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Abstract

The paper considers the Baer-Nunziato model for two-phase flow in porous media, with discontinuous
porosity. Computing solutions of the Riemann problem rests on capturing the jump in the solution
across the porosity jump. A recent study [8] showed that numerical discretizations may fail to correctly
capture the jump conditions across the so-called compaction wave, and yield incorrect solutions. We
have formulated the Baer-Nunziato system using the Riemann invariants across the porosity jump, and
propose a hybrid algorithm that uses the Riemann invariants formulation across the compaction wave,
and the conservative formulation away from the compaction wave. The paper motivates and describes
the hybrid scheme and present numerical results.

1 Introduction

The generic formation of shock waves in solutions of nonlinear hyperbolic conservation laws necessitates the
reliance on conservative formulation in numerical computations. Isolated waves are characterized by flow
invariances which simplify the structure of the underlying flow but are not readily seen by the conservative
formulations. Multimaterial flows are one such example. Naive discretizations based on conservative flow
formulations fail to respect the fact that the pressure and velocity are constant across the material front, and
are often plagued by pressure and other oscillations across propagating material interfaces. Recognizing and
respecting material front data is easily accomplished by writing the evolution equations directly in terms of
the pressure and velocity variables, a property which is trivially inherited by any consistent discretization
of the pressure (and velocity) evolution equation ([1, 2, 3]). The pressure and the velocity are the Riemann
invariants across material fronts, and formulating the flow equations in terms of these variables brings out
the underlying simple structure of the flow, as these variables simply ‘do nothing’ across the front and in
doing nothing, provide the correct statement of the jump conditions. Another example is near steady-state
computations of shallow water flows. Here, the mass flow rate and total energy are constant in the smooth
steady-state limit. It has been recognized that incorporating these variables into the design of the numerical
scheme makes it possible for numerical scheme to recognize and respect certain steady-state flows, which
result in better accuracy for near steady-state flows ([9, 12]).

In this paper, we consider the Baer-Nunziato model for two-phase flow in porous media, with piecewise
constant porosity. A schematic is given in Figure 1. Solutions for the Riemann problem consist of two
single-phase compressible Euler sub-systems and an additional wave called a compaction wave, which carries
changes in porosity and provides the means through which the two phases are coupled. Computing solutions
of the Riemann problem rests on capturing the jump conditions across the porosity jump. A recent numerical
study [8], showed that numerical methods may have difficulties to compute it correctly, and suggested that
this failure is due to the inability of the conservative formulation to preserve constant gas entropy across
the compaction wave front, resulting in incorrect jump across the wave front and yielding incorrect solution.
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†Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043.
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Figure 1: Gas flow over a porous particle bed.

The gas entropy η is one of the Riemann invariants across the porosity jump. The evolution equation for
the gas entropy is given by

∂η

∂t
+ u

∂η

∂x
= 0,

and has the attractive property that if the gas entropy is constant in the data, ηx = 0, it will remain
constant in the solution ηt = 0, a property which is inherited by any numerical discretization. Although
not in conservation form, this equation is exact across a compaction wave front, and provides a way of
imposing the jump conditions across it. We follow the rationale of the above examples and formulate the
Baer-Nunziato model in terms of the Riemann invariants across the compaction wave. We examine the merit
of a hybrid algorithm that uses the Riemann invariants formulation across the compaction wave, and the
conservative formulation away from the compaction wave.

The paper is organized as follows: In Section §2, we describe the Baer-Nunziato flow model, as well
as a related reduced flow model that is obtained under simplifying assumptions. Section §3 discusses the
numerical scheme, Section §4 focuses on the reduced model, motivates the use of the Riemann invariants
(RI) in the numerical scheme and proposes a conservative/RI hybrid strategy. Section §5 generalizes this
hybrid approach to the Baer-Nunziato model and presents numerical results.

2 The Equations

2.1 The Baer-Nunziato Model

The Baer-Nunziato (BN) model was originally proposed in [6] to describe the deflagration-to-detonation
transition in reactive granular material. Neglecting the terms due to combustion processes, drag and heat
transfer, and focusing on the hydrodynamic part of the system, the system is given by

(φgρg)t + (φgρgug)x = 0

(φgρgug)t + (φgρgu
2
g + φgpg)x = pg(φg)x

(φgEg)t + (ug(φgEg + φgpg))x = pgus(φg)x

(φsρs)t + (φsρsus)x = 0

(φsρsus)t + (φsρsu
2
s + φsps)x = pg(φs)x

(φsEs)t + (us(φsEs + φsps))x = pgus(φs)x

(φs)t + us(φs)x = 0

(1)
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Figure 2: Typical solution for the Riemann problem for the BN system (1) .

