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Nonlinear coupling among wave modes and vortical modes is investigated with the
following question in mind: can we distinguish the wave–vortical interactions largely
responsible for formation versus evolution of coherent, balanced structures? The two
main case studies use initial conditions that project only onto the vortical-mode flow
component of the rotating Boussinesq equations: (i) an initially balanced dipole
and (ii) random initial data in the vortical modes. Both case studies compare
quasi-geostrophic (QG) dynamics (involving only nonlinear interactions between
vortical modes) to the dynamics of intermediate models allowing for two-way
feedback between wave modes and vortical modes. For an initially balanced dipole
with symmetry across the x̂-axis, the QG dipole will propagate along the x̂-axis while
the trajectory of the Boussinesq dipole exhibits a cyclonic drift. Compared to a forced
linear (FL) model with one-way forcing of wave modes by the vortical modes, the
simplest intermediate model with two-way feedback involving vortical–vortical–wave
interactions is able to capture the speed and trajectory of the dipole for roughly
ten times longer at Rossby Ro and Froude Fr numbers Ro = Fr ≈ 0.1. Despite its
success at tracking the dipole, the latter intermediate model does not accurately
capture the details of the flow structure within the adjusted dipole. For decay from
random initial conditions in the vortical modes, the full Boussinesq equations generate
vortices that are smaller than QG vortices, indicating that wave–vortical interactions
are fundamental for creating the correct balanced state. The intermediate model
with QG and vortical–vortical–wave interactions actually prevents the formation
of vortices. Taken together these case studies suggest that: vortical–vortical–wave
interactions create waves and thereby influence the evolution of balanced structures;
vortical–wave–wave interactions take energy out of the wave modes and contribute in
an essential way to the formation of coherent balanced structures.
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1. Introduction

The waves generated by frame rotation are called inertial waves (Greenspan 1968),
and the waves caused by stable density/temperature stratification are referred to as
internal gravity waves (e.g. Gill 1982). When rotation and stable stratification are
present together, as in atmospheric and oceanic flows, the so-called inertia–gravity
waves play an important role in transporting energy and momentum, in modulating
weather, and in influencing mean circulations (Fritts & Alexander 2003; Wunsch &
Ferrari 2004). Sources of wave activity in the middle atmosphere include topography,
convection and wind shear (Fritts & Alexander 2003), and in the oceans these
waves are excited by surface winds, tides and topography (Wunsch & Ferrari 2004).
In addition, it is now understood that inertia–gravity waves can be spontaneously
generated from balanced flows (Lorenz & Krishnamurthy 1987; O’Sullivan &
Dunkerton 1995; Ford, McIntyre & Norton 2000; Plougonven & Zeitlin 2002;
Vanneste & Yavneh 2004; Snyder et al. 2007; Zeitlin 2008; Vanneste 2013). Spatial
resolutions of global models are currently too coarse to resolve all of the inertia–
gravity waves (Fritts & Alexander 2003). Thus theoreticians and modellers continue
to probe idealized models for information and insight into the many mechanisms for
wave generation, as well as their influence on larger-scale balanced flows, with at
least one important goal of refining parameterizations in global models (e.g. Ledwell
et al. 2000; Warner & McIntyre 2001). The current study investigates the effects
of waves on balanced flows, and in particular the role of nonlinear wave–vortical
interactions in the formation and evolution of coherent balanced structures.

We consider the rotating Boussinesq equations valid for flows in which the depth of
fluid motions is small compared to the density scale height (Spiegel & Veronis 1960;
Vallis 2006). In the Boussinesq approximation, acoustic waves are filtered out and
the statement of conservation of fluid mass reduces to the incompressibility constraint.
In addition to the quadratic nonlinearity and pressure terms arising in fluid systems,
frame rotation and buoyancy lead to linear terms in the statements of conservation of
momentum and energy. The decomposition into vortical and wave components follows
naturally from Fourier analysis of the (inviscid) linearized equations in an infinite
or periodic domain. From here on we discuss periodic domains for which there are
complementary numerical computations.

In the linear limit there exist two inertia–gravity waves and one vortical mode
(named for its structure), which together form an orthogonal, divergence-free basis
which can be used without loss of generality for representation of nonlinear solutions
(see e.g. the book by Majda 2003). For each wavevector k, the two inertia–gravity
waves have oppositely signed wave frequencies σ±(k) given by the dispersion relation
depending on rotation rate and buoyancy frequency; the vortical mode has zero
frequency σ 0(k)= 0. Thus the velocity u and density/temperature fluctuations θ may
be expressed as(

u
θ

)
(x, t)=

∑
k

∑
sk=0,±

bsk(k, t)φsk(k) exp (i (k · x− σ sk(k)t)) , (1.1)

where φsk(k) is the eigenmode of type sk (s=± wave or s= 0 vortical) and bsk(k, t)
is an (unknown) amplitude. Using the decomposition (1.1), the equations for u and θ
may be rewritten as evolution equations for the amplitudes bsk(k, t):
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∂bsk(k, t)
∂t

=
∑

k+p+q=0

∑
sp,sq=0,±

Cskspsq
k pq

× bsp(p, t)bsk(q, t) exp(i(σ sk(k)+ σ sp(p)+ σ sq (q))t), (1.2)

where the overline denotes the complex conjugate. The quadratic nonlinearity in
physical space appears as a convolution sum in Fourier space: each unknown mode
amplitude bsk(k, t) evolves by pair products of mode amplitudes bsp(p, t) and bsq (q, t),
with a sum over wavevectors p and q where k + p + q = 0. Of course the mode
amplitudes can be of any mode type (±, 0), and so (1.2) also involves a sum over
mode types sp, sq = ±, 0. The coupling coefficients Cskspsq

kpq are computed from the
known eigenmodes (for some explicit examples, see Remmel, Sukhatme & Smith
2013). Reflecting the dispersive nature of the inertia–gravity waves, the phase factor
involving the triple sum of mode frequencies σ sk(k)+ σ sp(p)+ σ sq (q) can be highly
oscillatory in general, presenting a challenge for theoretical analyses and resolution
of numerical computations.

Early analyses focused on resonant triad interactions for which the triple sum
of mode frequencies is exactly zero (e.g. McComas & Bretherton 1977; Lelong &
Riley 1991; Bartello 1995). In this case the phase factor in the convolution sum is
unity and hence the problem of fast oscillations in the nonlinearity is removed. For
large rotation rate and/or buoyancy frequency, one can show that exact resonances
are the next-order correction to linear dynamics using perturbation analysis in an
appropriately defined small parameter (e.g. Hasselmann 1962; Newell 1969). In
terms of non-dimensional parameters, large rotation rate corresponds to small Rossby
number Ro, defined as the ratio of the rotation time scale to a nonlinear time scale.
Similarly, large buoyancy frequency corresponds to small Froude number Fr, defined
as the ratio of the buoyancy time scale to a nonlinear time scale. Since vortical
modes are zero-frequency modes, interactions between them are always exactly
resonant. The celebrated quasi-geostrophic (QG) model first derived using scaling
analysis (Charney 1948) may also be formally derived by allowing vortical modes to
interact nonlinearly with themselves in the absence of waves (Salmon 1998; Smith &
Waleffe 2002). The QG approximation is rigorously derived as the limiting dynamics
for Ro ∼ Fr = ε→ 0 (Embid & Majda 1998; Babin, Mahalov & Nicolaenko 2000).
QG theory is foundational for understanding the dynamics of large-scale atmospheric
and oceanic flows, and is the basis for a vast literature (see the books by Gill 1982;
Pedlosky 1982; Salmon 1998; Majda 2003; Vallis 2006). In addition to resonant
interactions between vortical modes, there are also exact resonances involving wave
modes. In particular, the theory of three-wave exact resonances is equivalent to weak
turbulence (WT) theory (Zakharov, Lvov & Falkovich 1992), and has been used
as a starting point to understand oceanic spectra (Hasselmann 1962; McComas &
Bretherton 1977; Caillol & Zeitlin 2000; Lvov, Polzin & Tabak 2004).

While much insight has been gained by theory and computations of exact
resonances, QG and WT both have limitations. For example, the vortical-mode
resonances of QG dynamics cannot capture cyclone/anticyclone asymmetries observed
in nature and in numerical computations (e.g. Polvani et al. 1994; Kuo & Polvani
2000; Muraki & Hakim 2001; Hakim, Snyder & Muraki 2002; Remmel & Smith 2009,
hereafter referred to as RS09). Furthermore, as mentioned above, wave dynamics may
play a crucial role in local and global budgets, for example, for enhanced vertical
mixing over topography in the abyssal ocean (Ledwell et al. 2000; Wunsch & Ferrari
2004). As for deficiencies of WT theory, Waleffe (1993) showed that three-wave
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exact resonances between inertial waves in purely rotating flows cannot transfer
energy into the slow, two-dimensional wave modes corresponding to the large-scale,
cyclonic vortical columns observed in physical and numerical experiments (Hopfinger,
Browand & Gagne 1982; Smith & Waleffe 1999; see also Galtier 2003; Cambon,
Rubinstein & Godeferd 2004). Similarly, three-wave exact resonances between gravity
waves in strongly stratified flows cannot transfer energy into the slow wave modes
corresponding to vertically sheared horizontal flows (Lelong & Riley 1991; Smith
& Waleffe 2002). Using perturbative approaches, there are two separate bodies of
literature exploring corrections to either QG theory or WT theory.

Adding near-resonant three-wave interactions is the natural perturbative step from
WT theory, where near resonances have sum of mode frequencies small compared to
the Rossby or Froude number (but not necessarily zero). In a perturbation expansion
in powers of ε = Ro or ε = Fr, linear dynamics is dominant at O(1/ε), exact
resonances appear at O(1) and near resonances become important at O(ε). In
numerical computations, it has been shown that near-resonant three-wave interactions
are responsible for generation of the slow wave modes corresponding to zonal flows
on the β-plane, and cyclonic vortical columns in purely rotating flow (Smith & Lee
2005; Lee & Smith 2007). Near-resonant three-wave interactions have also been
included in the WT theory of oceanic spectra (Lvov, Polzin & Yokoyama 2012).
Reductions based on exact and near resonances have physical-space representation as
integro-differential equations, for which numerical solution techniques have received
less attention by fluid dynamicists compared to the widely used pseudo-spectral
methods for partial differential equations (PDEs) (Boyd 2001; Canuto et al. 2006).
In recent work, a PDE generalization of WT was derived, including exact, near-
and non-resonant three-wave interactions (Remmel, Sukhatme & Smith 2010). A
following study used pseudo-spectral numerical simulations to demonstrate that
three-wave interactions are primarily responsible for the formation of vertically
sheared horizontal flows in purely stratified turbulence (Remmel et al. 2013).

