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A POSITIVITY PRESERVING CENTRAL SCHEME FOR SHALLOW WATER

FLOWS IN CHANNELS WITH WET-DRY STATES ∗

Jorge Balbás1 and Gerardo Hernandez-Duenas2

Abstract. We present a high-resolution, non-oscillatory semi-discrete central scheme for one-

dimensional shallow-water flows along channels with non uniform cross sections of arbitrary shape

and bottom topography. The proposed scheme extends existing central semi-discrete schemes for

hyperbolic conservation laws and enjoys two properties crucial for the accurate simulation of shallow-

water flows: it preserves the positivity of the water height, and it is well balanced, i.e., the source

terms arising from the geometry of the channel are discretized so as to balance the non-linear

hyperbolic flux gradients. In addition to these, a modification in the numerical flux and the estimate

of the speed of propagation, the scheme incorporates the ability to detect and resolve partially

wet regions, i.e., wet-dry states. Along with a detailed description of the scheme and proofs of

its properties, we present several numerical experiments that demonstrate the robustness of the

numerical algorithm.
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Introduction

Many geophysical and atmospheric flows are characterized by their large length scale relative to their

depth (i.e., they are shallow). They are often modeled by the shallow water equations, a nonlinear hyper-

bolic conservation law with geometric source terms that results from the cross sectional averaging of Euler
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equations. Non-trivial (nearly) steady flows are of particular interest as they arise commonly in nature, e.g.,

channel and strait flows, flows through mountain passes, etc. The accurate approximation and simulation

of these require the delicate balance between the nonlinear flux gradients and the geometric source terms of

the hyperbolic system.

Recent years have seen a rapidly growing interest in development of numerical methods for shallow water

systems in various numerical frameworks [4,5,15,18,20,21,24–29], see also the recent book [8] and references

therein. Works involving shallow-water flows in variable geometry include [14,19,31] where an upwind scheme

for the single layer shallow water is derived and generalized to rectangular channel flows, [17] where the model

was generalized to arbitrary cross-sectional areas, and [10] where the Q-scheme introduced in [9] is used to

solve the two layer shallow water system, and the central schemes introduced in [12,32]. Well-balanced and

positivity preserving central and central-upwind schemes have been derived in [5, 21].

In this paper we present a high-resolution semi-discrete central scheme for shallow-water flows along

channels with non-uniform cross-sections of arbitrary shape and bottom topography. The scheme is based

on the higher order version of Rusanov’s numerical flux introduced in [23], and it generalizes the central

schemes in [5] and [21] to the general variable cross section shallow water equations treated in [17]. The

interplay between the bottom topography and the varying width of the channel affects and controls the flow.

Numerical schemes for shallow-water flows must, therefore, pay special attention to the discretization of the

channel’s geometry so as to make it consistent with the well-balance and positivity properties sought. In this

case, we ensure the well-balance property by describing the channel’s floor and walls with piecewise linear

segments, a choice that renders piecewise trapezoidal cross sections (see Figure 1).
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Figure 1: Schematic of channel cross section

The paper is structured as follows, in §1 we provide a description of the system (1), its properties, and

the challenges that these properties pose for computing numerical solution. In §2 we describe the proposed

numerical scheme and prove that it preserves the positivity of the water height, it is well-balanced, i.e., it

recognizes and preserves the steady-state of rest, and that it is capable of identifying and resolving wet-

dry regions. Numerical solutions for a variety of flow regimes are presented in §3, validating the scheme’s

accuracy and robustness and demonstrating its ability to simulate a wide range of flows.
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1. The Model

The shallow water equations for flows through channels with variable cross-section are given by, [14,17],

∂A

∂t
+
∂Q

∂x
= 0 (1a)

∂Q

∂t
+

∂

∂x

(
Q2

A
+ I1

)
= I2 − gσBhB′, (1b)

where h denotes the depth of the layer, u the the cross-sectional velocity, B(x) the bottom topography,

σ(x, z) the width of the channel, A =
∫ B+h

B
σ(x, z) dz is the cross-sectional wet area, and Q = Au is the

flow rate or discharge, σB(x) = σ(x,B(x)) denotes the channel width at z = B(x), and g the acceleration of

gravity. The terms I1(x) and I2(x) that appear in the flux and the source term stand, respectively, for the

integrals

I1(x) = g

∫ w

B

(w − z)σ(x, z) dz = Ap, I2(x) = g

∫ w

B

(w − z)σx(x, z) dz, (2)

where w denotes the total water elevation, w = h + B, and p the cross-sectional average of the hydrostatic

pressure, (See Figure 1).

1.1. Properties of the System

In quasilinear form the system reads

A
Q


t

+

 0 1

c2 − u2 2u


A
Q


x

=

 0

c2 (hI3 − σBB′)

 , (3)

where I3(x) = 1
h

∫ w
B
σx(x, z) dz is the averaged width variation, and c2 = gA/σT , where σT = σ(x, h+B) is

the width of the channel at the water surface. Notice that c2 reduces to the familiar expression c2 = gh for

rectangular channels.