Here the subscript ( )g,s denote gas and solid phases respectively, ρ, u, p and E denote the density, velocity,
pressure and energy of the respective phases, both assumed ideal fluids and satisfy the Equation of State

E =
1

2
ρu2 +

p

γ − 1
, (2)

where γ is the ratio of specific heats, and φ is the porosity, satisfying

φg + φs = 1 . (3)

The coupling between the phases occurs through changes in porosity. The system is inherently non-
conservative due to momentum and energy exchange between the phases. The underlying conservation is
revealed upon addition of the momenta (energy) equations of the individual phases. The presence of the
non-conservative terms has major consequences both theoretically and computationally.

The eigenvalues and eigenvectors for this system are given by

Λ = diag (ug − cg, ug, ug + cg, us − cs, us, us + cs, us) , (4)

RC =



















































1 1 1 0 0 0 ρgc
2
g

ug − cg ug ug + cg 0 0 0 ρgc
2
gus

hg − ugcg
1

2
u2

g hg + ugcg 0 0 0 ρgv
2
ghg − ρgugc

2
gvg − (v2

g − c2
g)Eg

0 0 0 1 1 1 (v2
g − c2

g)
(

ρs +
pg−ps

c2
s

)

0 0 0 us − cs us us + cs

(

v2
g − c2

g

)

(

ρs +
pg−ps

c2
s

)

us

0 0 0 hs − uscs
1

2
u2

s hs + uscs (v2
g − c2

g)
(

Es +
pg−ps

c2
s

hs

)

0 0 0 0 0 0 v2
g − c2

g



















































,

(5)

here vg = ug − us, h = 1

2
u2 + c2

γ−1
is the specific enthalpy and c =

√

γp
ρ

the speed of sound. We observe the

three familiar waves in each phase, and an additional so-called compaction wave. A solution for a typical
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Figure 3: Gas flow through a channel with discontinuous area variation.

Riemann problem is illustrated in Figure 2, where we have used (·)g,s to denote the gas and solid phases
respectively, and O to denote the compaction wave. We note that in this model, porosity changes are carried
with the solid phase, resulting in us being a double eigenvalue, corresponding to a solid contact discontinuity
and a compaction wave. The Riemann invariants across a compaction wave are [6, 7, 5, 8]

[us] = 0 , [ηg] = 0 , [ηs] = 0 , [Q] = 0 , [P ] = 0 , [H ] = 0 ,

here η = p
ργ is the entropy, Q = φgρgvg is the gas mass flux, H = 1

2
v2

g +
c2

g

γg−1
is the gas enthalpy and

P = φgpg + φsps + φgρgv
2
g is the sum of phase momenta fluxes as observed in the frame of reference of the

compaction wave moving with speed us.

We note that the compaction wave is a linearly degenerate field, λ = us is constant across the wave, and
the solution simply traslates with the constant speed us. In this case, the Hugoniot curve and the integral
curve agree, and the Riemann invariants also represent conserved quantities across a porosity jump. See
[7, 11] for more details.

The system is only conditionally hyperbolic, and may lose hyperbolicity if v2
g = c2

g. This corresponds,
for example, to a flow in which the gas rarefaction straddles the compaction wave. In this case, the set
of eigenvectors is no longer linearly independent. For certain data, the solution for the Riemann problem
may be nonunique, and continuous dependence on coefficients may be used to select the physically relevant
solution (for further discussion, see [6, 7, 5, 8, 14]).

2.2 Reduced Flow Model

If the solid phase is assumed stationary, us = 0, and incompressible, δρs = 0, the porosity φ becomes a
function of x alone and system (1) reduces to

(φρ)t + (φρu)x = 0

(φρu)t + (φρu2 + φp)x = pφx

(φE)t + (u(φE + φp))x = 0,

(6)

where we have removed the subscripts ()g to avoid notation clutter. Note that the role of φ = φ(x) here is
that of a variable coefficient. The reduced system (6) is in fact the Euler equations through a channel with
variable geometry. Here the porosity can be viewed as a variable cross sectional area. We consider gas flow
through porous media with piece-wise constant porosity φ(x), as illustrated as in Figure 3. This model is
studied in [4], and was considered as a simplification of the BN system (1) in [8].