To correct QG, intermediate models of various types have been proposed and
tested (e.g. McWilliams & Gent 1980; Allen 1993; Vallis 1996; Muraki, Snyder
& Rotunno 1999; McIntyre & Norton 2000; Mohebalhojeh & Dritschel 2001). To
eliminate secularities in perturbative intermediate models, it is necessary to introduce
slaving principles whereby only the fast wave dynamics is expanded in powers
of the Rossby number (Warn et al. 1995). Consequently such models are able to
conserve potential vorticity (PV) as in the full dynamics, but slaving of waves to
vortical-mode dynamics precludes the correct dispersion relation. The present work
provides further testing of a different approach to modelling, based on wave–vortical
interactions, first explored for the rotating shallow-water equations in RS09, and later
for the three-dimensional (3D) Boussinesq equations (Remmel et al. 2010, 2013). The
models are derived from projections of the full dynamical equations onto an entire
class or classes of wave–vortical interactions. Some potentially interesting aspects
of the approach are: (i) in general, it is non-perturbative in the sense that it relies
on projections instead of expansions; (ii) an entire class or classes of wave–vortical
interactions always correspond(s) to a system of PDEs for appropriate variables (see
RS09 and appendix A); (iii) it has been used to correct both QG (exactly resonant,
three-vortical-mode interactions) and WT (exactly resonant, three-wave interactions)
and therefore in some sense provides a unifying framework to bridge the two.

Among the wave–vortical intermediate models is the PPG model, which adds
vortical–vortical–wave interactions to the QG vortical–vortical–vortical interactions.
(The acronym PPG was introduced in RS09 to as reference to PV–PV–gravity wave
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interactions, here shortened to vortical–vortical–wave.) The Boussinesq PPG model
is closely related to the first-order PV-inversion scheme of Muraki et al. (1999).
While PPG does not slave waves to vortical modes and has the correct dispersion
relation, the tradeoff is the non-conservation of PV. However, since both approaches
include the effects of vortical–vortical–wave interactions beyond QG, the results we
present here regarding the Boussinesq version of the PPG model are possibly relevant
to some low-order PV-inversion methods as well. The next level of complexity
within the wave–vortical model hierarchy is denoted P2G, so named because it adds
vortical–wave–wave interactions to the PPG model. The P2G model can be viewed
as a long-time extension of a forced linear (FL) model. FL models are restricted
to short times since they only include one-way feedback between a balanced flow
component and waves, while the P2G model incorporates full two-way feedback.

Some points to keep in mind while reading the rest of the paper are the
following. PPG and P2G are projective variations of, respectively, a first-order
PV-inversion scheme and a FL model based on expansions, and they provide an
alternative conceptual framework for exploring non-QG behaviour. Except in the
case of QG, the wave–vortical model hierarchy based on projections does not
provide computational efficiency compared to the full Boussinesq equations. The
wave–vortical decomposition associates the balanced flow component with projection
onto the vortical eigenmodes, and the unbalanced flow component with a projection
onto the wave eigenmodes. Thus, except in post-processing the numerical data, the
wave–vortical decomposition always attributes vertical motions to the unbalanced
flow component, unlike perturbative methods such as PV-inversion, which incorporate
ageostrophic corrections into the definition of the balanced flow component.

Our numerical calculations focus on moderate values of the Rossby and Froude
numbers 0.05 6 Ro, Fr 6 1. We compare the wave–vortical intermediate model
simulations to companion simulations of QG (when sensible), and to simulations of
the full rotating Boussinesq dynamics. In the first part of the paper, we investigate
the Boussinesq analogy of an initial value problem that has been studied using a
perturbative approach, namely the evolution of a balanced dipole (Snyder et al. 2007;
Viúdez 2007; Snyder, Plougonven & Muraki 2009; Wang, Zhang & Snyder 2009;
Wang & Zhang 2010). Compared to the QG dynamics, the Boussinesq dynamics
exhibit a cyclonic drift in the trajectory of the dipole, and we investigate how long
the various models are able to track the dipole, and which classes of wave–vortical
interactions are necessary to capture the detailed structure of the adjusted ageostrophic
dipole. Our study is also closely related to Ribstein, Gula & Zeitlin (2010) who
considered adjustment toward quasi-stationary coherent ageostrophic dipoles in
rotating shallow-water flow (see also Kizner et al. 2008). In a second set of
simulations, we investigate coherent structure formation starting from random initial
conditions. Our goal is to provide a framework for understanding wave–vortical
interactions, complementary to the understanding provided by asymptotic approaches
for Ro→ 0 and/or Fr→ 0 (e.g. Plougonven & Zeitlin 2002; Zeitlin 2008; Snyder
et al. 2009; Vanneste 2013). A main contribution is the ability to distinguish the roles
of vortical–vortical–wave and vortical–wave–wave interactions beyond what can be
concluded based on resonances (McComas & Bretherton 1977; Lelong & Riley 1991;
Bartello 1995). We show that vortical–vortical–wave interactions create waves and
thereby influence the evolution of balanced structures, but have a relatively small role
in the generation of new coherent structures. By contrast, the vortical–wave–wave
interactions take energy out of the wave modes and contribute in an essential way to
structure formation and the establishment of the correct balanced state.
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The remainder of the paper is organized as follows. Section 2 reviews the
eigenmode decomposition of the rotating Boussinesq equations. Section 3 introduces
the intermediate models using projection operators in physical space; the PPG model
consisting of vortical–vortical–vortical and vortical–vortical–wave interactions is
described in detail. In § 4, we consider the evolution of a balanced dipole and
compare the results of the intermediate models to the full Boussinesq dynamics as
well as to QG and to an FL model. Section 5 investigates decay from random initial
conditions: most cases use initial conditions that project only onto the vortical modes,
but to investigate robustness, we also consider one case of initial conditions that
project only onto the wave modes. Also, for robustness of conclusions on the decay
from random initial data in the vortical modes, we test the parameters Ro≈ Fr≈ 0.2,
Ro ≈ 0.1, Fr ≈ 1 and Ro ≈ 1, Fr ≈ 0.1. A summary is given in § 6. Appendix A
provides the re-formulation of the PPG model in terms of the streamfunction, potential
and geostrophic imbalance. Appendix B completes the model hierarchy in terms of
projectors.

2. The rotating Boussinesq equations
The main goal of the present work is to assess the importance of vortical–vortical–

wave and vortical–wave–wave interactions for propagation and formation of coherent
structures in three-dimensional rotating stratified flows at moderate Rossby and
Froude numbers. Here we review the linear theory and eigenmode decomposition of
the rotating Boussinesq equations in a periodic domain, which are the basis for the
numerical computations presented in later sections.

The (inviscid) Boussinesq equations for vertically stratified flows rotating about the
vertical ẑ-axis in dimensional form are given by (see e.g. Majda 2003)

Du
Dt
+ f ẑ× u+Nθ ẑ=−∇p,

Dθ
Dt
−Nu · ẑ= 0,

∇ · u= 0,

 (2.1)

where u is the velocity, D/Dt = ∂/∂t + u · ∇ is the material derivative, p is the
effective pressure, and the density ρ = ρ0 + ρ̄(z) + ρ ′ has been decomposed into a
background ρ0+ ρ̄(z) and fluctuating part ρ ′. The Boussinesq approximation assumes
that |ρ ′|, |ρ̄(z)| � ρ0, valid for flows in which the depth of fluid motions is small
compared to the density scale height (Spiegel & Veronis 1960; Vallis 2006). For linear
background ρ̄(z)=−αz with α a positive constant (for uniform stable stratification),
the buoyancy frequency is N = (gα/ρ0)

1/2, where g is the gravitational constant.
The Coriolis parameter f = 2Ω is twice the frame rotation rate Ω . The variable
θ = (αρ0/g)−1/2ρ ′ is a simply the density fluctuation rescaled to have dimensions of
velocity for convenience when manipulating equations and forming energies.

In a 2π × 2π × 2π periodic domain and in the linear limit, there are plane-wave
solutions of the form (

u
θ

)
(x, t; k)= φ(k)ei(k·x−σ(k)t), (2.2)

where φ(k) = (û(k), θ̂ (k)) is the Fourier vector coefficient associated with the
wavevector k. There are only three modes per wavevector because of the
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incompressibility constraint: two of these eigenmodes φ±(k) have non-zero frequency
σ±(k) and the third one φ0(k) has zero frequency σ 0(k) = 0. The latter is usually
called a vortical mode, while the former are inertia–gravity waves. The dispersion
relation for the inertia–gravity waves is

σ±(k)=± (N
2k2

h + f 2k2
z )

1/2

k
, (2.3)

where k= |k|, kh = (k2
x + k2

y)
1/2. The eigenfunctions for k 6= 0 are given by

φ+ =



1√
2σk



kz

kh
(σkx + iky f )

kz

kh
(σky − ikx f )

−σkh

−iNkh

 if kh 6= 0



1+ i
2

1− i
2
0
0

 if kh = 0,

(2.4)

φ− = φ+, and

φ0 = 1
σk


Nky

−Nkx
0

f kz

 , (2.5)

where σ = |σ±(k)|. In triply periodic domains, there are no mean flows and thus
one may set the eigenmodes to zero for k = 0. One can appreciate the importance
of the the vortical modes (2.5) by considering conservation of PV Dq/Dt= 0, where
q = −(1/N)(f ẑ + ∇ × u) · ∇(−Nz + θ) (Gill 1982; Pedlosky 1982; Salmon 1998;
Majda 2003; Vallis 2006). The wave modes (2.4) have zero linear PV and thus the
conservation law is non-trivially satisfied by a projection onto the vortical modes
with qQG = −(f /N)∂θ/∂z + ẑ · (∇ × u), which is the (non-constant) linear part of
the total (quadratic) PV, also called the pseudo-PV. The 3D QG approximation to
the Boussinesq system (2.1) satisfies conservation of pseudo-PV (Charney 1948) and
can be formally derived by allowing the vortical modes to interact nonlinearly in the
absence of wave modes (Salmon 1998; Smith & Waleffe 2002).