The system (1) is hyperbolic, with eigenvectors and eigenvalues

R =

 1 1

u− c u+ c

 Λ =

 u− c 0

0 u+ c

 , (4)
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and the flows it describes are characterized by the nondimensional Froude number F , where F 2 =
u2

c2
. The

Froude number captures the essential non-linearity of the flow; a flow is said to be subcritical for F 2 < 1

and supercritical for F 2 > 1, [13, 17].

The system is endowed with an entropy function

E = A

(
1

2
u2 + g(h+B)

)
− I1,

which satisfies the inequality, [4, 27]

∂E
∂t

+
∂

∂x

[
Q

(
1

2
u2 + g(h+B)

)]
≤ 0.

See also [5, 17] for the entropy inequality for channels with cross-sectional area variation and arbitrary

geometry respectively. Strict hyperbolicity is lost for h = 0, when eigenvectors coincide, representing a

so-called “dry state”.

1.2. Steady-State Solutions

Smooth steady-state solutions are characterized by two invariants, the flow rate Q, and E, the energy per

unit of cross sectional area

Q ≡ Au = Const, E ≡ 1

2
u2 + g(h+B) = Const, (5)

among which it is easy to recognize the steady state of rest

u = 0, h+B = Const. (6)

Exact solutions –to machine precision– for smooth steady-states can be found by solving (using a rootfinding

method),

E =
1

2

Q2

A2
+ g(h+B), (7)

with prescribed boundary conditions Qin at the inflow boundary and h + B = wout at the outflow. And

non smooth steady-states –characterized by a stationary jump– by prescribing, in addition to Qin and wout,

the depth of the flow at some point between the inflow boundary and the location of the discontinuity.
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A detailed discussion about these solutions for channels with (nonuniform) rectangular cross-sections is

presented in [2, 3, 13].

In the case of a straight channel, smooth steady solutions satisfy (here h′ = hx)

(F 2 − 1)h′ = B′. (8)

That is, at the crest, i.e., B′ = 0, the solution is either critical (F 2 = 1) or symmetric (h′ = 0). If the

channel is rectangular with variable cross sectional width σ = σ(x), then

(F 2 − 1)h′ = B′ − hσ′

σ
F 2 . (9)

Implying that if the crest (B′ = 0) and the throat (σ′ = 0) occur at the same point, the right hand side of

(9) vanishes there and the flow is either symmetric or reaches criticality at that point. Otherwise, criticality

occurs where

B′ =
h

σ
F 2σ′ (10)

which occurs somewhere between the crest and the throat, [5]. For the channels with arbitrary geometry

considered in this work, steady-state solutions satisfy, [17],

(F 2 − 1)h′ =

(
1− (σT − σB) F 2

σT

)
B′ − hI3

σT
F 2, (11)

and their exact solution can be calculated (to machine precession) with a root finding method by imposing

the appropriate boundary conditions, Qin and wout for smooth flows, and those plus h (or w) at some other

point for non smooth flows.

1.3. Numerical Simulation of Shallow-water Flows

The nonlinear flux in (1) together with the properties described above and the interplay between the flow

quantities and the channel geometry pose a number of challenges when computing the numerical solution of

(1): The nonlinearity of the flux implies that the balance law admits discontinuous solutions, and requires

robust numerical schemes that are suitable for calculating discontinuous flows. Another difficulty arises when

computing solutions where h→ 0 (e.g., dam break), round off errors may cause the depth of the water layer,

h, to become negative leading to the loss of hyperbolicity and causing the computation to fail. Positivity

preserving schemes have the desirable property that if the data has positive (non-negative) depth, so does
5



the numerical solution, and they enjoy enhanced stability near dry states. Changes in the solution of (1)

in time arise when flux gradients are out of balance with the source terms, so numerical schemes that are

able to recognize and respect such a balance often give superior results when computing near steady-state

flows. Perfectly recognizing such a balance may not always be possible, and schemes that respect steady-

state solutions either exactly or to the order of the numerical approximation are often called ‘well-balanced’.

However, the ability of a scheme to detect steady-state solutions and to converge to them, and to preserve

the positivity of the water layer may not be sufficient to preserve steady-states of rest exactly in all scenarios.

For instance, in a channel with piecewise discontinuous bottom topography one could encounter two states

of rest with the deeper part of the channel holding a positive water layer (wet) and the higher ground being

dry. The evolution of such wet-dry front could create spurious oscillations at the interface between the two

states leading to instabilities.

In §2 we take all these challenges into consideration and we incorporate into our central scheme the

necessary techniques to properly address them.

2. Numerical Scheme

In this section we construct a central scheme for the accurate simulation of shallow-water flows described

by the balance law (1). In particular, we seek a scheme that is positivity preserving and well-balanced.

The scheme extends previous works in [5, 20–22] to flows along channels with variable geometry. This

extension is not trivial; the varying geometry of the channel leads to fluxes and source terms that require the

approximation of integral terms, making the balance of them more difficult; while in channels with constant

width (σ ≡ 1), well-balancing may be accomplished solely by choosing an appropriate discretization of the

source term, in the variable geometry case, the conserved variables A =
∫ B+h

B
σ(x, z) dz and Q = Au depend

on the geometry σ, which renders steady-state preservation and positivity more strongly coupled with, for

example, the polynomial reconstruction of the conserved variables.