System (6) can be rewritten in quasilinear form using the primitive variables

WP
t + A(WP )WP

x = 0,
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Figure 4: Schematic of the Riemann problem of the reduced system (6).

where

WP =









ρ
u
p
φ









, A(WP ) =









u ρ 0 ρu
φ

0 u 1

ρ
0

0 γp u γpu
φ

0 0 0 0









. (7)

The eigenvectors and eigenvalues of the system are

RP =











1 1 1 −ρu2

−c/ρ 0 c/ρ uc2

c2 0 c2 −ρu2c2

0 0 0 φ(u2 − c2)











Λ = diag
(

u − c, u, u + c, 0
)

. (8)

The first three eigenfields are analogous to single-phase Euler flow. The last eigenvector corresponds to the
stationary porosity interface, across which the jump conditions are [6, 7, 4, 8]

[φρu] = 0, [η] = 0, [h] = 0. (9)

We note that while the compaction wave is linearly degenerate, it does not behave like a contact discontinu-
ity. More specifically, it can be seen from (9) that if [p] = 0 as is the case across a contact discuntinuity, then
(9b) implies [ρ] = 0, (9c) then implies [u] = 0 and (9a) then implies that [φ] = 0. It follows that if [φ] 6= 0,
as is the case across the porosity jump, p, ρ and u are generally discontinuous (see discussion in [8]).

Figure 4 shows a typical solution of a Riemann problem for the system (6) consisting of a rarefaction
(R), a shock (S), a contact wave (C) and a compaction wave (O). Exact solutions to Riemann data may
be obtained by embedding the interface jump conditions (9) in a rootfinding iteration of two single-phase
Riemann solutions. Alternatively, one can start from a given state, say WR, and build up a solution of a
pre-determined wave structure using known relationships that hold across the single-phase wavefronts and
porosity jump. We note that for certain data, the solution for the Riemann problem is not unique, and some
consideration of continuous dependence on coefficients may be used to select the relevant solution (see [4]
for more details). In the numerical examples in this paper, we have used both approaches to generate exact
solutions. When using an iterative solver for given left/right states, we have used the rootfinding algorithm
proposed in [14].

3 Numerical Scheme

The hybrid algorithm that we propose is formulated at the differential equations level, and may be discretized
by one’s favorite choice of scheme. The conservative formulation (1) has the form

Wt + F (W )x = S,



6where F (W ) is the flux function and S denotes the nonconservative products. The examples in the next two
sections were obtained using a wave propagation Roe-type upwind scheme [13]

Wn+1
j = Wn

j − ∆t

∆x

{

A+

j− 1
2

(

Wn
j − Wn

j−1

)

+ A−

j+ 1
2

(

Wn
j+1 − Wn

j

)

}

(10)

with
A+∆W =

∑

k

αkλ+

k rk , λ+

k = max (0, λk)

A−∆W =
∑

k

αkλ−

k rk , λ−

k = min (0, λk)

where rk and λk are the eigenvectors and eigenvalues of the Jacobian matrix A = F
′

(W ), and αk are the
wave strengths determined by ∆W =

∑

k αkrk .
The Roe linearization is used where applicable, other variables are linearized by simple arithmetic averages

ρ̄ =
√

ρLρR

ū =

√
ρLuL +

√
ρRuR√

ρL +
√

ρR

h̄ =

√
ρLhL +

√
ρRhR√

ρL +
√

ρR

c2 = (γ − 1)

(

h̄ − 1

2
ū2

)

η̄ =
ηL + ηR

2

The conservative formulation of the model is solved in a split-step algorithm, the upwind scheme (10) is
applied to the Jacobian matrix A = F ′(WC), the source terms in the momentum and energy equations are
approximated by

p
∂φ

∂x
≈ 1

2

(

pj− 1
2

φj+1−φj−1

∆x
+ pj+ 1

2

φj+1−φj

∆x

)

up
∂φ

∂x
≈ 1

2

(

uj− 1
2
pj− 1

2

φj−φj−1

∆x
+ uj+ 1

2
pj+ 1

2

φj+1−φj

∆x

)

,

(11)

where (·)j± 1
2

= 1

2
{(·)j + (·)j±1}. The compaction wave equation in (1) is approximated by the upwind

scheme. The nonconservative formulations based on the Riemann invariants are approximated by (10), with
the matrix A denoting the coefficient matrix in the quasilinear form of the equations.

4 Numerics - Reduced System

In the following numerical examples, the initial data is given in terms of W = (ρ, u, p, φ). Consider the
Riemann problem

WL = (1.6934× 102, 0, 2.96 × 108, 0.25)
WR = (7.6278 × 10−1, 0, 1.00 × 105, 1.00)

(12)

corresponding to a rarefaction wave that straddles the porosity interface, followed by a right moving contact
discontinuity and a shock. This problem was considered in [8], here γ = 1.23, CFL = 0.8 and the grid has
2000 points. The numerical solution based on the conservative formulation and the exact solution are shown
in Figure 5 (left). The computation is in noticeable error, the solution appears to jump incorrectly across
the porosity change yielding an incorrect solution. As can be seen in the figure and was put forward in [8] by
way of explanation, the gas entropy fails to remain constant across the porosity jump, resulting in incorrect
jump across the wave front and yielding incorrect solution. In the next section, we propose a more direct
way to impose the jump conditions across the porosity jump by formulating the equations in terms of the
entropy.
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Figure 5: Computed and exact solution for initial data (12) by the conservative (left) and hybrid (right)
formulations.