The eigenmodes φsk(k), sk = 0, ±, form an orthonormal basis for the space of
divergence-free fields. Decomposing(

u
θ

)
(x, t)=

∑
k

∑
sk=0,±

bsk(k, t)φsk(k) exp (i (k · x− σ sk(k)t)) , (2.6)

and using orthogonality leads to the equations

∂bsk(k, t)
∂t

=−φsk(k) ·

(
û · ∇u
û · ∇θ

)
exp (iσ sk(k)t) (2.7)
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Model Interactions allowed

QG Vortical–vortical–vortical
PPG Vortical–vortical–vortical ⊕ vortical–vortical–wave
P2G Vortical–vortical–vortical ⊕ vortical–vortical–wave ⊕ vortical–wave–wave
Boussinesq (FB) All

TABLE 1. Interactions allowed in the main model hierarchy.

for each wavevector k and for each class of eigenmodes sk = 0, ±. Equations (2.7)
are equivalently written as

∂bsk(k, t)
∂t

=
∑

k+p+q=0

∑
sp,sq=0,±

Cskspsq
k pq

× bsp(p, t) bsk(q, t) exp(i(σ sk(k)+ σ sp(p)+ σ sq (q))t), (2.8)

where Cskspsq
k pq are the interaction coefficients (see Remmel et al. 2013). The reduced

models studied here result from a restriction of the sum in (2.8) to selected classes
of interactions (skspsq); in physical space this corresponds to a projection onto the
selected wave–vortical interactions. This type of intermediate model was introduced in
RS09 for the rotating shallow-water equations. Each such model automatically satisfies
global energy conservation because each triad separately satisfies (Kraichnan 1973)

Cskspsq
k pq +Csqsksp

qk p +Cspsqsk
pqk = 0. (2.9)

As mentioned above, the 3D QG approximation is equivalent to keeping (000)
interactions only and neglecting wave modes altogether. It was shown that the PPG
model including (000), (00±) interactions (and all permutations; see § 3 and table 1
for the present work) gives close quantitative agreement with the full dynamics for
decay from random, unbalanced initial conditions. The PPG model can be considered
as the simplest model with two-way feedback between vortical modes and wave
modes, and is closely related to the PV-inversion model considered in Muraki et al.
(1999).

3. Reduced models
In this section, we describe the Boussinesq models analogous to those derived in

RS09 for the shallow-water equations, and first derived for the rotating Boussinesq
equations in Remmel’s thesis (Remmel 2010). Here the model hierarchy is presented
in physical space using projection operators. In such a decomposition, each model may
be written as two separate vortical and wave-like subsystems communicating through
the nonlinear interactions.

At the bottom of the hierarchy is the QG model retaining only the vortical-mode
interactions, namely (skspsq)= (000). The vortical mode is updated by allowing only
vortical-mode interactions in the nonlinear term on the right-hand-side of (2.8). This
leads to a single physical-space PDE for the pseudo-PV (Smith & Waleffe 2002). In
addition to allowing vortical–vortical–vortical (000) triad interactions, the PPG model
also allows for vortical–vortical–wave (00±) interactions (and all permutations). In
PPG, b0(k, t) is updated by allowing vortical–vortical and vortical–wave interactions
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on the right-hand-side of (2.8), and b±(k, t) is updated by allowing vortical–vortical
interactions on the right-hand-side of (2.8). One may consider PPG as the simplest
model with two-way feedback between vortical modes and waves in the hierarchy.

In order to explicitly define PPG and the other models, we need to decompose
the solution vector into its vortical and wave components. Let us define the vortical
projector (·)0 as (see appendix A):

u
v

w
θ


0

=


−∂y
∂x
0

− f
N
∂z


(
∇2

h +
f 2

N2
∂2

z

)−1 (
∂xv − ∂yu− f

N
∂zθ

)
. (3.1)

This operator projects a vector field onto the vortical modes
∑

kb0(k,t)φ0(k)exp
(ik · x). The wave projector is defined as

(·)± = (·)− (·)0, (3.2)

so that the vector solution is decomposed into the vortical and wave components as(
u
θ

)
=
(

u
θ

)0

+
(

u
θ

)±
. (3.3)

We now apply both projectors (3.1) and (3.2) to the Boussinesq equations (2.1).
The decomposition (3.3) is applied both to the vector solution and to the nonlinear
products u · ∇[u, θ ]T , yielding two coupled systems of equations:

∂

∂t

(
u0

θ 0

)
+
(

u0 · ∇u0 + u0 · ∇u± + u± · ∇u0 + u± · ∇u±
u0 · ∇θ 0 + u0 · ∇θ± + u± · ∇θ 0 + u± · ∇θ±

)0

+
(

f ẑ× u0 +Nθ 0 ẑ
−Nu0 · ẑ

)
=
(−∇p0

0

)
,

∇ · u0 = 0,


(3.4)

and
∂

∂t

(
u±
θ±

)
+
(

u0 · ∇u0 + u0 · ∇u± + u± · ∇u0 + u± · ∇u±
u0 · ∇θ 0 + u0 · ∇θ± + u± · ∇θ 0 + u± · ∇θ±

)±
+
(

f ẑ× u± +Nθ± ẑ
−Nu± · ẑ

)
=
(−∇p±

0

)
,

∇ · u± = 0.


(3.5)

This decomposition will be used in the next section to describe the models in physical
space.

3.1. Derivation of models using projectors in physical space
In physical space, each model can be written as two separate systems, one accounting
for the vortical component of the solution, and the other describing the evolution of
the waves. This can be done by using the systems (3.4) and (3.5) and selecting only
certain classes of nonlinear interactions. For instance, the vortical component in the
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PPG model can only be influenced by vortical–vortical (skspsq = 000) and vortical–
wave nonlinear products (skspsq = 00±) and (skspsq = 0 ± 0). The wave component
on the other hand is evolved by vortical–vortical nonlinear products (skspsq = ±00).
As previously noted, the next-order model of Muraki et al. (1999) is closely related
to a slaved version of the PPG model, and there is a similar relation between the
PV-inversion model of McIntyre & Norton (2000) and the PPG model for the rotating
shallow-water equations (RS09).

The subsystems satisfy constraints which reflect the fact that each one corresponds
to either the vortical or wave component of the total system. Furthermore, the
two systems are linked and communicate with each other through the nonlinear
interactions, yielding a mode decomposition in physical space. For the PPG model,
the two subsystems may be written as

∂

∂t

(
u0

θ 0

)
+
(

u0 · ∇u0 + u0 · ∇u± + u± · ∇u0

u0 · ∇θ 0 + u0 · ∇θ± + u± · ∇θ 0

)0

+
(

f ẑ× u0 +Nθ 0 ẑ
−Nu0 · ẑ

)
=
(−∇p0

0

)
,

∇ · u0 = 0,
w0 = 0,

θ 0 + f
N
∂ψ0

∂z
= 0, ∇2

hψ
0 = v0

x − u0
y,

u0(z)= 0, v0(z)= 0,


(3.6)

where (·) denotes the horizontal mean, and

∂

∂t

(
u±
θ±

)
+
(

u0 · ∇u0

u0 · ∇θ 0

)±
+
(

f ẑ× u± +Nθ± ẑ
−Nu± · ẑ

)
=
(−∇p±

0

)
,

∇ · u± = 0,

∇2
hψ
± − f

N
∂θ±

∂z
= 0, ∇2

hψ
± = v±x − u±y .

 (3.7)

The additional constraints in the two subsystems above can be interpreted in terms
of a streamfunction, potential and geostrophic imbalance (see appendix A for more
details). In the first subsystem the condition w0= 0 together with continuity indicates
that the solution has no velocity potential. The imbalance θ 0 + (f /N)∂ψ0/∂z also
vanishes and the horizontal mean of the horizontal velocity uh is zero. As a result,
the solution to the first subsystem is given by a streamfunction. Furthermore, the
vortical component of the pressure p0 = fψ0 is balanced by the linear terms of the
first subsystem such that (

f ẑ× u0 +Nθ 0 ẑ
−Nu0 · ẑ

)
=
(−∇p0

0

)
. (3.8)

In the second subsystem, the linear PV ∇2
hψ
± − (f /N)∂θ±/∂z = 0 vanishes,

guaranteeing that this subsystem evolves the wave component of the total solution
only.
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The total model solution is obtained by adding the two subsystems. This allows us
to write the PPG model in a more concise way:

∂

∂t

(
u
θ

)
+
(

u0 · ∇u0 + u0 · ∇u± + u± · ∇u0

u0 · ∇θ 0 + u0 · ∇θ± + u± · ∇θ 0

)0

+
(

u0 · ∇u0

u0 · ∇θ 0

)±
+
(

f ẑ× u+Nθ ẑ
−Nu · ẑ

)
=
(−∇p

0

)
,

∇ · u= 0.


(3.9)

In (3.9), the projection of the nonlinear products select the desired interactions, and
is equivalent to (2.8) keeping vortical–vortical–vortical and vortical–vortical–wave
interactions only. For completeness, the description of the rest of the models is
included in appendix B.

3.2. A forced linear model
A forced linear (FL) model may be derived by assuming that the solution can be
decomposed as a balanced component plus a small variation, and then linearizing the
advection terms about the balanced state (Snyder et al. 2009). By construction, such
a model is expected to be accurate for relatively small Rossby and Froude numbers
and relatively short times, starting from balanced initial conditions. For the dipole
computations of § 4, we will compare an FL model to the model hierarchy described
in table 1.

The FL model is obtained by splitting(
u
θ

)
=
(

ũ
θ̃

)
+
(

u′
θ ′

)
, (3.10)

where [ũ, θ̃ ]T is the balanced component of the flow. The deviation [u′, θ ′]T from
the balanced solution is evolved according to a linearization of the nonlinear products
about the balanced state:

∂

∂t

(
u′
θ ′

)
+
(

ũ · ∇u′ + u′ · ∇ũ
ũ · ∇θ ′ + u′ · ∇θ̃

)
+
(

f ẑ× u′ +Nθ ′ ẑ
−Nu′ · ẑ

)
=
(−∇p′

0

)
− ∂

∂t

(
ũ
θ̃

)
−
(

ũ · ∇ũ
ũ · ∇θ̃

)
,

∇ · u′ = 0.

 (3.11)

The part of the nonlinear term involving only the balanced flow component [ũ, θ̃ ]T
appears as a forcing term in the equations for the deviation [u′, θ ′]T , and hence the
name ‘forced linear model’. For simplicity, here we adopt the most basic version of
the FL model where the balanced flow component (̃·) is defined to be the solution to
the QG equation (the projection onto the vortical modes). The latter simple version of
(3.11) is sufficient for the illustration of § 4; however ageostrophic corrections can be
included in the definition of balance (̃·), as described in Snyder et al. (2009). Note that
our simple FL model allows interactions of the type (skspsq =±0±), (skspsq =±± 0)
and (skspsq =±00) with one-way feedback onto the wave modes.
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3.3. Numerical scheme and parameter values
The numerical computations use a standard 3D periodic pseudo-spectral method with
2/3 dealiasing rule, as described in Smith & Waleffe (2002). The time integration
is a third-order Runge–Kutta scheme, and linear terms are treated with integrating
factors. Hyperdiffusion/hyperviscosity damping of the form ν∇16 is used in all
evolution equations with coefficient ν = 10−28 for the resolution considered of 1923

Fourier modes. The time step is chosen as 1t = min
(
k−1

m v
−1
max, 2π/(10N)

)
, where

vmax = max(maxx u, maxx v, maxx w), and km is the highest available wavenumber
allowed by dealiasing.