To this end, it is convenient –following [22]– to reformulate (1) in terms of the total elevation of the free

water layer, w = h+B and its total area, AT = A+
∫ B

0
σ(x, z) dz, that is

∂AT

∂t
+
∂Q

∂x
= 0 (12a)

∂Q

∂t
+

∂

∂x

(
Q2

AT −
∫ B

0
σ(x, z) dz

+ I1

)
= I2 − gσB(w −B)B′. (12b)
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This formulation allows the numerical scheme to detect changes (or the lack of them) in the total water

elevation, w, which in turn, facilitates ensuring preservation of steady-states of rest.

2.1. Semi-discrete Central Formulation

We write the modified balance law, (12), in the more general form

vt + f(v)x = S(v, x), (13)

with

v =

AT
Q

 , f(v) =

 Q

Q2

AT−
∫ B
0
σ(x,z) dz

+ I1

 , (14)

on the left hand side, and with the source term

S =

 0

I2 − gσB(w −B)B′

 . (15)

Fixing a spatial scale ∆x, we partition the solution domain into the grid cells Ij := [xj − ∆x
2 , xj + ∆x

2 ], and

denote by vj(t) the cell average of v(x, t) over the cell Ij ,

vj(t) =
1

∆x

∫ x
j+1

2

x
j− 1

2

v(x, t) dx. (16)

Integrating equation (13) over the cells {Ij}j , we obtain the semidiscrete formulation

d

dt
vj(t) +

1

∆x

(
f(v(xj+ 1

2
, t))− f(v(xj− 1

2
, t))
)

=
1

∆x

∫ x
j+1

2

x
j− 1

2

S(v(x, t), x) dx, (17)

which is approximated by

d

dt
vj(t) = −

Hj+ 1
2
−Hj− 1

2

∆x
+

1

∆x

∫ x
j+1

2

x
j− 1

2

S(v, x) dx, (18)

where the flux at the cell interfaces, f(v(xj± 1
2
), t), is approximated by the numerical flux Hj± 1

2
(t) given

by, [23],

Hj± 1
2
(t) =

f
(
v+
j± 1

2

(t)
)

+ f
(
v−
j± 1

2

(t)
)

2
−
aj± 1

2

2

(
v+
j± 1

2

(t)− v−
j± 1

2

(t)
)
. (19)
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Here, the interface point-values v±
j± 1

2

(t) are recovered from the cell averages via a non-oscillatory piecewise

polynomial reconstruction

v−
j+ 1

2

:= pj(xj+ 1
2
), and v+

j+ 1
2

:= pj+1(xj+ 1
2
), (20)

and aj± 1
2
stands for an estimate for the maximum wave speed of the balance law, approximated by

aj± 1
2

= max
{∣∣∣u−

j± 1
2

∣∣∣+ c−
j± 1

2

,
∣∣∣u+
j± 1

2

∣∣∣+ c+
j± 1

2

}
. (21)

In addition to the non-oscillatory polynomial reconstruction –which must ensure the positivity of the free

surface– and the wave speed estimate, the implementation of the scheme requires a discretization of the

source term integral on the right hand side of (18) that balances the numerical fluxes, a mechanism to

identify and resolve wet-dry regions, and an evolution routine to update the resulting ODE system. The

description of all these ingredients follows.

2.2. Positivity Preserving Non-oscillatory Reconstruction

In order to recover the interface point values vj± 1
2
(t) from the cell averages vj(t), we seek a piecewise

polynomial reconstruction

v(x, t) = R (x; v(t)) :=
∑
j

pj(x). (22)

This reconstruction procedure is at the heart of high-resolution non-oscillatory central schemes, and requires

the coefficients of the polynomials {pj(x)} to be determined so that R(x; v(t)) satisfies the following essential

properties:

• P1 — Conservation of cell averages: pj(x) = vj(t).

• P2 — Accuracy: R(x; v(t)) = v(x, t) +O((∆x)2) (in smooth regions).

• P3 — Non-oscillatory behavior of
∑
j pj(x).

• P4 — Flux gradient and source balancing: the interface values of the total area AT (and those of w)

must be reconstructed so as to satisfy

w±
j+ 1

2

= Const, (23)

when the data is that of a steady-state of rest (6), wj = Const.
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• P5 —Positivity: the reconstructed values w±
j± 1

2

(t) must yield h±
j± 1

2

(t) ≥ 0, so as to ensure the

positivity of hj(t+ ∆t).

To this end, we choose

pj(x) = vj + v′j(x− xj), (24)

with the limited slopes v′j calculated as, [30],

v′j =
1

∆x
minmod(α∆−v̄j ,∆0v̄j , α∆+v̄j), (25)

where 1 ≤ α < 2, and

minmod(x1, x2, x3, . . . , xk) =


minj(xj) if xj > 0 ∀j

maxj(xj) if xj < 0 ∀j

0 otherwise

.