4.1 A Hybrid Formulation

By differentiating η = p/ργ and using the primitive variable formulation (7) it is straightforward to derive
the entropy evolution equation

ηt + uηx = 0. (13)

Equation (13) has the attractive property that when applied to data in which η is constant, ηx = 0, η
will trivially remain constant in the solution, ηt = 0. This property is easily inherited by any consistent
discretization of (13), which makes (13) a suitable equation to use across the porosity jump where [η] = 0.
We propose that across the porosity jump, the momentum equation be replaced by the entropy evolution
equation (13). Away from the porosity jump, the flow reduces to two uncoupled single-phase Euler flows
and generically is expected to develop shock waves. In these regions, we revert back to the conservative
formulation. We therefore propose the following hybrid formulation:

(i) Away from the porosity jump solve

(φρ)t + (φρu)x = 0
(φρu)t + (φρu2 + φp)x = pφx

(φE)t + (u(φE + φp))x = 0
(14)

(ii) Across the porosity jump solve

(φρ)t + (φρu)x = 0
ηt + uηx = 0

(φE)t + (u(φE + φp))x = 0
(15)

We note that the energy flux may be written as u(φE + φp) = φρuh. It is straightforward to see that if
the data correspond to a porosity wave, hence satisfy (9), all spatial derivatives in (15) vanish. Consequently,
entropy, enthalpy and mass flow rate will remain constant in the analytic solution, as well as in any discrete
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Figure 6: Computed and exact solutions corresponding to interface data (16): conservative (left) and hybrid
(right) formulations.

approximation based on (15). Thus, data corresponding to compaction waves is recognized and respected
by this formulation.

We also note that the conservative formulation is only used away from the porosity jump, hence the
source term on its right hand side in fact vanishes and the system effectively reduces to two uncoupled
standard Euler sub-systems.

The eigenvectors, eigenvalues and wave strengths for the conservative system are given by

RC =













1 1 1

u − c u u + c

h − uc 1

2
u2 h + uc













αC
1 =

∆p̃ − ρ̃c ∆u

2c2

αC
2 =

c2 ∆ρ̃ − ∆p̃

c2

αC
3 =

∆p̃ + ρ̃c ∆u

2c2

Λ = diag(u − c , u , u + c)

where we have used (̃·) to denote the respective quantities scaled by φ.

The eigenvectors of the nonconservative system (15) are derived in Appendix A. Decomposing A∆WNC =
∑

k αkλkrk =
∑

k zkrk in terms of the Riemann invariants enables the scheme to recognize and respect
porosity interface data. After some algebra we obtain the so-called f-wave strengths (see [10])

RNC =













1 1 1

0 −γη
ρ̃

0

h − uc 1

2
u2 h + uc













z1 = α1λ1 =
1

2
∆ (ρ̃u) +

p̃ (c + (γ − 1)u)

2(γ − 1) ηc2
∆η − ρ̃

2c
∆h

z2 = α2λ2 = − p̃

ηc2
u∆η

z3 = α3λ3 =
1

2
∆ (ρ̃u) − p̃ (c − (γ − 1)u)

2(γ − 1) ηc2
∆η +

ρ̃

2c
∆h



94.2 Numerical Results

The next example corresponds to porosity interface data, extracted from the test in Figure 5.

WL = (1.5113× 102, 2.1231× 102, 2.4836× 108, 1.00)
WR = (9.5199 × 101, 1.3482× 103, 1.4067 × 108, 0.25)

(16)

Numerical and exact solution are shown in Figure 6, for the conservative (left) and hybrid (right) formu-
lations. We note that the conservative formulation has difficulties keeping the entropy constant across the
porosity jump, leading to erroneous waves structure. Using the entropy equation across the porosity jump
and the conservative formulation everywhere else makes it possible to recognize and respect the interface
data and produces a clean and error free solution.

We recompute the Riemann problem (12), this time with the hybrid formulation. Results are shown in
Figure 5 (right) and are in excellent agreement with the exact solution, also shown. The hybrid formulation
clearly recognizes and respects interface data, and yields the correct jump in the solution.