4. Evolution of a balanced dipole vortex
For a first test of the models described in § 3 and table 1, we consider the time

evolution of an initially balanced flow consisting of a large-scale, coherent dipole.
Balanced monopoles and dipoles have been used as idealized models of atmospheric
jet streaks, which are localized regions of high-speed flow within a larger zonal jet
stream (see e.g. Cunningham & Keyser 2004; Snyder et al. 2007, 2009, and references
therein). We will be interested in how wave–vortical interactions influence the speed
and trajectory of the dipole (§§ 4.1–4.3) and its structure (§ 4.3). Evolution of a surface
QG dipole was investigated in Snyder et al. (2007, 2009). They showed that, after an
initial adjustment period, the structure of the dipole is modified to include a quasi-
stationary oscillation in the vertical velocity, moving at the speed of the dipole. Here
we consider a similar initial condition based on the dipole given by Flierl (1987) and
focus on the evolution and structure of the adjusted dipole.

The streamfunction ψ of the Flierl (1987) 3D QG dipole satisfies the equation[
∂2

∂x2
+ ∂2

∂y2
+ f 2

N2

∂2

∂z2

]
ψ = β δ(x− x+0 )− β δ(x− x−0 ), (4.1)

where δ is the Dirac delta function and the dipole has vortices of strength ±β at the
poles x±0 . For x±0 = (π, π ± a/2, π ± h/2), QG dynamics will propagate the dipole
along the x̂-direction at x=π with theoretical speed

c= Nβa
4πf

(
a2 + N2

f 2
h2

)−3/2

. (4.2)

For the numerical computations, we approximate the Dirac delta functions by
Gaussian functions to smooth out singularities near the two poles. The initial
streamfunction in the 2π× 2π× 2π periodic domain is given by

ψ =
[
∂2

∂x2
+ ∂2

∂y2
+ f 2

N2

∂2

∂z2

]−1

D(x), (4.3)

where

D(x) := 1
(2πγ )3/2

(
β exp

(−‖x− x+0 ‖2/2γ
)− β exp

(−‖x− x−0 ‖2/2γ
))
, (4.4)

with γ constant. For our simulations, we choose the following dipole parameters:
a = 0.5, h = 0.5, β = 10 and γ = 1/128. The Froude number Fr = [U]/(N[L]),
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FIGURE 1. Contours of the streamfunction with values ψ = ±0.25, ±0.5, ±0.75, ±1 at
z = π and times t = 0, 25, 50, 75, 100 for (a) QG and (b) FB (full Boussinesq), for an
initially balanced dipole with Ro≈Fr≈ 0.2. The grey and black lines denote negative and
positive values respectively. Arrows indicate the horizontal velocity vector field (u, v) near
the dipole at t= 100 and z=π.

Rossby number Ro= [U]/(f [L]) and time scale Ti= [L]/[U] are defined based on the
maximum initial velocity [U] =max(maxx u,maxx v,maxx w) and characteristic length
[L] = 2a. This initial time scale will be used to rescale the time as t′ = t/Ti (and the
prime will be dropped). The values of the Coriolis parameter f and the buoyancy
frequency N are decreased for the test cases in §§ 4.1–4.3, respectively, such that the
Froude and Rossby numbers increase from Ro= Fr= 0.05 to 0.1 and 0.2.

Using the initial conditions in § 4.3 (Ro = Fr = 0.2, Ti = 5.16 × 10−2), figure 1
shows contours of the streamfunction with values ψ = ±0.25, ±0.5, ±0.75, ±1 at
z=π and times t= 0, 25, 50, 75, 100 for QG (a) and FB (b). The QG dipole moves
steadily along a horizontal line at a roughly constant speed, which is approximately
the theoretical speed c = 1.13 given by (4.2) (Flierl 1987). From figure 1(a), one
can see that the distance between the first and last dipole is roughly d = 5.8, and
can be computed as d = c × 100 × Ti with c = 1.13 and Ti = 5.16 × 10−2. The
horizontal velocity vectors uh = (u, v) in the centre of the dipole show a ‘jet streak’.
In addition to a modified trajectory, the velocity and vorticity of the Boussinesq
dipole reflect ageostrophic adjustment (§ 4.3). The formation of frontal wavepackets
and the associated ageostrophic vorticity vector was studied by Viúdez (2007). FL
models were investigated in Snyder et al. (2009), Wang et al. (2009), Wang &
Zhang (2010) and Wang, Zhang & Epifanio (2010). In § § 4.1 and 4.2, we compare
streamfunction contours and trajectories of the QG, FL, PPG, P2G and FB systems
for Ro = Fr = 0.05, 0.1, respectively. In § 4.3, we compare streamfunction contours,
trajectories, vertical velocities and vertical vorticities of the PPG, P2G and FB systems
for the larger value Ro= Fr= 0.2.

4.1. Model comparison for Ro= Fr= 0.05
In this section, the initial conditions consist of the dipole described above with
characteristic scales [U]= 22.85,Ti= 5.16× 10−2, and [L]= 1.18. The values of f and
N are chosen so that the initial Froude and Rossby numbers are both Fr= Ro= 0.05.
One may follow the dipole for each model in the frame of reference moving at
the theoretical speed c of the QG dipole given by (4.2). Then at time t = 50 and
vertical height z= π, figure 2(a,b,c) shows contours of the QG, FL and PPG model
streamfunctions (thick lines) with values ψ =±0.25,±0.5,±0.75,±1, where the black
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FIGURE 2. Fr=Ro= 0.05. Contours of the streamfunction with values ψ =±0.25, ±0.5,
±0.75, ±1 at z = π and (a,b,c) t = 50; (d,e,f ) t = 80. The grey and black lines denote
negative and positive values, respectively. In all plots, thin lines correspond to FB contours,
while thick lines are the contours corresponding to one of the models: (a,d) QG, (b,e) FL,
(c, f ) PPG. The position of the dipoles has been shifted to the centre of the domain.

and grey lines indicate positive and negative values, respectively. The corresponding
FB dipole is included (thin lines) on top of each model dipole to visualize the
agreement of each model with the full system. At this small Ro= Fr= 0.05, the QG
and FB dipoles remain close (figure 2a,d) in a sense that will be quantified shortly.
One expects even better agreement between FB and the models PPG and FL, at least
for a short period time. Indeed, the differences at t= 50 are imperceptible to the eye
(figure 2b,c). The P2G model is excluded from this plot, since it is even closer to
FB than PPG.

Even for this relatively small Ro= Fr = 0.05, the FB dipole drifts away from the
horizontal QG trajectory after a longer time. Figure 2(d) shows a more pronounced
deviation of FB from QG at time t = 80. When the FB dipole deviates significantly
from the balance state, the FL model assumptions are no longer valid. At time t= 80,
one can see that the FL dipole begins to break down (figure 2e), while the PPG model
maintains the dipole coherent structure of FB, and again differences are imperceptible
to the eye.

In order to provide more quantitative information about the differences between the
models and the FB dynamics, we measure the relative L2 norm of the streamfunction
error as a function of time, defined by

dψ(t)= ‖ψ −ψFB‖L2

‖ψFB‖L2
, (4.5)
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FIGURE 3. Fr=Ro= 0.05. (a) A measure of the relative error dψ(t) between each model
and the full system (see (4.5)). (b) The centre of the dipole/location of the jet jψ(t) (4.8)
from 0 to 80 time units. At the initial time, the dipole location is shifted to the left
boundary. A ‘+’ symbol has been added every 10 time units.

where ψ denotes the streamfunction under consideration, and ψFB is the streamfunction
of the FB model. In addition, the centre of each pole of the dipole in the horizontal
plane at z=π is approximated by a weighted average as

p±ψ(t)=

∫
Ω±
(x, y) ψ(x, y,π) dx dy∫
Ω±
ψ(x, y,π) dx dy

∈R2, (4.6)

where Ω± is the region contained in the horizontal plane z=π:

Ω± =
{
(x, y,π) | ± ψ(x, y,π)> 0.5 max

z=π
±ψ > 0

}
. (4.7)

The centre of the jet is defined as

jψ(t) := (p+ψ(t)+ p−ψ(t))/2. (4.8)

Figure 3(a) shows dψ(t) as a function of time for the different models, and provides a
measure of how much each model deviates from the solution given by the Boussinesq
system. During the first 30 time units, the FL, PPG and P2G models all show minimal
relative error dψ(t). For times up to t= 80, the FL model is more accurate than QG
because it accounts for wave corrections via one-way feedback from vortical modes
to waves. However, after 40 time units, FL begins to deviate significantly from FB,
while PPG and P2G remain quantitatively accurate by this measure dψ(t). Figure 3(b)
shows the trajectory of the centre of the jet in each model as tracked by the function
jψ(t). The PPG and P2G models give the best results and their jet-centres coincide

with the FB jet-centre for times at least as large as t= 80. In §§ 4.2 and 4.3 we test
the performance of the FL, PPG and P2G models using larger Froude and Rossby
numbers.
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FIGURE 4. Fr = Ro= 0.1. Contours of the streamfunction with values ψ =±0.25,±0.5,
±0.75,±1 at z=π, t=16 for FB (thin lines) and the models (thick lines): (a) QG, (b) FL,
and (c) PPG. The grey and black lines denote negative and positive values, respectively.
The position of the dipoles has been shifted to the centre of the domain.

4.2. Ro= Fr= 0.1
Computations in this section use the same initial conditions as in § 4.1, but here we
consider a smaller Coriolis parameter and buoyancy frequency so as to increase the
initial Rossby and Froude numbers to Ro = Fr = 0.1. Larger values of Froude and
Rossby numbers correspond to regimes farther from the QG dynamics. As a result,
we expect the FL model for Ro = Fr = 0.1 to be valid for a shorter period of time
than for the Ro= Fr= 0.05 case of the previous section.

As in figure 2, we follow the dipole for each model in the frame of reference
moving at the theoretical speed c of the QG dipole given by (4.2). Comparing
figures 2 and 4, the FL model is visibly different from FB at t = 16, z =
π, Ro = Fr = 0.1, whereas the FL and FB dipoles are visibly the same at
t = 50, z = π, Ro = Fr = 0.05. As expected, the FL model is valid for shorter times
at larger Ro=Fr. Figure 5(a) shows that FL is quantitatively more accurate than QG
for times t< 10, but actually has larger error than QG for approximately t> 12. As
discussed and illustrated in Snyder (1999), growth of errors in the position/amplitude
of finite-amplitude flow features occurs on the advective timescale of the base state,
and in this case we observe error growth starting at t ≈ 11 for the simplistic FL
model (3.11) used here. Figure 4 exhibits good visual agreement between FB and all
three of QG, PPG and P2G (not shown) at the relatively early time t= 16.