2.2.1. Steady-state of Rest and Positivity – Properties P4 and P5

This minmod reconstruction procedure will satisfy properties P1−P3 above when applied to any (smooth

or non-smooth) piecewise data –property P3 is characterized by the the TVD property for scalar hyperbolic

conservation laws, [30]. However, in order to enforce P4 and P5, the reconstruction is applied to Q and w

–whose cell averages are recovered from those of AT by deconvolving A
T

j =
∫ wj

0
σ(xj , z) dz, which reduces

to solving a quadratic equation when σ(xj , z) is replaced by the piecewise linear approximation illustrated

in Figure 1. We refer the reader to Appendix A for the details of this deconvolution.

Reconstructing the pointvalues from the data {wj} instead of {ATj } the well-balance property, P4, is

trivially satisfied –as the minmod reconstruction will yield zero derivatives on the constant data {wj}, but

not the positivity of h±
j± 1

2

. As illustrated in Figure 2, the different signs of the finite differences compared

by the minmod limiter may lead to zero numerical derivatives and render interface values w±
j± 1

2

smaller than

the corresponding values of the bottom topography Bj± 1
2
. To prevent this numerical artifact, we follow [21]

and check the minmod reconstructed pointvalues w±
j± 1

2

, correcting them –if necessary– as follows

if w+
j− 1

2

< Bj− 1
2

=⇒ w′j = 2(wj −Bj− 1
2
) =⇒


w+
j− 1

2

= Bj− 1
2

w−
j+ 1

2

= wj + 1
2w
′
j

(26)

else
9



if w−
j+ 1

2

< Bj+ 1
2

=⇒ w′j = 2(Bj+ 1
2
− wj) =⇒


w−
j+ 1

2

= Bj+ 1
2

w+
j− 1

2

= wj − 1
2w
′
j

, (27)

which yields

h−
j+ 1

2

:= w−
j+ 1

2

−Bj+ 1
2
≥ 0, (28)

and

h+
j− 1

2

:= w+
j− 1

2

−Bj− 1
2
≥ 0. (29)

w
−

j+ 1

2

xj−1 xj+1xj

wj

Bj

xj− 1

2

xj+ 1

2

w
+

j− 1

2

Figure 2: Modified reconstruction of total water height, w, over the piecewise linear approximation of bottom
topography (dashed line). The minmod reconstruction is depicted by dotted lines over cell averages (black
dots), the modified reconstruction is depicted by a black solid line, the interface pointvalues of w, wj± 1

2
, are

depicted by black squares.

The pointvalues of the total area, AT,±
j± 1

2

, are then recovered from these by integrating the interface width,

AT,±
j± 1

2

=

∫ w±
j± 1

2

0

σ(xj± 1
2
, z) dz. (30)

2.2.2. Regularization of Flow Velocity and Discharge for Small A

We shall remark however that while this modified minmod reconstruction will ensure the positivity of the

water height at the cell interfaces, these pointvalues may still be very small (i.e., arbitrarily close to zero) and

may lead to large values of the velocity of the flow, u, or, equivalently, of the term Q2

AT−
∫ B(x)
0 σ(x,z) dz

= Qu

in the second component of the flux f in (14). In order to prevent this, after reconstructing Q, w, and AT

at the cell interfaces, we use the regularization technique suggested by [21],
10



u±
j± 1

2

=

√
2Q±

j± 1
2

A±
j± 1

2√(
A±
j± 1

2

)4

+ max
(

(A±
j± 1

2

)4, δ4
) , (31)

with

A±
j± 1

2

=

∫ w±
j± 1

2

B
j± 1

2

σj± 1
2
(z) dz, σj±1/2(z) := σ(xj±1/2, z). (32)

And then recalculate the interface values of the discharge as

Q±
j± 1

2

= A±
j± 1

2

u±
j± 1

2

. (33)

The value of δ was empirically determined, usually choosing δ = 5× 10−3 in this paper.

2.3. Well Balance

If, at time t, the computed flow variables satisfy the steady-state conditions of a lake at rest (6), i.e.,

wj = Const. and Qj = 0 for all j, the reconstructed pointvalues AT,±
j± 1

2

, (30), will trivially yield

dA
T

j (t)

dt
= 0, ∀ j, (34)

and thus A
T

j (t + ∆t) = A
T

j (t) as desired. This well-balance property allows the scheme to better handle

near steady-state flows [4, 18, 24, 31]. Satisfying also the well-balance property for Qj(t) requires additional

considerations; the cell average of the source term, Sj , in (15) needs to be discretized so as to balance the

numerical fluxes (19). In order to find such discretezation, we start by writing the second component of the

numerical flux difference in (18) for the rest conditions (6). Under these conditions, noting that the minmod

reconstruction of Q will trivially yield Q±
j± 1

2

= 0, this difference amounts to

HQ

j+ 1
2

−HQ

j− 1
2

∆x
=

1

2∆x

[(
fQ(v+

j+ 1
2

) + fQ(v−
j+ 1

2

)
)
−
(
fQ(v+

j− 1
2

) + fQ(v−
j− 1

2

)
)]