Figure 7 shows the computed solution by the hybrid scheme for two more Riemann problems. On the
left, the solution for the initial data

WL = (1.0555,−1.0651, 1.5, 1.00)
WR = (1.0000,−1.0000, 1.0, 1.25)

(17)

corresponding to a left going rarefaction and a right going shock and on the right the solution for the initial
data

WL = (0.6894,−1.6941, 1.5, 1.00)
WR = (1.0000,−0.5000, 1.0, 1.25)

(18)

producing a left and right moving rarefactions. In both examples, γ = 1.4, the CFL number is 0.8 and
the grid has 400 points. Again, the jump in the solution across the interface is captured very well, and the
computed solutions are in excellent agreement with the exact solutions, also shown.

5 Numerics - BN System

We now generalize the computational framework proposed in section 4 to the full Baer-Nunziato system (1).
We propose the following strategy:

(i) Away from the compaction wave, solve for the conservative variables

WC = (φgρg, φgρgug, φgEg, φsρs, φsρsus, φsEs, φs) ; (19)

(ii) Across the compaction wave, solve the nonconservative system in terms of the Riemann invariants

WRI = (us, ηg, ηs, Q, P, H, φs) . (20)
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Figure 7: Computed and exact solutions corresponding to initial data (17) (left) and (18) (right).

The eigenvalues of the system are given in (4), the eigenvectors for the conservative formulation are given
in (5). The corresponding wave strengths are

αC
1 =

∆p̃g − ρ̃gcg∆ug

2c2
g

− pg(cg + (γg − 1)vg)

2c2
g(vg − cg)

∆φs αC
2 =

−∆p̃g + c2
g∆ρ̃g

c2
g

+
(γg − 1)pg

c2
g

∆φs

αC
3 =

∆p̃g + ρ̃gcg∆ug

2c2
g

+
pg(cg − (γg − 1)vg)

2c2
g(vg + cg)

∆φs

αC
4 =

∆p̃s − ρ̃scs∆us

2c2
s

− pg

2c2
s

∆φs αC
5 =

−∆p̃s + c2
s∆ρ̃s

c2
s

− (γs − 1)ps

c2
s

∆φs

αC
6 =

∆p̃s + ρ̃scs∆us

2c2
s

− pg

2c2
s

∆φs

αC
7 =

1

c2
g − v2

g

∆φs

where we have used (̃·) to denote the respective quantities scaled by the corresponding porosities φg,s. The
last eigenfield, corresponding to the compaction wave, does not play a significant role in the present context
since it is proposed to use this formulation only away from the compaction wave front, where the porosity
does not vary and α7 vanishes. In that case, we also note that the rest of the wave strengths reduce to the
standard expressions for the Euler system.

The eigenstructure in terms of the Riemann invariants WRI is given by
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RRI =

































0 0 0 −1 0 0 −1
0 1 0 0 0 0 0
0 0 0 0 1 0 0

1 −vg

p̃g

ηg c2
g

1 ρ̃g 0 0 ρ̃g

vg − cg −v2
g

p̃g

ηgc2
g

vg + cg 2ρ̃gvg + csρ̃s 0 0 2ρ̃gvg − csρ̃s

− cg

ρ̃g

1

γg − 1

p̃g

ηg ρ̃g

cg

ρ̃g

vg 0 0 vg

0 0 0 0 0 1 0

































, (21)

corresponding to the wave speed ordering Λ = diag (ug − cg, ug, ug + cg, us − cs, us, us, us + cs).
We note that the eigenfield corresponding to the double eigenvalue us is spanned by two linearly inde-

pendent eigenvectors, one corresponding to the contact discontinuity carrying only changes in solid entropy
ηs, and one corresponding to the compaction wave, carrying only changes in the porosity φs.

The wave strengths expressed in terms of WRI are given by

α1 = − ρ̃g (vg − cg)

2cg

∆us +
p̃g (cg + (γg − 1)vg)

2(γg − 1)ηgc2
g

∆ηg +
1

2
∆Q − ρ̃g

2cg

∆H α4 = −1

2
∆us +

M

2ρ̃scs

α3 =
ρ̃g(vg + cg)

2cg

∆us −
p̃g (cg − (γg − 1)vg)

2(γg − 1)ηgc2
g

∆ηg +
1

2
∆Q +

ρ̃g

2cg

∆H α7 = −1

2
∆us −

M

2ρ̃scs

α2 = ∆ηg α5 = ∆ηs α6 = ∆φs

where M =
p̃g

(γg − 1)ηg

∆ηg − vg∆Q + ∆P − ρ̃g∆H .