By time t = 80, a comparison between figures 2(d) and 6(a) shows that the FB
dipole has drifted farther from the x-axis for Ro=Fr= 0.1 than in the case Ro=Fr=
0.05. For the larger Ro=Fr=0.1, we observe that the dipole remains coherent in PPG
and P2G up to times at least as large as t = 100, and its trajectory is quantitatively
accurate for about ten times longer than FL (figure 5a,c). The relative error for PPG
and P2G is less than 10 % for times up to approximately t ≈ 50 (figure 5b), after
which time it is clear that P2G provides a more faithful approximation to the FB
dynamics.

4.3. Ro= Fr= 0.2
Repeating the QG, PPG, P2G and FB dipole computations for Ro=Fr= 0.2, figure 7
shows the pole-centre/jet trajectory for 0 6 t 6 100. We do not run the FL model
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for 06 t6100. At the initial time, the dipole is shifted to the left boundary. A ‘+’ symbol
has been added every 10 time units.

for this case since the FL model did not perform well for t > 10 at Ro = Fr = 0.1,
and is expected to be valid for even shorter times when Ro= Fr= 0.2. Whereas the
trajectories of PPG and P2G both essentially matched the FB trajectory for Ro=Fr=
0.1 and for times t<100, here we begin to see differences in the trajectories for t>30,
with P2G more accurate for t > 30. Furthermore, we can also see differences in the
speeds at which each dipole is moving. At time t = 100, the path lengths are 4.91
(FB), 4.93 (P2G), 5.75 (PPG) and 5.28 (QG). The speed of propagation for P2G is
the closest to that of FB, whereas PPG and QG overestimate the speed.

Next we investigate how well the models PPG and P2G are able to reproduce the
trapping of gravity waves inside the dipole as has been observed (Snyder et al. 2007;
Viúdez 2007; McIntyre 2009). Figure 8 shows the vertical velocity averaged over
the time interval 10 6 t 6 20, with light grey shading for values w ∈ [−0.5, −0.05],
and darker grey to denote w ∈ [0.05, 0.5]. A quasi-stationary wave pattern is clearly
evident in the FB (figure 8a) and P2G (figure 8b) systems, though the P2G and FB
patterns differ in details. However, this quasi-stationary oscillation toward the jet exit
is completely lacking in the PPG model (figure 8c). As will be further illustrated
below, the PPG vortical–vortical–wave interactions drain energy from the vortical
flow component; their feedback onto the vortical modes is not enough to contribute
substantially to the formation of new coherent structures.

Figure 9 shows the vertical vorticity ω= ∂xv− ∂yu at t= 90 for P2G (9a,c) and PPG
(9b,d) when the initial conditions consist of an initial balanced dipole (9a,b), and the
balanced dipole plus wave noise (9c,d). In the run with wave noise added, the wave
noise spectrum as a function of wavenumber has the form

F(k)= εf
exp(−0.5(k− kf )

2/γ )√
2πγ

. (4.9)

Here the standard deviation is γ = 25, the amplitude is εf = 0.022, and the peak
wavenumber is kf = 15. Each of the vortical, + wave and − wave energies is about
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1/3 of the total energy in the system. For both runs, with and without wave noise,
one can observe a strong wake following the PPG dipole (figure 9b,d). As will be
verified in § 5, the PPG wakes indicate that the vortical–vortical–wave interactions act
as an efficient sink of energy from vortical to wave modes, but allow only for an
extremely slow leak of energy back from wave to vortical modes. Despite the energy
sink from vortical to wave modes, the trajectory of the PPG dipole stays remarkably
close to the FB trajectory for long times. By contrast, the P2G dipole has a much
smaller amplitude wake, especially for the run without additional wave noise. We will
see in § 5 that the vortical–wave–wave interactions included in the P2G model allow
for more transfer of energy from wave to vortical modes, and that these interactions
are necessary for the generation of coherent structures.

To summarize § 4, we studied the effects of wave–vortical interactions for the
evolution of an initially balanced dipole. In the full Boussinesq system, there is a
cyclonic drift away from the QG trajectory as well as a decrease in dipole speed
from the QG speed (for larger Ro = Fr). Additionally, the structure of the dipole is
modified, toward the jet exit region, to include a quasi-stationary wave pattern in
the vertical velocity moving at the speed of the dipole (Snyder et al. 2007). The
PPG model (adding vortical–vortical–wave interactions to QG) performs significantly
better than the FL model in capturing the long-time speed and trajectory of the
dipole, especially at the larger Ro = Fr = 0.1, 0.2. The good agreement of PPG for
dipole speed/trajectory may be somewhat surprising, given that the PPG wake is too
strong (figure 9). The pronounced PPG wake indicates that the vortical–vortical–wave
interactions act mainly as a sink of energy from vortical to wave modes, as will be
elaborated further in § 5. The P2G model (adding vortical–wave–wave interactions to
PPG) is of course even more accurate than PPG for tracking the speed and trajectory
of the FB dipole, and only shows significant deviation at long times when the Rossby
and Froude numbers are greater than approximately Ro = Fr > 0.2 (figure 7). It has
been demonstrated that the vortical–wave–wave interactions of P2G are necessary to
capture the vertical structure of the adjusted dipole in the form of a quasi-stationary
oscillation at the front of the jet exit region (figure 8).
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FIGURE 9. Fr = Ro = 0.2. Contours of vertical vorticity at z = π, t = 90 for (a,c) P2G
and (b,d) PPG for an initially balanced dipole (a,b), and the balanced dipole plus wave
noise (c,d). At the initial time, the dipole location is shifted to the left boundary.

5. Random decay simulations

Following up on the dipole simulations, here we explore which class(es) of
interactions are associated with transfer of energy from vortical to wave modes
and vice versa, as well as which class(es) of interactions are primarily responsible for
the generation of coherent structures. Praud, Sommeria & Fincham (2007) performed
an experimental study of decaying grid turbulence for a range of initial Rossby and
Froude numbers. They studied differences from QG for their higher Rossby numbers,
including the change from statistical symmetry of emerging cyclones and anticyclones
for small Ro, to cyclone dominance at moderate Ro. Energy spectra and structure
formation have also been studied extensively in both decaying and forced numerical
simulations, and although we do not provide a comprehensive review, some examples
are Metais et al. (1996), Smith & Waleffe (2002), Waite & Bartello (2006) and
Deusebio, Vallgren & Lindborg (2013); see also references therein. The experimental
and numerical evidence consistently shows that (i) rotation inhibits the rate of kinetic
energy decay leading to a transfer of energy from small to large scales, and (ii) the
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aspect ratio H/L of emerging structures is small in stratification-dominated flows and
large in rotation-dominated flows, where H (L) is the height (horizontal length) of the
structures. Three representative cases are considered in the following sections: rotating
stratified turbulence with Ro= Fr= 0.2, rotation-dominated turbulence with Ro= 0.1,
Fr = 1, and stratification-dominated turbulence with Ro = 1, Fr = 0.1. For these
moderate parameter values, we are interested in identifying which models/interactions
are able to develop structures, and if the details of the results are statistically similar
to those given by the full Boussinesq system.

There are of course a multitude of possible setups to study structure formation, and
here we choose most runs to start from random initial conditions with energy in the
vortical modes. The initial vortical spectrum as a function of wavenumber has the
Gaussian form

F(k)= εf
exp(−0.5(k− kf )

2/γ )√
2πγ

, (5.1)

where γ = 100, εf = 0.16, and kf = 15. Later in § 5.4, we also consider a
complementary run starting from completely unbalanced initial conditions (energy
only in the wave modes) in order to focus on the transfer of energy from wave
modes to vortical modes. In the latter case, each ± wave-mode spectrum as a
function of the wavenumber is given by (5.1).

The characteristic scales have been chosen as [U] = ‖ut=0‖L2, [L] = L/kf , Ti =
[L]/[U], where L= 2π is the size of the box. As in § 4, the initial time scale Ti will
be used to rescale the time t′ = t/Ti and the prime will be dropped. The end time
for simulations ranges from 100 to 500 time units, depending on the test case. The
Froude and Rossby numbers are computed at each time step as

Fr(t)= ‖u‖L2

N[L] , Ro(t)= ‖u‖L2

f [L] . (5.2a,b)

In random decay simulations of the full Boussinesq system and the intermediate
models, the Froude and Rossby numbers decrease roughly by a factor of three before
reaching a statistically quasi-steady state. This decay in Ro and Fr was also noted
in Metais et al. (1996), where Ro and Fr decreased by a factor of 10 after 255 of
their time units. The decay in Ro and Fr is much less in the QG model without
wave modes, since the bulk of the QG energy is transferred upscale by the vortical
modes. The buoyancy frequency f and Coriolis parameter N are chosen so that Ro
and Fr for the FB model reach the value of Fr = Ro≈ 0.2 for the rotating stratified
simulations (§ 5.1), Ro≈ 0.1,Fr≈ 1 for the rotation-dominated turbulence simulations
(§ 5.2), and Ro ≈ 1, Fr ≈ 0.1 for the stratification-dominated turbulence case (§ 5.3).
Since we are matching initial conditions, this necessarily means that the QG Ro and
Fr will be larger than the corresponding runs for FB and the wave–vortical reduced
models.

5.1. Rotating stratified decay for Ro≈ Fr≈ 0.2; initial energy in the vortical modes
The random initial conditions in this simulation give the following characteristic scales:
[U] = 1.28, [L] = 0.42, Ti= 0.33. The values f =N = 3.5 lead to Ro=Fr= 0.2 by the
end of the FB simulation, as computed by (5.2). Figure 10 shows the vertical vorticity
contours at time t= 100 and vertical height z=π. One observes that the FB and P2G
results are similar in terms of number of vortices in the domain, the characteristic
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FIGURE 10. Rotating stratified turbulence: Fr= Ro≈ 0.2. Vertical vorticity at z= π, t=
100 for (a) FB, (b) P2G, (c) PPG, and (d) QG. Note that FB and P2G have a different
colour scale from PPG and QG.

size and strength of the vortices, and the fine-scale structure. The maximum absolute
vertical vorticity is 5.7 for FB and 8.1 for P2G. In contrast the PPG vorticity has a
maximum of 24.9 and does not form vortices of scale larger than the scale [L] = 0.42
associated with the initial conditions. As discussed below, the vortical–vortical–wave
interactions act as an efficient sink of energy from vortical to wave modes, but allow
only for an extremely slow leak of energy back from wave to vortical modes. The QG
vorticity is much stronger than any of the other models with a maximum of 162.6.
Figure 11 presents the probability density function of vertical vorticity for each of
the models. The data for figures 11(a) and 11(b) are the same, and 11(b) is simply a
close-up of the p.d.f.s in the vorticity range [−15,15]. The exponential tails of the QG
model extending to large absolute vorticity values are absent from the other models.
Below we sometimes present p.d.f. data in close-up views, but keeping in mind the
broad tails of the QG model. At time t = 100, the p.d.f.s for all the runs QG, PPG,
P2G and FB appear symmetric, as is expected for Ro= Fr (e.g. Praud et al. 2007).
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In regimes where rotation is strong, the centroid

Cent(t)=

∑
k

k(|uk|2 + |vk|2 + |wk|2)∑
k

(|uk|2 + |vk|2 + |wk|2)
(5.3)

is roughly associated with the inverse-size of the emerging vortices (e.g. see Remmel
et al. 2013). Here (uk, vk, wk) is the Fourier amplitude associated with the vector k
and k = |k|. The centroid reflects vortex size information but does not contain the
amplitude information in figures 10 and 11. This statistic is shown in figure 12, where
it is clear that QG leads to the largest vortices, and that the vortices of P2G and FB
are close to each other in size. At t = 100, the centroid values are 1.82 (QG), 5.38
(P2G), 4.84 (FB) and 19.6 (PPG).

