, we extrapolate the wa-

er’s height at outflow and impose h out = 0 . 101 at inflow. Follow-

ng ( Khan and Lai, 2014 ), we impose a discharge given by Bazin’s

ormula 

 = 

2 

3 

C d b(2 g) 2 / 3 (h + B − 0 . 101) 1 . 5 , (53)

here C d = 0 . 62 is the discharge coefficient, b = 1 . 4 m is the

ength of the weir, and the topography B = 0 is flat in our sim-

lations. We have also applied the friction term as in (51) , with

anning coefficient n = 1 . 8 × 10 −2 s m 

−1 / 3 . 
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Fig. 8. Dam-break problem and its 3D view. Topography (grey), walls (“camel” color) and total height (blue) are shown at times t = 0 . 01 (top left), t = 0 . 1 (top right), t = 0 . 5 

(bottom left), and t = 5 (bottom right). Different views of the channel are used. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

Fig. 9. Comparison of laboratory and numerical simulations in a dam break over wet bed. Top left: Aerial view of the channel with the location of the five points of 

measurements: P 1 , 2 , 3 , 4 , 5 = 0 , 4 . 5 , 8 . 5 , 13 . 5 , 18 . 5 m . The rest of the panel from left to right, top to bottom shows the measured and numerically approximated water’s height. 

The measured values are shown by blue crosses, and the numerical approximations are given by the red solid lines. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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Fig. 10. Comparison of experimental data and numerical simulations. Left: 3D view of the channel and the solution at time t = 5 s for the dam-break problem in Eq. (54) . 

Right: comparison between experimental data and the numerical approximation obtained by the present schemes of the water’s height at two particular locations in x , 

versus time. The left point is located at the left boundary P 1 = 0 , and the right point is located at P 5 = 18 . 5 m . 
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Fig. 9 shows the comparison between the measured values at

five points P 1 , 2 , 3 , 4 , 5 = 0 , 4 . 5 , 8 . 5 , 13 . 5 , 18 . 5 m and the numerical ap-

proximations, with respect to time. We observe good agreement in

all measurements, and the differences might be due to unavailable

configuration of the weir at the downstream, as it was pointed out

in Khan and Lai (2014) . The boundary conditions might play an im-

portant role. The downstream front reaches the right boundary af-

ter 8.5 s, approximately. After that point, our choice of the bound-

ary condition at the right can influence and affect the predictions.

The time step according to the CFL condition (34) varies from

1 . 9 × 10 −2 s to 4 . 3 × 10 −3 s in a resolution of �x = 21 . 2 m / 200 ,

compared to a time step of 3 × 10 −3 s and 2 × 10 −4 s, and a res-

olution of 0.1 m used in Bellos et al. (1992) . The CPU time for this

simulation was 199 s. 

4.6. Laboratory and numerical experiment: Dam break over dry bed 

The same channel from Section 4.5 is considered. However, we

only have experimental information available at P 1 and P 5 . The

flow is initially given by 

u ( x, t = 0 ) = 0 , w ( x, t = 0 ) 

= 

{ 

0 . 3 m if x < x m 

= 8 . 5 m , 

h out = 10 

−5 m otherwise , 
(54)

which corresponds to a flow initially at rest, where the down-

stream part of the channel is dry (a threshold value has been

used). We have used zero Dirichlet left boundary conditions in

the velocity and Neumann left boundary conditions for the height.

The right boundary extrapolates the data at outflow, and imposes

h out at inflow. The Manning roughness coefficient is set to n =
8 . 4 × 10 −3 s m 

−1 / 3 . Once the dam breaks, the flow evolves as il-

lustrated in the left panel of Fig. 10 at t = 5 s . The resolution here

is �x = 21 . 2 m / 200 . 

In the experimental data in Bellos et al. (1992) , Khan and

Lai (2014) , the height was measured in time at two particular

locations. One at the left boundary P 1 = 0 , and the other one

near the right boundary P 5 = 18 . 5 m . The aerial view of the chan-

nel is shown in the top left panel of Fig. 9 . The right panel in

Fig. 10 compares the real and numerical values. We observe a good

agreement, specially at the location P 5 near the right boundary, for

the entire simulation. The numerical approximation at P 1 is accu-

rate for the first part of the simulation, and overestimates it for the
econd half. Boundary conditions and the adjustment of the Man-

ing coefficient might affect the predictions. In the current simu-

ations, the CPU time was 219.9 s, and the time step varies from

 . 0 × 10 −2 to 4 . 1 × 10 −2 s. 

. Discussion of the main results 

In this section, we discuss the main contributions of the pa-

er and summarize the results. We considered a shallow water

odel in channels with irregular geometry and variable topogra-

hy which is an intermediate case between the one- and two- di-

ensional models. The system is obtained by integrating the Eu-

er equations in each cross section, under reasonable assumptions

tating that the velocity along the channel axis is dominating and

hat the flow has relatively uniform distribution over each chan-

el’s cross section. This model has many practical hydraulic appli-

ations. The one-dimensional nature of the system offers simula-

ions that are computationally cheap when a robust and efficient

umerical method can be developed. 