5.1 Numerical Examples

In all the following examples, initial data is given in terms of the primitive variables W = (ρg, ug, pg, ρs, us, ps, φs).

Isolated Propagating Porosity Interface

The next example
WL = (1.0000, 2.0000, 0.5000, 2.0, 0.3, 5.000, 0.8)
WR = (0.2304, 2.4082, 0.0640, 3.0, 0.3, 13.0547, 0.3)

(22)

corresponds to a moving compaction wave/solid contact, propagating with speed us . The CFL number is
0.8, the grid size is 400 points, and γg = γs = 1.4. It is not difficult to show that for an isolated moving
compaction wave, the RI-formulation is in fact exact: it reduces to linear advection in the solid entropy and
the porosity with advection speed us, and keeps the other variables constant. At the discrete level, this
is reflected in the fact that for isolated interface data, all the wave strengths vanish except for α5 and α6,
which reduce to α5 = ∆ηs and α6 = ∆φs. Figures 8 and 9 show the results by both the conservative and the
hybrid formulation. The results clearly illustrate that the hybrid formulation recognizes and respects moving
interface data. The Riemann invariants for the latter computation are shown in Figure 10 and confirm the
ability of the formulation to treat correctly moving compaction waves.

We next consider Riemann problems corresponding to some degenerate wave configurations, here degen-
eracy in the sense that certain wave may be missing in the solution or that certain wave speeds may coincide.
We examine the merit of the Riemann invariants based algorithm in these flow computations.
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Figure 8: Computed and exact solutions for initial data (22) by the conservative formulation.
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Figure 9: Computed and exact solutions for initial data (22) by the hybrid formulation.

Compaction Wave attached to a Gas Rarefaction

This degenerate case is a borderline case where the system loses strict hyperbolicity due to coinciding
eigenvectors. The compaction wave is attached to the edge of the rarefaction fan in the gas, as illustrated in
Figure 11. The initial data is given by

WL = (0.2800,−3.3761, 0.1051, 2.0,−1.0, 1.9990, 0.5)
WR = (0.4666,−2.6668, 0.2148, 0.5,−1.0, 8.3989, 0.1)

(23)

following [5]. Results by the conservative formulation are shown in Figure 12, and exhibit errors near the
compaction wave front. The solution shows noticeable improvement in resolving the compaction wave front
in the hybrid formulation results, shown in Figure 13. Finally, as this example does not involve any shock
waves, we have also computed solutions entirely by the nonconservative Riemann invariants formulation,
whose eigenvectors are given by (21). The results are shown in Figure 14 and show further improvements
over the hybrid formulation, indicating that some of the remaining errors in Figure 13 are in fact due to the
conservative part of the hybridization.
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Figure 10: Computed and exact Riemann invariants for initial data (22) by hybrid formulation.

Stationary solid phase

The following initial data

WL = (5.92,−0.74, 6.680, 0.550, 0.00, 0.3504, 0.3)
WR = (2.02, 0.86, 1.870, 1.264,−0.115, 1.1234, 0.7)

(24)

is taken from [8] and correspond to the Riemann solution in which the gas phase moves through a stationary
solid phase, see schematic in Figure 15 (left).

Figures 16 and 17 show the computed and exact solutions by the conservative and hybrid formulation
respectively. The challenge in this problem is to compute correctly the jump across the porosity interface. An
additional and unrelated source of computational difficulty is the absence of certain waves from the solution,
namely the acoustic waves in the solid phase. We note errors reminiscent of start-up errors, propagating at
speeds corresponding to ‘missing’ waves, which can be observed in both sets of results. We can see that the
hybrid strategy recognizes the Riemann invariant across the porosity interface, and produces a clean jump
in the solution across the stationary interface at x = 0.03.

Gas rarefaction

O,CsR

L
W W

R

Figure 11: Schematic for a compaction wave right at the edge of a gas rarefaction fan.
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Figure 12: Numerical results for data (23) by conservative formulation.
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Figure 13: Numerical results for data (23) by hybrid formulation.

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4

Gas Density

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Gas Pressure

0 0.2 0.4 0.6 0.8 1

−3

−2.5

−2

Gas Velocity

0 0.2 0.4 0.6 0.8 1

0.62

0.63

0.64

0.65

0.66

0.67
Gas Entropy

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Solid Density

0 0.2 0.4 0.6 0.8 1

2

3

4

5

6

7

8

9
Solid Pressure

0 0.2 0.4 0.6 0.8 1

−1

−0.99

−0.98

−0.97

−0.96

Solid Velocity

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Solid Entropy

Figure 14: Numerical results for data (23) by the Riemann invariants formulation.
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Figure 16: Computed and exact solutions corresponding to initial data (24) by the conservative formulation.