To further quantify the information contained in figures 10–12, we next investigate
spectra, which also indirectly provide information about the transfer of energy
between wave modes and vortical modes. Figure 13 shows the vortical (13a,b)
and wave (13c,d) spectra at times t= 10 (13a,c) and t= 100 (13b,d). The grey circles
denote the initial vortical-mode spectrum. Here we focus on the overall differences
between the models as opposed to scaling laws of any individual model (which
are not measured precisely using our moderate resolution of 1923). The transfer of
vortical-mode energy to large scales by the (000) interactions of the QG model is
evident, and of course there is no energy in wave modes (which are excluded from
the QG model). Compared to the FB and P2G runs, the high values of QG energy
at low wavenumbers indicate larger and stronger vortices as in figures 10–12. In the
PPG model, there is a drastic effect of adding the (00±) to the QG (000) interactions.
PPG clearly transfers a large amount of energy from vortical modes to wave modes
during the earlier times of the simulation: integrating over wavenumbers 56 k6 50 at
t= 10, the ratio of the PPG wave energy to the PPG vortical-mode energy is roughly
7. From t = 10 to t = 100, the PPG spectra suggest very little (if any) transfer of
energy back from wave modes to vortical modes (see also Bartello 1995). Following
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FIGURE 12. Centroid versus time in rotating stratified turbulence with Fr= Ro≈ 0.2.

the energy drain from vortical to wave modes in PPG, it appears that the (000)
interactions are ineffective at transferring energy to large scales.

The vortical-mode spectrum of the P2G model (adding (0±±) interactions to PPG)
is almost overlapping the FB spectra at both times t = 10 and t = 100, with small
differences at large k for t=10, and at intermediate k for t=100. Comparing the times
t= 10 and t= 100 for both P2G and FB, one sees that there is (i) transfer of energy
from wave modes to vortical modes, and (ii) growth of energy in the low-wavenumber
vortical modes. The transfer of energy by QG (000) interactions was drained by the
(00±) interactions of PPG, but is partially reconciled by the addition of the (0±±)
interactions in P2G. Therefore it is clear that the (0 ± ±) interactions are necessary
to achieve the correct balanced end state. For later times (see figure 13d), the lack of
three-wave (±±±) interactions in P2G results in higher wave energy at all scales as
compared to FB, but apparently without a significant impact on structure formation
in the current decay runs (see Smith & Waleffe 1999, 2002; Laval, McWilliams &
Dubrulle 2003; Smith & Lee 2005; Waite & Bartello 2006; Remmel et al. 2013,
for effects of three-wave interactions in forced flows). Since three-wave interactions
support their own forward transfer to small scales where energy is dissipated, the
wave energy of PPG is approximately 1.6 higher than the wave energy of FB at time
t = 100 (see also Remmel et al. 2010). The trends observed in figure 13 were also
observed for the parameter regimes considered in §§ 5.2 and 5.3; the spectra for the
runs presented in §§ 5.2 and 5.3 will not be shown for conciseness of the presentation.

Altogether, the vertical vorticity contours and p.d.f.s, centroid data and spectra
suggest the following: (00±) interactions are mainly a sink of energy from vortical
modes to wave modes; (0 ± ±) interactions transfer energy from wave modes to
vortical modes; (00±) and (0 ± ±) interactions together provide two-way feedback
between waves and vortical modes, allowing for the simultaneous formation of
large-scale coherent structures and the development of 3D fine-scale structure, which
are quantitatively similar to the full Boussinesq simulations; (± ± ±) play a lesser
role, at least for moderate Ro ≈ Fr. Smith & Waleffe (2002) showed that exact
three-wave resonances are not possible for 1/2 6 f /N 6 2, and thus the role of
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three-wave near resonances is also likely to be diminished in this range of f /N.
We caution that three-wave near resonances are known to be important in forced
flows on long time scales in the rotation-dominated and buoyancy-dominated cases,
where they contribute to the generation of cyclonic vortical columns and vertically
sheared horizontal flows, respectively (see Smith & Waleffe 1999, 2002; Laval et al.
2003; Smith & Lee 2005; Waite & Bartello 2006; Remmel et al. 2013, for effects of
three-wave interactions in forced flows). In §§ 5.2 and 5.3, we explore the PPG and
P2G models in representative rotation-dominated- and stratification-dominated-decay
runs.

5.2. Rotation-dominated decay for Ro≈ 0.1, Fr≈ 1; initial energy in the vortical
modes

It is well-documented that rotation inhibits the decay of kinetic energy, coincident
with energy transfer from small to large scales (e.g. Cambon, Mansour & Godeferd
1997; Praud et al. 2007). For moderate Rossby numbers, the accumulation of energy
at large scales is associated with vortical columns which are predominantly cyclonic
(Hopfinger et al. 1982; Smith & Waleffe 1999; Bourouiba & Bartello 2007; Praud
et al. 2007). Here we test the robustness of the results from the previous section,
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by investigating the PPG and P2G models for a rotation-dominated case in which
the Rossby number is an order of magnitude smaller than the Froude number. We
again compare these models to the full Boussinesq dynamics as well as QG dynamics.
Embid & Majda (1998) showed that QG is rigorously derived in the limit Ro∼ Fr=
ε → 0, and this condition is not satisfied with Ro smaller than Fr by an order of
magnitude. Recognizing this limitation, here we interpret the QG model simply as the
bottom of the model hierarchy presented in table 1. The random initial conditions in
this simulation give the following characteristic scales: [U]=0.59, [L]=0.42,Ti=0.72.
With f = 10 and N = 1, the Froude and Rossby numbers computed by (5.2) for the
FB model are approximately Fr≈ 1, Ro≈ 0.1 by the end of the simulation.

Vertical vorticity contours at z=π for the different models are shown in figure 14.
One observes again that the PPG model is not able to form coherent structures, and
that P2G and FB have similar vertical vorticity structure. As expected, the P2G and
FB simulations lead to a larger number of smaller and less intense vortices compared
to the QG simulation. The minimum and maximum vorticity values at time t=100 are
[−7.2,18.2] (FB), [−8.8,21.6] (P2G), [−57.0,55.2] (PPG) and [−93.6,90.9] (QG). A
close-up view of the vertical vorticity p.d.f.s in the vorticity range [−20, 20] is shown
in figure 15(a), and one can see the beginnings of the broad tails associated with QG.
At t= 100, there is a strong positive skewness associated with the p.d.f.s of P2G and
FB. The vertical vorticity skewness as a function of time

Skew(ω)=

∫
V
ω3dV(∫

V
ω2dV

)3/2 (5.4)

is plotted in figure 15(b), where ω = ∂xv − ∂yu is the vertical vorticity. The
monotonically increasing skewness of P2G and FB reflects a growing predominance
of cyclones. Note that the P2G skewness is always larger than the FB skewness,
indicating that three-wave interactions systematically reduce the asymmetry. Section 5.4
provides further evidence that the vortical–wave–wave interactions are solely
responsible for vorticity asymmetry. The centroid defined by (5.3) is shown in
figure 16 for FB, P2G, and QG and verifies the smaller vortices associated with P2G
and FB as compared to QG. At time t = 100, the centroid values are 3.53 (FB),
3.9 (P2G), and 2.57 (QG). To check for vertical coherence of the QG, P2G and
FB vortices, figure 17 shows vertical vorticity contours with values ±10 % of the
maximum value in the entire 2π × 2π × 2π periodic domain (time t = 100; PPG is
not shown since it does not generate large-scale vortices). It is evident that all the
models (except for PPG) form vertically coherent vortices.

5.3. Stratification-dominated decay for Ro≈ 1, Fr≈ 0.1; initial energy in the vortical
modes

Pancake vortices and horizontal layers are well-known to form when stratification is
the dominant effect (see e.g. Waite & Bartello 2006; Praud et al. 2007, and references
therein). Here we consider a buoyancy-dominated case with Ro ≈ 1, Fr ≈ 0.1 to
confirm that P2G forms flattened large-scale structures similar to the full Boussinesq
system. We verified that PPG does not form structures larger than the characteristic
length scale given by the initial conditions, but we do not show these plots since
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FIGURE 14. Rotation-dominated turbulence: Ro≈ 0.1, Fr≈ 1. Vertical vorticity at z= π,
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they are rather uninteresting. In these simulations, the characteristic scales are
[U] = 1.55, [L] = 0.42, Ti = 0.27 and the frequencies are f = 1, N = 10.

Figure 18 shows FB and P2G contours of vertical vorticity with values ±30%
of the maximum value attained at t = 500. The minimum and maximum vertical
vorticity values at time t = 500 are [−3.1, 4.4] (FB) and [−3.5, 4.3] (P2G). We
have verified with spectra (not shown) that the vortical-mode energy dominates
over wave-mode energy, and that the largest amount of vortical-mode energy is
in wavenumber kh = 1. Even in the FB simulation, there is not a dominance of
the vertically sheared horizontal flows (kh = 0 wave modes) in this unforced case,
presumably because there are no special near-resonant three-wave interactions excited
involving a forced wavenumber. From spectra, the main effect of the three-wave
interactions energetically is to reduce the amplitude of the wave-mode spectrum at
all k values for FB compared to P2G.
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5.4. Rotating stratified decay for Ro= Fr≈ 0.1; initial energy in the wave modes
The simulations presented in this section have initial energy only in the wave modes.
With zero initial energy in the vortical modes, the vortical-mode energy of the PPG
model (with (000) and (00±) and all permutations) remains zero for all time and
only the phases of the wave modes will change. Thus, in this case, it is interesting
to consider the reduced model consisting of (000) and (0 ± ±) interactions (and
all permutations), which we denote P2SG (not included in table 1). As in the full
Boussinesq system, both reduced models P2G and P2SG create vortices; the P2SG
vortices are larger and more intense than the P2G and FB vortices because of the
absence of the (00±) interactions which drain energy from the vortical modes and
thereby make the inverse energy transfer less efficient. While the P2G and FB
vertical vorticity p.d.f.s are roughly symmetric, the P2SG run leads to positively
skewed p.d.f.s, linking the (0±±) directly to cyclone dominance.