The shallow water flows in channels is proposed as a one-

imensional system with two-dimensional aspects, since the chan-

el’s width varies vertically. The properties of the model were dis-

ussed. The model consists of a system of hyperbolic balance laws,

nd it looses hyperbolicity in dry states. As other balance laws, dif-

erent types of numerical schemes can be implemented to solve

he system. Each class of numerical algorithms may offer specific

dvantages. Previous works that use nonlinear limiters to main-

ain the non-oscillatory behavior near jump discontinuities were

iscussed and the references provided. It is well documented that

xtensions to higher order approximations are computationally ex-

ensive, and an alternative is the goal of this paper. A novel high-

rder non-oscillatory, free of Riemann-solver method with artifi-

ial viscosity is developed for shallow-water systems in channels

ith arbitrary geometry and variable bed topography. The artifi-

ial viscosity is used as an alternative to computationally expensive

echniques such as nonlinear limiters. A high-order reconstruction

f interface cell values supplemented with the adaptive artificial

iscosity approach are implemented. This is done in combination

ith the topography source term discretization and the geome-

ry of the channel to simultaneously satisfy three desirable prop-

rties: conservation (by construction), well-balance, and positivity-

reserving. The well-balance property was obtained with a suit-

ble discretization of the source terms. We also showed that a

lightly more restrictive time step condition than that given by CFL
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uarantees the positivity of the water’s depth as we evolve the nu-

erical approximation in time. This makes the development of ro-

ust and efficient numerical approximations methods more chal-

enging. 

As stated above, we develop a central-upwind scheme which

espects two main proprieties. First, the well-balanced property of

he proposed scheme is ensured using suitable discretization tech-

iques by properly taking into account the effects induced by the

eometry of the channel and the variable topography. The second

roperty is positivity preserving: the proposed method guarantees

he positivity of the computed values of the water’s depth in each

oint of the domain at all times. Several numerical examples are

erformed to exhibit the merits of the proposed method. A first

umerical test dealt with perturbations of the water surface eleva-

ion of a “lake at rest” over variable topography and geometry. The

umerical results showed that the solution is free of numerical os-

illations and the scheme is well-balanced, inducing stability and

mproving the accuracy of near steady-state flows. The efficiency

f the method was analyzed in this numerical example, compared

o a Roe-type upwind scheme. We claimed that our numerical al-

orithm is accurate for near steady-state flows and two tests were

arried out in that direction. A smooth subcritical steady state

ith constant discharge and energy is used as a reference solu-

ion. Under appropriate boundary conditions, the flow converges to

he prescribed steady state. The numerical results showed that the

omputed solutions are oscillation-free and accurately resolved.

n the other hand, an alternative boundary condition gave us a

ow evolution that converged to a transcritical steady state with a

hock wave. The numerical approximation was very accurate, ex-

ept near the jump discontinuity. It was explained that those er-

ors are very localized and are not attached to the proposed ar-

ificial viscosity approach. References were provided where sim-

lar errors were reported. In addition to the numerical tests us-

ng steady state solutions, the proposed method was tested using

olutions with rapidly varying flows. We considered two types of

umerical tests for the simulation of a dam break over variable

ottom topography. First, the results obtained using the prosed

ethod were compared to those obtained using central-upwind

cheme with nonlinear limiters. The second numerical test is per-

ormed using laboratory experiments of dam breaks in converg-

ng/diverging channels. A friction source term was incorporated to

he model. Accurate results are obtained for both the case of dam

reak over dry bed and the case of dam break over wet bed. These

umerical tests confirm stability, positivity-preserving properties

nd high resolution of the proposed scheme. 

. Conclusions 

A novel high-resolution, semi-discrete central-upwind scheme

s proposed for shallow-water flows in channels. The high reso-

ution techniques are used with the artificial viscosity instead of

onlinear limiters which are computationally expensive. A new

echnique for channels is proposed for the correction of the

ater surface elevation at the interfaces of computational cells

hich insure the positivity-preserving property of the proposed

ethod. The well-balanced property of the proposed central-

pwind scheme is ensured using a special discretization for the

ell averages of the source terms in which we take into account the

mpact of the complex geometry of the channel. The performances

f the proposed scheme are tested on a number of numerical ex-

mples and the desirable properties such as well-balance, stability,

ositivity-preserving and accuracy were discussed. We showed that

 slightly more restrictive time step condition than that given by

FL guarantees the positivity of the water’s depth as we evolve the

umerical approximation in time. The proposed central-upwind

ethod presents the advantage of using artificial viscosity with
igh-order non-limited reconstructions. This scheme can be ap-

lied to shallow flows in channels with variable topography and

omplex geometry. 
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