(35)

=
g

∆x

∫ w
j+1

2

B
j+1

2

(wj+ 1
2
− z)σ(xj+ 1

2
, z) dz −

∫ w
j− 1

2

B
j− 1

2

(wj− 1
2
− z)σ(xj− 1

2
, z) dz

 ,
11



and it should balance the cell average of the source term in (18), that is

Sj =
g

∆x

∫ x−
j+1

2

x+

j− 1
2

[∫ w

B

(w − z)σx(x, z) dz − σB(x)(w −B)B′
]
dx. (36)

Thus, the well balance property of the scheme amounts to devising a (high-order) discrete analog of the

integral in (36) that cancels the discretized counterpart of (35) exactly when w = Const., and u = 0. To

this end, we propose:

Proposition 1. Let Bj± 1
2

= B(xj± 1
2
), and σj± 1

2
(z) = σ(xj± 1

2
, z) be the topography and geometry at the

interfaces xj± 1
2
, and define the following approximation of the cell average Sj in (36)

1

∆x

∫ x
j+1

2

x
j− 1

2

∫ w

B

g (w − z)σx(x, z) dz dx ≈ 1

∆x

g

2

∫ w+

j− 1
2

B
j− 1

2

+

∫ w−
j+1

2

B
j+1

2

 (wj − z) ∆σj(z) dz, (37)

and
1

∆x

∫ x
j+1

2

x
j− 1

2

g σB(x)hBx dx ≈
g

∆x

∫ B
j+1

2

B
j− 1

2

(wj − z)σj(z) dz, (38)

where w±
j∓ 1

2

are the reconstructed pointvalues of w = h+B at the interfaces xj± 1
2
(in the interior of the cell

Ij),

wj =
wj− 1

2
+ wj+ 1

2

2
, ∆σj(z) = σj+ 1

2
(z)− σj− 1

2
(z), and σj(z) =

σj− 1
2
(z) + σj+ 1

2
(z)

2
.

Then the scheme (18) - (19) is well balance, i.e.,
d

dt
vj(t) = 0 for steady states of rest.

Proof. Consider a steady state at rest w = Const., u = 0. We notice that in the present case, HAT

j± 1
2

= 0.

For the discharge equation, using the discretized form of Leibniz’s rule for differentiation under the integral

sign,

∆x

∫ b(x)

a(x)

f(x, z) dz =
1

2

(∫ bL

aL

+

∫ bR

aR

)
∆xf(x, z) dz +

∫ bR

bL

f(z) dz −
∫ aR

aL

f(z) dz, (39)

12



we observe that the flux difference as calculated in (35) amounts to

HQ

j+ 1
2

−HQ

j− 1
2

∆x
=

1

∆x

g

2

∫ w
j− 1

2

B
j− 1

2

+

∫ w
j+1

2

B
j+1

2

∆x ((w − z)σ) (z)dz

+
1

∆x
g

∫ w
j+1

2

w
j− 1

2

(w − z)σ(x, z)dz − 1

∆x
g

∫ B
j+1

2

B
j− 1

2

(w − z)σ(x, z) dz

=
1

∆x

g

2

∫ w
j− 1

2

B
j− 1

2

+

∫ w
j+1

2

B
j+1

2

 (wj − z)∆σj(z)dz −
1

∆x
g

∫ B
j+1

2

B
j− 1

2

(wj − z)σj(z) dz

= Sj(t) for steady states of rest.

�

Remarks:

(1) The approximation (37) results from applying the trapezoidal rule in the x-direction, (38) follows

from changing the direction of integration with the change of variables z = B(x).

(2) The integrals in the z-direction from the flux difference, (Hj+ 1
2
−Hj− 1

2
)/∆x, and in (37) - (38) must

be discretized consistently so as to ensure well balance. To this end, several options are available

within the second order accuracy of the scheme, for instance, one could employ the composite

trapezoidal or midpoint rules over the intervals z ∈ [Bj± 1
2
, wj± 1

2
] for both sets of integrals.

(3) Quadrature formulae, however, are not the only or most convenient approach for the implementation

of the scheme. For the results presented in §3 below, we chose to sample the channel geometry, Bj± 1
2

and σj± 1
2 ,k

at the points (xj± 1
2
, zk) and we connect these values with piecewise linear functions (i.e.,

the cross-sections of the channel are piecewise trapezoidal). This approach allows us to calculate the

integrals in the z-direction (and also those in (30)) exactly. Such discretization of the channel does,

indeed, amount to applying the composite midpoint rule to evaluate those integrals.