The following initial data

WL = (5.71,−0.75, 6.36, 0.553,−0.0553, 0.4527, 0.3)
WR = (1.94, 0.88, 1.75, 1.040, 0.00, 1.2200, 0.7)

(25)

is taken from [8] and correspond to the Riemann solution schematic in Figure 15 (center). Figures 18 and 19
show the computed and exact solutions by the conservative formulation and the hybrid formulation respec-
tively for data (25). In this case the interface is moving slightly to the left. The hybrid strategy produces
clean solutions with the correct jumps at the interface.

Full Wave Configuration

The solution for the Riemann problem for the initial data (see [14])

WL = (0.2, 0, 0.3, 1, 0, 1, 0.8)
WR = (1, 0, 1, 1, 0, 1.01, 0.3)

(26)

is depicted by the schematic in Figure 15 (right). Figures 20 and 21 show the exact and computed solutions
for the conservative and hybrid formulations respectively.
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Figure 17: Computed and exact solutions corresponding to initial data (24) by the hybrid formulation.

Shock Refraction at a Porosity Interface

In this example, a shock wave in the gas phase propagates to the right and hits a porosity interface, see
schematic in Figure 22. Initial data is given by

WL = (2.9330, 0.4136, 2.5000, 0.5476, 0.00, 0.3280, 0.3000)
WM = (2.5154, 0.2480, 2.0155, 0.5476, 0.00, 0.3280, 0.3000)
WR = (2.0462, 0.7114, 1.5096, 1.0400, 0.00, 1.2200, 0.7000)

(27)

here WM is the pre-shock state to the left of the porosity interface. Figures 23 and 24 show the computed
solution by the conservative and hybrid formulations at a later time, after the shock has refracted at the
porosity interface. Here, the conservative formulation is solved by the unsplit scheme with source upwinding
proposed in [10], in which the source terms are projected onto the eigenvectors of the system. This solution
is in visible error in computing the jump across the porosity interface, which results in inaccuracies in the
other waves in the solution. The hybrid formulation produces a cleaner more accurate approximation.

Coinciding Shocks in Gas/Solid Phases

The following data
WL = (0.5806, 1.5833, 1.375, 0.2068, 1.4166, 0.0416, 0.1)
WR = (0.4890,−0.70138, 0.986, 2.2263, 0.9366, 6.0, 0.2)

(28)

is taken from [5] and correspond to the eigenstructure on Figure 25. Here, both phases have left moving
shock waves, which are moving at the same speed. The gas phase has a right moving shock which falls within
a right moving rarefaction in the solid phase. Here γg = γs = 1.4. Results by the hybrid formulation are
shown in Figure 26 and are in good agreement with the exact solution.

Shock Wave in gas near Compaction Wave

We expect the hybrid formulation not to perform well in wave configurations where the shock in the gas
phase is moving with the same or close speed to the compaction wave. With this added degeneracy of an
additional wave moving at the same speed as the compaction wave, the Riemann invariants are no longer
constant across the combined wave front and the advantage of the formulation is lost. Furthermore, reverting
to the nonconservative Riemann invariants solver may result in more noticeable conservation errors in the
vicinity of the shock. The next data taken following [5] produces this type of solution (see schematic in
Figure 27 )
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WL = (6.3311,−0.7890, 1.3244, 2.1917,−0.9950, 3.00, 0.5)
WR = (0.4141,−0.6741, 0.0291, 0.6333,−1.1421, 2.5011, 0.1)

(29)

Here γg = γs = 1.4. Numerical results by the hybrid formulation are shown in Figure 28. Considering the
fact that the hybrid formulation is ill-suited for this type of flow, the results are actually surprisingly good.

We conclude by making the following remarks:

Remark I:
In order to switch between the conservative and RI formulation, we need to track the compaction wave front.
There are various ways to do that. In the computations presented in this paper, we have used gradient of
the porosity φs to locate the interface. More specifically,

∣

∣

∣

∣

∆φs

(φs)R − (φs)L

∣

∣

∣

∣

< ǫ,

for ǫ small, typically ǫ = 10−2 − 10−3.