Initially, each ± wave spectrum as a function of the wavenumber is given by (5.1).
The initial conditions have characteristic scales [U] = 1.28, [L] = 0.42, Ti = 0.33, and
the choice f =N=7 leads to Ro=Fr≈0.1 by the end of the FB simulation. Figure 19
shows contours of the vertical vorticity for FB (19a), P2G (19b), PPG (19c) and P2SG
(19d) at t= 100. PPG does not form vortices larger than [L] = 0.42 (2π/kf in (5.1)).
As in § 5.1, the FB and P2G simulations produce a statistically equal number of
larger-scale cyclones and anticyclones evolving in a sea of elongated vortex filaments.
There are fewer stronger vortices in the P2SG run, with a clearly visible preference
for cyclones. The minimum and maximum vertical vorticity values at time t= 100 are
[−11.3, 8.9] (FB), [−7.3, 10.2] (P2G), [−86.4, 82.6] (PPG) and [−12.4, 46.4] (P2SG).
The full p.d.f.s at time t= 100 are given in figure 20. The p.d.f. of the PPG model is
essentially the same as the p.d.f. of vertical vorticity corresponding to the structureless
initial conditions, with large standard deviation compared to the p.d.f.s of FB and
P2G. For the P2SG model, the p.d.f. tail on the positive vorticity side corroborates
the dominance of cyclones observed in figure 19. The skewness (5.4) increases in
time for P2SG, with values 1.2 × 10−5 (t = 0), 8.6 × 10−2 (t = 20), 1.6 × 10−1

(t = 40), 2.3 × 10−1 (t = 60), 2.8 × 10−1 (t = 80) and 3.3 × 10−1 (t = 100). This
numerical evidence indicates that the vortical–wave–wave interactions are responsible
for the positive skewness in the Boussinesq system when rotation is important.
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wave modes. Vertical vorticity at z=π at time t= 100 for (a) FB, (b) P2G, (c) PPG, and
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Figure 21 shows the vortical (21a,b) and wave (21c,d) spectra at t = 10 (21a,c)
and t = 100 (21b,d). The vortical-mode spectrum is initially null in this set of runs.
The dotted line in figure 21(c,d) is the PPG wave spectrum, which coincides with
the initial spectrum at all but the largest wavenumbers, because the PPG spectrum
is not changing apart from a small amount of dissipation by the hyperviscosity. As
discussed above, only the phases of the wave modes change for the PPG model with
initial conditions that project onto the wave modes only. In all of the other models
P2SG, P2G and FB, we observe a strong transfer of energy from the wave modes
to the vortical modes; the latter transfer is most efficient in the P2SG model because
of the absence of the (00±) interactions. Since the P2SG vortical modes receive and
retain more of the initial energy, the P2SG model also exhibits more efficient transfer
of energy to large-scale vortices by the (000) modes. By t = 100, the peak of the
P2SG vortical-mode spectrum has a higher value at a lower wavenumber than the
corresponding spectral peaks of P2G and FB, reflecting stronger and larger vortices.
At both early time t= 10 and late time t= 100, the P2G and FB vortical-mode spectra
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FIGURE 20. Rotating stratified turbulence: Fr = Ro≈ 0.1, with random initial conditions
in the wave modes. P.d.f.s of vertical vorticity at t= 100.

are quantitatively very similar. The wave spectrum of P2G is systematically higher
in energy for all wavenumbers than the FB wave spectrum because the three-wave
interactions support their own forward cascade of energy to small scales (Remmel
et al. 2010, 2013).

6. Summary and discussion

Using a class of reduced models, we have studied two-way feedback between wave
modes and vortical modes of the rotating Boussinesq equations. The models were
described in physical space as coupled sub-systems for the vortical mode and wave
modes, and by projections of the nonlinear terms to select specific classes of wave–
vortical interactions. The four models QG, PPG, P2G and FB in table 1 form a model
hierarchy. QG is at the base including only vortical–vortical–vortical (000) interactions.
PPG is a correction to QG with two-way feedback including vortical–vortical–vortical
(000) and vortical–vortical–wave interactions (00±), and is closely related to the first-
order PV-inversion model of Muraki et al. (1999). The P2G model is almost complete,
including vortical–vortical–vortical (000), vortical–vortical–wave (00±) and vortical–
wave–wave (0±±) coupling (excluding only three-wave (±±±) interactions). P2G
extends a forced linear FL model to include two-way feedback instead of one-way
feedback between the vortical and wave modes. Note that our FL model is a simplified
version of the FL model studied in Snyder et al. (2009). Finally the full Boussinesq
FB model includes all possible interaction classes.

For evolution of an initially balanced dipole in the full Boussinesq system, there is
a cyclonic drift from the QG trajectory as well as a decrease in dipole speed from the
QG speed (for larger Ro = Fr). Additionally, the structure of the dipole is modified,
toward the jet exit region, to include a quasi-stationary wave pattern in the vertical
velocity moving at the speed of the dipole (Snyder et al. 2007). An FL model with
one-way feedback from vortical modes to wave modes is able to track the dipole
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FIGURE 21. Stratified rotating turbulence: Fr = Ro ≈ 0.1, with unbalanced initial
conditions. (a,b) Vortical and (c,d) wave spectrum at times t= 10 (a,c) and t= 100 (b,d).

trajectory for relatively short times at small Rossby and Froude numbers (for times
up to t ≈ 10 in our time units at Ro = Fr = 0.1). For the same Ro = Fr = 0.1, the
PPG model accurately tracks the dipole for approximately 10 times longer (figure 5).
For simply tracking the speed and trajectory of the dipole, the vortical–wave–wave
interactions of P2G are not necessary to provide a significant improvement upon PPG
except for the largest of our Rossby and Froude numbers Ro=Fr= 0.2, in which case
the PPG dipole moves too fast (figure 7). On the other hand, the PPG model sheds
too strong a wake behind the dipole, associated with a sink of energy from vortical
to wave modes, and does not reproduce the vertical structure of the adjusted dipole in
the form of a quasi-stationary oscillation at the front of the jet exit region. In order
to obtain the latter, it is necessary to include the vortical–wave–wave interactions of
P2G (figure 8), which transfer energy from wave modes to vortical modes and allow
for the formation of a more realistic adjusted dipole/jet structure.

To further investigate the direction of energy transfer from vortical to wave modes
and vice versa, we studied Boussinesq decay from random initial conditions. Two
‘extreme’ cases are illustrative: random initial conditions projecting onto (i) the
vortical modes only, and (ii) the wave modes only. For Ro = Fr = 0.2 and random
initial conditions projecting onto the vortical modes only, the PPG model acts mainly
as a sink of energy from vortical to wave modes, and no coherent structures are
formed (figures 10 and 13). For random initial conditions projecting onto the wave



Investigation of Boussinesq dynamics using intermediate models 279

modes only, PPG necessarily remains unbalanced for all times and the wave modes
satisfy linear dynamics. Note that the failure of PPG for structure formation in
3D rotating Boussinesq dynamics is a stark contrast to its success for generating
anticyclones in simulations of rotating shallow-water decay (RS09). For some insight
into this difference between the rotating shallow-water and 3D Boussinesq systems,
one may consider exact resonances of the interaction type (0±±). Exact resonances
satisfy the equations k + p + q = 0 and σ sk(k) + σ sp(p) + σ sq (q) = 0, where σ sk(k)
is given by the dispersion relation for the rotating shallow-water or the 3D rotating
Boussinesq equations. For (0±±) exact resonances and using the dispersion relation
for rotating shallow-water flow, one finds that the vortical mode acts as a catalyst
for energy transfer only between wave modes with the same wavenumber, i.e. on a
wavenumber shell. In 3D Boussinesq flow on the other hand, the vortical mode acts
as a catalyst for transfer of energy between wave modes which can have different
wavenumbers, and hence these interactions transfer energy between scales (Lelong &
Riley 1991; Bartello 1995). Thus one might expect that interactions of type (0±±)
in general would be more important for 3D Boussinesq flows than for shallow-water
flows. Here we have demonstrated that the (0 ± ±) interactions are essential for
the generation of hybrid vortex–gravity structures, which are not expected to form
in shallow-water flows (McIntyre 2009). Some non-resonant (0 ± ±) interactions
are clearly not catalytic since they transfer energy to the vortical modes (figures 13
and 21).

As quantified by the centroid and the vorticity probability density function, the
P2G model accurately captures the formation of vortices in Boussinesq decay for
Ro = Fr = 0.2 (figures 11 and 12). For completeness, it was demonstrated that the
P2G model generates cyclonic vortical columns for Ro = 0.1, Fr = 1 (figures 14
and 17), and flattened ‘pancake’ vortices for Ro = 1, Fr = 0.1 (figure 18), in both
cases similar to the full Boussinesq system. In all parameter regimes, the presence
of both (00±) and (0±±) interactions is necessary to achieve the correct balanced
end state. Furthermore, (0±±) interactions are responsible for the positive vorticity
skewness of the rotation-dominated flow.

Taken together, the results show that the class of interactions involving one vortical
mode and two wave modes is essential for structure formation in Boussinesq flows.
This is different from the situation in shallow-water flows (McIntyre & Norton 2000;
McIntyre 2009; RS09). Though FL models include the same classes of interactions
contained in P2G, FL models are limited by one-way feedback as contrasted with
the two-way feedback of P2G. For the long-time interaction of waves and balanced
structures, the P2G model can thus extend the good agreement of an FL model
(Snyder et al. 2009) to much longer times. Based on previous theory and simulations
(Smith & Waleffe 1999, 2002; Laval et al. 2003; Smith & Lee 2005; Waite &
Bartello 2006; Remmel et al. 2013), it is expected that agreement between P2G and
FB will not be as close under the action of a random force at intermediate scales,
at least for rotation-dominated and stratification-dominated flows, in which case there
can be continual excitation of three-wave near resonances.
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Appendix A. Vortical–wave decomposition

The description of the intermediate models in § 3 relies on a decomposition of the
vector solution into its vortical and wave components, and details of the decomposition
appear in Remmel et al. (2010). For completeness, we include a summary here.
Furthermore, we express such a decomposition with projector operators. The vortical
projector acts as the identity on balanced vector solutions, and otherwise projects
onto the vortical modes

∑
k b0(k, t)φ0(k) exp (ik · x). The wave projector on the other

hand projects on
∑

k
∑

sk=± bsk(k, t)φsk(k) exp (ik · x− σ sk(k, t)t). In this appendix, we
explain the vortical–wave decomposition in more detail. We also present an alternative
formulation of the models.