2.4. Evolution

Once the interface values, the numerical fluxes and the average of the source term have been calculated,

the ODE system (18) is integrated in time using the second order Strong Stability Preserving Runge-Kutta
13



scheme [16],

v(1) = v(0) + ∆t C[v(0)] (40a)

v(2) =
1

2
v(0) +

1

2

(
v(1) + ∆t C[v(1)]

)
(40b)

v(t+ ∆t) := v(2), (40c)

with the Runge-Kutta fluxes

C[v(t)] = −
Hj+ 1

2
(v(t))−Hj− 1

2
(v(t))

∆x
+ Sj(t), (41)

and Sj(t) calculated according to (37) - (38). The time step ∆t is determined so as to satisfy the CFL

restriction
∆t

∆x
≤ 1

2 max

(
aj− 1

2
max

(
A+

j− 1
2

Aj
, 1

)
, aj+ 1

2
max

(
A−

j+1
2

Aj
, 1

)) . (42)

The following Proposition shows that this CFL condition guarantees the positivity of the water height

when the solution is evolved with forward Euler method:

Proposition 2. Consider the scheme (18)- (19) with the reconstruction algorithm described in §2.2 and the

discretization of the source term (37) - (38) . If the cell averages A
T

(t) are such that

wj(t) ≥
Bj− 1

2
+Bj+ 1

2

2
∀j,

or equivalently

ATj ≥
∫ B

j− 1
2

+B
j+1

2
2

0

σj(z) dz,

where

σ(z) :=
σ(xj− 1

2
, z) + σ(xj+ 1

2
, z)

2
,

then the cell averages A
T

(t + ∆t) as evolved with forward Euler’s method (40a) (i.e., vj(t + ∆t) = v(1) in

(40)) under the CFL limitation (42) with

aj± 1
2

= max
{∣∣∣u−

j± 1
2

∣∣∣+ c−
j± 1

2

,
∣∣∣u+
j± 1

2

∣∣∣+ c+
j± 1

2

}
, c±

j± 1
2

=

√√√√g
A±
j± 1

2

σT,±
j± 1

2

, and σT,±
j± 1

2

= σ
(
xj± 1

2
, w±

j± 1
2

)
, (43)

14



will yield

ĀTj (t+ ∆t) ≥
∫ B

j− 1
2

+B
j+1

2
2

0

σj(z) dz ∀j,

or equivalently

wj(t+ ∆t) ≥
Bj− 1

2
+Bj+ 1

2

2
∀j.

Proof. For λ = ∆t
∆x , the updated cell average of AT satisfies

A
T

j (t+ ∆t) = A
T

j (t)− λ

2

[
(Q+

j+ 1
2

+Q−
j+ 1

2

)− aj+ 1
2

(
AT,+
j+ 1

2

−AT,−
j+ 1

2

)
− (Q+

j− 1
2

+Q−
j− 1

2

) + aj− 1
2

(
AT,+
j− 1

2

−AT,−
j− 1

2

)]
= A

T

j (t) +
λ

2

[
(aj+ 1

2
− u+

j+ 1
2

)A+
j+ 1

2

+
(
aj− 1

2
+ u−

j− 1
2

)
A−
j− 1

2

]
−λ

2

[
(aj+ 1

2
+ u−

j+ 1
2

)A−
j+ 1

2

+
(
aj− 1

2
− u+

j− 1
2

)
A+
j− 1

2

]
≥ A

T

j (t)− λ

2

[
(aj+ 1

2
+ u−

j+ 1
2

)A−
j+ 1

2

+
(
aj− 1

2
− u+

j− 1
2

)
A+
j− 1

2

]
,

and applying the CFL restriction (42), we obtain

ĀTj (t+ ∆t) ≥ ĀTj − λ
[
aj+ 1

2
A−
j+ 1

2

+ aj− 1
2
A+
j− 1

2

]
≥ ATj (t)− Āj(t) =

∫ B
j− 1

2
+B

j+1
2

2

0

σj(z) dz,

which concludes the proof.

�

Remark: The second-order SSP Runge-Kutta scheme (40) consists of a convex combination of successive

forward Euler steps, therefore, for scalar equations, proving that a particular property of the semi-discrete

formulation (18) - (19) holds when the system of ODEs is evolved with forward Euler’s method will suffice to

prove such property holds when higher-order SSP Runge-Kutta schemes are employed, [16]. For the shallow-

water system discussed here, however, positivity can only be proven for the first-order Euler’s method since

the techniques suggested to ensure positivity at the cell interfaces and the regularization of the velocity, (31),

may dictate a smaller value of ∆t for subsequent stages of higher order evolution routine. The numerical

results presented below, however, suggest that, in most cases, the scheme remains stable under the CFL

restriction (42) when the full second-order Runge-Kutta scheme (40) is employed. Only in cases where the

regularization of the velocity needs to be applied some oscillations may arise, requiring a smaller value of ∆t
15



to ensure stability, regardless of the ODE solver used for the time integration. We refer the reader to [7] for

dry bed modification algorithm that ensures positivity without any impact on the global time step.

2.5. Treatment of wet-dry states

Height

x x

Height

B(x)

h(x)

Figure 3: Stationary solutions involving wet and dry states in a topography with several bumps (left) and
in a topography with jumps (right).

0 0.2 0.4 0.6 0.8 1

0.25

0.3

0.35

0.4

0.45

0.5

x

h
+

B

t=0

0 0.2 0.4 0.6 0.8 1

0.25

0.3

0.35

0.4

0.45

0.5

x

h
+

B

t=0.03

Figure 4: Numerical solution of a steady state at rest with wet-dry states. Spurious oscillations near wet-dry
states are observed. The topography is given by the black solid line and the total height by the red dotted
line.