Remark II:
Converting between the conservative and primitive variables in the case of multimaterial flow involves closed
form explicit formulas (see [1]). In the present case, recovering the conservative set of variables from the
Riemann invariants involves rootfinding of ρg in the equation

Q2

2φ2
g

1

ρ2
g

+
γg

γg − 1
ηgρ

γg−1
g − H = 0. (30)

The equation may have more than one root, or no root at all. The latter may occur when intermediate
states are generated when a large initial jump resolves itself into waves. By differentiating (30) with respect
to ρg, it is possible to obtain a condition for the existence of the root, and identify data for which there
is no root. In such cases, one may choose not to convert to the Riemann invariants and stick with the
conservative formulation, thus avoiding altogether the need for rootfinding. Alternatively, since the initial
data itself always permits going back and forth between conservative variables and Riemann invariants, one
may repeat the calculation with a smaller time step ∆t, typically half of the original ∆t to allow the flow to
resolve itself less abruptly.
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19Appendix A: Eigenvectors for the Reduced System (15)

The eigenvectors of different formulations of the hyperbolic system (6) are related through the Jacobian
matrix of the nonlinear transformation between the respective sets of the dependent variables. Here, we
obtain the eigenvectors of (15) by an equivalent but more direct calculation.

We first note that across the kth simple wave, δW ∼ rk, implying, for example that across a 1-wave, a
small change in the density, δρ̃, is accompanied by a (u−c)δρ̃ change in the momentum, ρ̃u, and a (h−uc)δρ̃
change in the energy Ẽ. Alternatively, across a 1-wave, using the eigenvectors for the primitive formulation
(7), a small change in the density δρ is accompanied by a small change in velocity δu = −(c/ρ)δρ and a
small change in pressure δp = c2δρ, but no change in porosity δφ = 0. A similar interpretation applies to
the other waves.

To obtain rNC
1 for the nonconservative set of variables WNC = (ρ̃, η, Ẽ), we observe that

δρ̃ = δφρ = φδρ + ρδφ = φδρ

and using logarithmic differentiation of η = pρ−γ we get

δη

η
=

δp

p
− γ

δρ

ρ
=

c2δρ

p
− γ

δρ

ρ
≡ 0

implying that a 1-wave does not carry any changes in entropy. The first eigenvector for the nonconservative
formulation (15) is therefore rNC

1 = (1, 0, h−uc). The calculation for the 3-wave is practically identical. For
the 2-wave, a similar calculation gives

δη

η
=

δp

p
− γ

δρ

ρ
= −γ

δρ

ρ
= −γ

δρ̃

ρ̃

implying that across a 2-wave

δη = −γη

ρ̃
δρ̃.

Combining results together, we obtain

RC =













1 1 1

u − c u u + c

h − uc 1

2
u2 h + uc













RNC =









1 1 1

0 −γη
ρ̃

0

h − uc 1

2
u2 h + uc









The wave strengths αk are obtained as follows. Away from the porosity jump, the wave strengths for the
conservative formulation are given by the familiar expressions

αC
1 =

δp̃ − ρ̃c δu

2c2
, αC

2 =
c2δρ̃ − δp̃

c2
, αC

3 =
δp̃ + ρ̃cδu

2c2

Near the interface, we express the wave strengths in terms of the Riemann invariants ρ̃u, η and h. This
guarantees the preservation of interface data.

ANCδWNC =





δ (ρ̃u)
uδη

δ (ρ̃uh)



 =





δ (ρ̃u)
uδη

ρ̃uδh + hδρ̃u



 =
∑

αkλkrNC
k

A simple calculation gives

z1 = α1λ1 =
1

2
δ (ρ̃u) +

p̃ (c + (γ − 1)u)

2(γ − 1) ηc2
δη − ρ̃

2c
δh

z2 = α2λ2 = − p̃

ηc2
uδη

z3 = α3λ3 =
1

2
δ (ρ̃u) − p̃ (c − (γ − 1)u)

2(γ − 1) ηc2
δη +

ρ̃

2c
δh,



20as desired.
The eigenvectors for both the conservative and non-conservative formulation for the full system (19) and

(20) are obtain in an analogous way, and are given in section 5.
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Figure 18: Computed and exact solutions corresponding to initial data (25) by the conservative formulation.
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Figure 19: Computed and exact solutions corresponding to initial data (25) by the hybrid formulation.
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Figure 20: Computed and exact solutions corresponding to initial data (26) by the conservative formulation.
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Figure 21: Computed and exact solutions corresponding to initial data (26) by the hybrid formulation.
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Figure 22: A shock hitting a porosity jump.
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Figure 23: A shock refracting at a porosity interface . Conservative method.
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Figure 24: A shock refracting at a porosity interface. Hybrid method.
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Figure 25: Schematic of solution corresponding to initial data (28), coinciding shock and rarefactions.
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Figure 26: Computed ans exact solution corresponding to data (28). Hybrid formulation.
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Figure 27: Schematic for data in (29), shock wave in gas near a compaction wave.
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Figure 28: A shock wave in gas near a compaction wave. Numerical results for data (29) by hybrid method.


