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Abstract. We consider the shallow water equations for flows througmobks with variable area. The system is obtained
by depth/width averaging of the Euler equations and formgpetbolic set of balance laws. Exact steady-state solsidoa
available and are controlled by the relative positions eflibttom crest and channel throat. We present a Roe-typendpwi
scheme for the system. Considerations of conservatiom,steady-state accuracy, velocity regularization andtipdginear
dry states are discussed. Numerical solutions are presi#intgrating the merits of the scheme for a variety of flomsliding
sub-, trans- and supercritical flows and drainage problevits,emphasis on effects of the interplay between topograptu
geometry on the solution.
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INTRODUCTION

We consider the shallow water equations over bottom togdyraf elevatiorB(x) and through rectangular channels
with variable area of widtto(x). The model is an average flow model describing nearly hot@dlows, and may
be derived from the three dimensional Euler equations byhdefilth averaging. Denoting hbiy(x,t) the depth of the
water layer, and byi(x,t) the average velocity (see Figurel), and assuming that #espre is given by hydrostatic
balancep = p(y) = pg(h+ B —y), with g the gravitational constant, the shallow water system ismgly
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Recent years have seen growing interest in developmentroéncal methods for shallow water systems (see for
example [1, 2, 3, 4, 5, 6] and references therein), in pdeidd, 2, 4] are concerned with flows through channels
with variable geometry. Desirable properties include gggning and respecting steady states in order to accurately
compute near steady state flows, and ensuring positivitg@tbomputed solution in order to handle near dry states,
such as arise in reservoir drainage or flooding problems. &Ve derived an upwind scheme for the shallow water
system, and have implemented it to a variety of test problenilfistrate its robustness in converging accurately to
steady state, in computing accurately small perturbatioereof, and in reservoir drainage problems.

THE MODEL

Equation (1) is a hyperbolic conservation law with geontesource terms accounting for the effects of bottom
topography and variable channel width. The eigenstrucaifitiee system is given by the matrices
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where we use? = gh. The system loses hyperbolicitytif= 0, for which both eigenvectors coincide.
System (1) admits smooth steady-state solutions satgsfyin
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Q = oghu= constant, E= UE +9g(h+B) = constant, (2)
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FIGURE 1. Schematic for the shallow water equations through rectanghannels with variable area.

of which steady state of rest is a simple example, with 0, h4+ B = constant More general steady state solutions
can be obtained by rootfinding using (2), and are classifigdsnbcritical, supercritical, and transcritical depedi
on the magnitude of the Froude numiser
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THE SCHEME

We write equation (1) in the form

W+F (W), =S,

whereF (W) is the flux function ands denotes the geometric source terms. We use a Roe-type upualireine to
approximate the flux gradient terms and approximate thecederm in an upwinded manner, by project®gnto the
eigenvectors of the Jacobian mattix= F'(W) [7]. The Jacobian matrix is linearized about the Roe average
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with ¢ = gﬁ. The source term is approximated by
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HereA(-) = (-)j+1— (-)j. The scheme is given by
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whereAW = ¥ axrk, AXS= 3y B«k, 'k andAy are the eigenvectors/eigenvalues of the Jacobian matiixtre wave
strengths are given by
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It can be easily verified that in the absence of a geometrinceaierm, the linearization is conservative and satisfies
AAW = AF. It can also be verified that for data that corresponds talgtette of restayA — Bk vanishes fok =1, 2.



This implies that a steady state of rest will be recognizetiraspected by the scheme, a property often referred to as
being a 'well-balanced’ scheme.

Roe’s scheme is known not to be entropy satisfying. We haydeimented the Harten and Hyman entropy fix
[8]. Whenh << 1, recovering the velocity using= (chu)/(ch) is prone to large errors. Following [5], we use a
regularized expression
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for small & (typically € = O(10~®). For drainage problems, we have also experimented withcitglstabilization
based on the expected steady state en&igywhich seemed to give good convergence propertidsxife,

u = sign(Q)y/2 max(Ess—g(h+B),0).

NUMERICS

Test 1:Convergence to Steady Stabe this example, the bottom topography is given by a paiatbmlmp of hight

0.2, and a channel with parabolic contraction of maximum amtion 0.8. We impos® = 4.42 at inflow anch = 2

at outflow, and integrate the equations for largatil steady state is reached. Figure 2 shows solutiongsponding

to three related computations. On the left, the channelagétt (o = 1), the flow accelerates as it goes over the
bump but remains subcritical; in the middle, the throat ef geometry is right at the crest of the topography. As the
flow now needs to pass through a narrower passage, it needsfastgr. It accelerates and becomes supercritical at
the narrowest point, then drops back to subcritical throaigihock; and on the right, the throat of the geometry is
off center, leaving more room for the flow to pass and makinmpgsible for the flow to accelerate but still remain
subcritical. All figures show exact and computed solutiovith excellent agreement. At the final time, relative errors
in Q andE are of the order of 10’ and 10°° respectively.

Test 2:Propagation of Small Perturbations to Steady Stdtethis test, a steady state is initialized and a small
perturbation of order 1% is imposed. We apply open boundary conditions at both emdfallow the propagation

of the disturbance, over a parabolic topography bump andeatered parabolic geometrical contraction, until the
perturbation leaves the domain and the unperturbed sté¢aidyis recovered. Figure 3 shows two related computations
corresponding to steady state of rest in the top row and gtstade of (nonrest) subcritical flow. In both cases, the
small perturbation is resolved accurately, and leavesndehiclean steady state with relative errors in b@tandE
within 106 of the expected values of the unperturbed state.

Test 3:Drainage of a reservoirHere we compute the drainage of a reservoir following a desak The topography is

a parabolic bump and the geometry is an off-center parabolitraction similar to that ilest 1 The initial water level

is 0.8. We impose symmetry boundary conditions on the left armhathe water to drain through the right boundary.
The equations are integrated until the water drains, eXoeptater that gets trapped in the trough. While the current
version of the scheme is not positive, we note that it exbibiharkablerobustness near dry state as illustrated by this
test.
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FIGURE 2. Convergence to Steady States. Straight channel (leffecémiddle) and off-center (right column) geometry.
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FIGURE 3. Perturbation of steady states of rest (first row) and stibalilow (second row).
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FIGURE 4. Drainage of reservoir following a dam break.
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