The horizontal velocity uh = (u, v) can be written as

u= χx −ψy + u(z), v = χy +ψx + v(z), (A 1a,b)

where (·) denotes the horizontal average, χ corresponds to the velocity potential and
ψ is the streamfunction. These relations imply

∇2
hχ = ux + vy, ∇2

hψ = vx − uy. (A 2a,b)

For each wavevector k and each type sk = 0,±, let us define the coefficient

ask(k, t)= bsk(k, t) exp(−iσ sk t), (A 3)

such that (
u
θ

)
(x, t)=

∑
k

∑
sk=0,±

ask(k, t)φsk(k) exp (ik · x) . (A 4)

Using the orthonormality of eigenfunctions, we obtain

a0
k =

iN
σkk

(
−k2

hψk − i
f
N

kzθk

)
, (A 5)

a+k =


1√

2σkk

(
−σkwkk2

kh
− f kzkhψk + iNkhθk

)
if kh 6= 0

1− i
2

ū+ 1+ i
2
v̄ if kh = 0

(A 6)

and

a−k =


1√

2σkk

(
−σkwkk2

kh
+ fkzkhψk − iNkhθk

)
if kh 6= 0

1+ i
2

ū+ 1− i
2
v̄ if kh = 0,

(A 7)

where σk= |σ±(k)|, and ψk, θk,wk are the Fourier coefficients associated with ψ, θ,w
at each wavevector k.
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Notice that by adding and subtracting a+k and a−k , the physical variables decouple
further:

a+k + a−k =−
√

2kwk

kh
(kh 6= 0),

a+kz
+ a−kz

= ū+ v̄ (kh = 0),

a+k − a−k =
√

2ifkh

σkk

(
N
f
θk + ikzψk

)
(kh 6= 0),

a+kz
− a−kz

=−i(ū− v̄) (kh = 0).


(A 8)

Let us define

M =∇2
hψ −

f
N
∂θ

∂z
and R= θ + f

N
∂ψ

∂z
. (A 9a,b)

Then

a0
k =

iN
σkk

Mk, a+k − a−k =
√

2iNkh

σkk
Rk, a+k + a−k =−

√
2kwk

kh
, (A 10a,b,c)

when kh 6= 0, where Mk and Rk are the Fourier coefficients associated with the
wavevector k.

The quantities M and R have physical significance: M is the linear PV and R is a
measure of geostrophic imbalance. Equation (A 10) indicates that the vortical modes
are all contained in the linear PV, and that the imbalance R and vertical velocity w
are associated with the inertia–gravity modes. As a result, it would be more natural to
write the intermediate models in terms of these variables, as they only carry out one
class of modes. However, we can also present them in the standard variables (u, θ),
as it was done in (3.9).

The vortical and wave components in (3.3) can be written in terms of M,R,w, ū(z)
and v̄(z). The vortical component depends only on M, and it is given by

u0 =−Ay, v0 = Ax, w0 = 0, θ 0 =− f
N

Az, (A 11a,b,c,d)

where A := Υ −1M, Υ := ∇2
h + ((f 2)/(N2))∂zz. The wave component can be written in

terms of R, w, ū(z) and v̄(z) by

u± = χx − f
N

Syz + u(z), v± = χy + f
N

Sxz + v(z), (A 12a,b)

w± =w, θ± =∇2
h S, (A 12c,d)

where S :=Υ −1R. This yields the vortical–wave decomposition of the vector solution(
u
θ

)
=
(

u
θ

)0

+
(

u
θ

)±
, (A 13)
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where

(
u
θ

)0

=


−∂y

∂x

0

− f
N
∂z


(
∇2

h +
f 2

N2
∂2

z

)−1 (
∂xv − ∂yu− f

N
∂zθ

)
. (A 14)

On the other hand, the Boussinesq equations can be formulated in the variables
M, R,w, ū(z) and v̄(z) as

∂M
∂t
+ ẑ · ∇× (u · ∇u)− f

N
∂z [u · ∇θ ]= 0,

∂∇2
h R
∂t
−NΥw+∇2

h [u · ∇θ ]+ f
N
∂z(ẑ · ∇× (u · ∇u))= 0,

∂∇2w
∂t
+N∇2

h R+∇2
h (u · ∇w)− ∂z(∇h · (u · ∇uh))= 0,

∂u(z)
∂t
− fv(z)+ ∂z(uw)= 0,

∂v(z)
∂t
+ f u(z)+ ∂z(vw)= 0.



(A 15)

We note that the system above is closed. Given M,R,w, ū(z) and v̄(z), u and θ can
be recovered by (A 1) and the relations

ψ = A+ f
N

Sz, θ =∇2
h S− f

N
Az, ∇2

hχ =−wz. (A 16)

The intermediate models studied here and first introduced in Remmel et al. (2010)
result from restricting the interaction coefficients in (2.8) to certain classes of
interactions. This can be easily done in physical space using (A 15) and identifying
M with vortical modes and R, w, ū(z) and v̄(z) with inertia–gravity waves. One can
then obtain the PPG model in these variables, which is given by
∂M
∂t
+ ẑ · ∇× (u0

· ∇u0)+ ẑ · ∇× (u0
· ∇u±)+ ẑ · ∇× (u± · ∇u0)

− f
N
∂z
[
u0
· ∇θ 0

]− f
N
∂z
[
u± · ∇θ 0

]− f
N
∂z
[
u0
· ∇θ±

]= 0,

∂∇2
h R
∂t
−NΥw+∇2

h

[
u0
· ∇θ 0

]+ f
N
∂z(ẑ · ∇× (u0

· ∇u0))= 0,

∂∇2w
∂t
+N∇2

h R− ∂z(∇h · (u0
· ∇u0

h))= 0,

∂u(z)
∂t
− fv(z)= 0,

∂v(z)
∂t
+ f u(z)= 0.



(A 17)

We refer the reader to Remmel (2010) for a detailed description of the other
intermediate models using the approach above, which are included in the next
appendix for completeness. The equivalent models for the shallow-water equations
and their properties can be found in RS09.



Investigation of Boussinesq dynamics using intermediate models 283

Appendix B. Derivation of the P2SG, P2G and QG models

The intermediate models studied in this paper were explained in § 3. The nonlinear
interactions included in each model are summarized in table 1. Only details about PPG
were provided. For the sake of completeness, in this appendix we describe the rest of
the models in the form described in § 3, and in the form considered in appendix A.
See Remmel (2010) for more details.

The P2SG model includes the following interactions: vortical–vortical–vortical and
vortical–wave–wave. The model in physical space can be written as

∂

∂t

(
u
θ

)
+
(

u0 · ∇u0 + u± · ∇u±

u0 · ∇θ 0 + u± · ∇θ±

)0

+
(

u0 · ∇u± + u± · ∇u0

u0 · ∇θ± + u± · ∇θ 0

)±

+
(

f ẑ× u+Nθ ẑ
−Nu · ẑ

)
=
(−∇p

0

)
,

∇ · u= 0.


(B 1)

In the M, R,w, ū(z) and v̄(z) variables, it can be written as
∂M
∂t
+ ẑ · ∇× (u0

· ∇u0)+ ẑ · ∇× (u± · ∇u±)

− f
N
∂z
[
u0
· ∇θ 0

]− f
N
∂z
[
u± · ∇θ±

]= 0,

∂∇2
h R
∂t
−NΥw+∇2

h

[
u0
· ∇θ±

]+∇2
h

[
u± · ∇θ 0

]
+ f

N
∂z(ẑ · ∇× (u0

· ∇u±))+ f
N
∂z(ẑ · ∇× (u± · ∇u0))= 0,

∂∇2w
∂t
+N∇2

h R+∇2
h (u

0
· ∇w)− ∂z(∇h · (u0

· ∇u±h ))

−∂z(∇h · (u± · ∇u0
h))= 0,

∂u(z)
∂t
− fv(z)+ ∂z(u0w)= 0,

∂v(z)
∂t
+ f u(z)+ ∂z(v0w)= 0.



(B 2)

The P2G model includes the following interactions: vortical–vortical–vortical,
vortical–vortical–wave and vortical–wave–wave. The model in physical space can be
written as

∂

∂t

(
u
θ

)
+
(

u · ∇u
u · ∇θ

)0

+
(

u0 · ∇u0 + u0 · ∇u± + u± · ∇u0

u0 · ∇θ 0 + u0 · ∇θ± + u± · ∇θ 0

)±

+
(

f ẑ× u+Nθ ẑ
−Nu · ẑ

)
=
(−∇p

0

)
,

∇ · u= 0.


(B 3)
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In the M, R,w, ū(z) and v̄(z) variables, it can be written as

∂M
∂t
+ ẑ · ∇× (u · ∇u)− f

N
∂z [u · ∇θ ]= 0,

∂∇2
h R
∂t
−NΥw+∇2

h

[
u0
· ∇θ 0

]+∇2
h

[
u0
· ∇θ±

]+∇2
h

[
u± · ∇θ 0

]
+ f

N
∂z(ẑ · ∇× (u0

· ∇u0))+ f
N
∂z(ẑ · ∇× (u0

· ∇u±))

+ f
N
∂z(ẑ · ∇× (u± · ∇u0))= 0,

∂∇2w
∂t
+N∇2

h R+∇2
h (u

0
· ∇w)− ∂z(∇h · (u0

· ∇u0
h))

− ∂z(∇h · (u0
· ∇u±h ))− ∂z(∇h · (u± · ∇u0

h))= 0
∂u(z)
∂t
− fv(z)+ ∂z(u0w)= 0,

∂v(z)
∂t
+ f u(z)+ ∂z(v0w)= 0.



(B 4)

The QG model fits at the bottom of the hierarchy of the models considered here,
and it only contains vortical–vortical–vortical interactions. The model in physical
space can be written as

∂

∂t

(
u
θ

)
+
(

u0 · ∇u0

u0 · ∇θ 0

)0

= 0,

∇ · u= 0.

 (B 5)

which can easily be transformed to the standard QG equations assuming the solution
is initially balanced:

∂M
∂t
+ J(ψ,M)= 0, M =

(
∇2

h +
f 2

N2
∂z

)
ψ, (B 6a,b)

where J(A, B) = AxBy − AyBx is the Jacobian, M is the linear PV and ψ is the
streamfunction, so that u=−∂yψ, v = ∂xψ,w= 0, θ =−(f /N)∂zψ .
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