Coastal flows, flooding simulations, and other geophysical problems often lead to solutions involving wet

and dry states. For example, stationary wet-dry fronts like those of Figure 3 –where w is constant in the

wet region and w = B in the dry region– may occur if the bottom topography contains bumps or jump

discontinuities, and dam break problems may lead to a non-stationary flows with wet and dry fronts like the

one illustrated in Figure 5, where the dry areas will be flooded and the solution will not remain stationary.
16



The additional difficulties that these wet-dry fronts pose –like the preservation of positivity in dry cells–

have been studied in [4] and [6].

Height

x

Figure 5: Example of a wet-dry state with constant height in wet areas, and not stationary.

The well-balance property of section 2.3 allows our scheme to recognize and preserve steady states of rest

where the total height w = h + B is constant and u = 0, but it does not take into account possible dry

areas. As a result, numerical spurious oscillations may be generated near the wet-dry interfaces as the well-

balance property does not guarantee the preservation of the wet-dry stationary solutions. Figure 4 shows

the evolution in time of a wet-dry steady state at rest at time t = 0 (left) and t = 0.03 (right) in a channel

with straight walls (σ ≡ 1) and piece-wise constant topography. The numerical approximation does not stay

stationary and noise generated near the jump starts propagating westwards. A modification of the scheme

will be needed to enable it to preserve wet-dry steady states.

2.5.1. An improved well-balance property

Following [6], we describe a wet-dry state by splitting the domain into two non overlapping parts: X1

(wet area) and X2 (dry area). The interface points are IWD = X1 ∩X2. A wet-dry state is called at rest

provided that

(a) The velocity u is zero everywhere

(b) w is constant on each connected component of X1

(c) w = B on X2

(d) For each x ∈ IWD, there exists ε > 0 such that w = w0 is constant on (x − ε, x + ε) ∩X1 and that

constant w0 satisfies w0 < B on (x− ε, x+ ε)∩X2. This prevents the wet state from inundating the

dry area on the other side of the interface, as in Figure 5.

This definition describes wet-dry states like those in Figure 3 and leads us to consider the following reference

scenario to devise an improved well-balance discretization that preserves steady states in (and near) dry cells:

we assume that a wet-dry interface occurs at cell Ij and the dry area is located to the right of the interface
17
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Figure 6: Flow profile for a Wet-Dry flow. The linear reconstruction of the total water elevation w across
the wet-dry cell matches both states at the cell interfaces, wj± 1

2
, while its cell average, wj , remains below

the wet state, preventing inundation of the dry state.

(the derivation would be identical but with indeces j + 1
2 and j − 1

2 exchanged), and the cell average of w

in cell Ij is set to wj =
w

j− 1
2

+B
j+1

2

2 < Bj+ 1
2
, where the interface values of w satisfy wj+1/2 = Bj+1/2 and

wj−1/2 = wwet < Bj+1/2, preventing the flow from moving and inundating the right side of cell Ij . Figure 6

illustrates this case.

In [6] preservation of steady-states even in the presence of dry areas is achieved by modifying the recon-

struction of water’s depth in almost dry cells, here we take a different approach consisting in a modification

of the discretization of the averaged cross-sectional hydrostatic pressure in equation (3). The following

proposition guarantees preservation of steady states at rest, even if dry areas are present. It is based on a

modified numerical flux at cell j. This modification is done near possible interfaces, which can be tracked

at points where

min(Bj−1/2, Bj+1/2) < wj < max(Bj−1/2, Bj+1/2) and wj+1 > max(Bj+1/2, Bj+3/2)

or

min(Bj−1/2, Bj+1/2) < wj < max(Bj−1/2, Bj+1/2) and wj−1 > max(Bj−3/2, Bj−1/2).

(44)

Proposition 3. The numerical scheme (40), (41), (19) with modified numerical flux at cells j satisfying

equation (44), given by the following averaged cross-sectional hydrostatic pressure

IWD
1,j± 1

2
=

g

2∆x

∫ w±
j∓ 1

2

B
j± 1

2

(wj − z)σj± 1
2
(z) dz +

∫ w∓
j± 1

2

B
j± 1

2

(wj − z)σj± 1
2
(z) dz

 , (45)
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Hj± 1
2

=

 Qj±1/2

Q2
j±1/2

AT
j±1/2

−
∫ Bj±1/2
0 σj±1/2(z)dz

+ IWD
1,j± 1

2

 , (46)

and

aWD
j± 1

2
= max

(
max

(
u+
j± 1

2

, u−
j± 1

2

)
,min

(
|u−
j± 1

2

|+ c−
j± 1

2

, |u+
j± 1

2

|+ c+
j± 1

2

))
(47)

preserves wet-dry steady states at rest.

Proof. Assume for simplicity that we only have one wet-dry interface, located at cell j (for some j) as in

Figure 6 in the case above. Then w+
j− 1

2

= wwet, where wwet is the wet state, and w−j+ 1
2

= Bj+ 1
2
. The diffusion

coefficients aj± 1
2
are an estimate to the maximum wave speed, which is needed for stability. However, the

estimate aj± 1
2
in equation (43) does not recognize wet-dry steady states since it does not vanish at the wet-

dry interface. The modified estimate (47) vanishes at a wet-dry interface, while still satisfying aj± 1
2
≥ |uj± 1

2
|,

which is needed for positivity.

Since w+
j− 1

2

= w−
j− 1

2

= wwet, w+
j+ 1

2

= w−
j+ 1

2

= Bj+ 1
2
, and u = 0, the first entry in the numerical fluxes

HAT

j± 1
2

vanishes. And since u = 0 and c±
j+ 1

2

= 0, aWD
j± 1

2

= 0, and the second component of the numerical flux

at the left cell interface reads

HQ

j− 1
2

= IWD
1,j− 1

2
=

g

2

∫ w−
j+1

2

B
j− 1

2

(wj − z)σj− 1
2
(z) dz +

∫ w+

j− 1
2

B
j− 1

2

(wj − z)σj− 1
2
(z) dz



=
g

2

∫ B
j+1

2

B
j− 1

2

(wj − z)σj− 1
2
(z) dz +

∫ wwet

B
j− 1

2

(wj − z)σj− 1
2
(z) dz

 ,
and at the right cell interface

HQ

j+ 1
2

= IWD
1,j+ 1

2
=
g

2

∫ w+

j− 1
2

B
j+1

2

(wj − z)σj+ 1
2
(z) dz +

∫ w−
j+1

2

B
j+1

2

(wj − z)σj+ 1
2
(z) dz

 =
g

2

∫ wwet

B
j+1

2

(wj−z)σj+ 1
2
(z) dz.

Therefore, the flux difference amounts to

HQ

j+ 1
2

−HQ

j− 1
2

∆x
=

g

2∆x

∫ wwet

B
j+1

2

(wj − z)σj+ 1
2
(z) dz −

∫ B
j+1

2

B
j− 1

2

(wj − z)σj− 1
2
(z) dz −

∫ wwet

B
j− 1

2

(wj − z)σj− 1
2
(z) dz

 .
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On the other hand, the cell average of the source term is given by

Sj(t) =
g

2∆x

∫ w+

j− 1
2

B
j− 1

2

+

∫ w−
j+1

2

B
j+1

2

 (wj − z) ∆σj(z) dz −
g

∆x

∫ B
j+1

2

B
j− 1

2

(wj − z)σj(z) dz

=
g

2∆x

∫ w+

j− 1
2

B
j− 1

2

(wj − z) ∆σj(z) dz −
g

∆x

∫ B
j+1

2

B
j− 1

2

(wj − z)σj(z) dz

=
g

2∆x

∫ w+

j− 1
2

B
j− 1

2

(wj − z)σj+ 1
2
(z) dz − g

2∆x

∫ w+

j− 1
2

B
j− 1

2

(wj − z)σj− 1
2
(z) dz

+
g

2∆x

∫ B
j− 1

2

B
j+1

2

(wj − z)σj+ 1
2
(z) dz − g

2∆x

∫ B
j+1

2

B
j− 1

2

(wj − z)σj− 1
2
(z) dz

=
HQ

j+ 1
2

−HQ

j− 1
2

∆x
,

which concludes the proof. �

Note that this modification affects the second component of the numerical flux, and it does not affect the

positivity preserving property. This approach has been tested in the numerical results in the next section.

3. Numerical Results

In this section we present the numerical solution of several prototype problems aimed at demonstrating the

properties of our central scheme and its ability to capture non-trivial steady flows. We begin by validating

the well balance property of the scheme and its behavior under small perturbations from the trivial steady-

state, (6). These include perturbations from piecewise trivial steady states so as to test the ability of the

scheme to identify and resolve correctly wet-dry states. We also study the convergence of solutions evolved

with the central scheme to non-trivial steady state solutions by comparing them to exact steady flows. To

conclude, we test the positivity preserving property by considering first an oscillating mass of water that

changes parts of the channel from dry to wet and wet to dry as time evolves, and with a dam break problem

where water is allowed to flow out of the channel onto a dry bed.
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The flows are calculated along channels with arbitrary geometry and bottom topography. We consider

the geometry described by the width functions

σ1(x, z) = 1 +
3

4
cos(πx)− 1

4
χ[0.4,0.6](x) (cos(π(x− 1/2)/0.1) + 1)

+
√
z

(
1− 1

4
χ[0.1,0.7](x) (cos (π(x− 0.4)/0.3) + 1)

)
(48)

− 1.2χ[0,1]

(
(x− 0.3)2 + (z − 1.4)2

r2
1

)
cos

(√
(x− 0.3)2 + (z − 1.4)2

r2
1

π

2

)

− 1.2χ[0,1]

(
(x− 0.75)2 + (z − 1.4)2

r2
2

)
cos

(√
(x− 0.75)2 + (z − 1.4)2

r2
2

π

2

)
,

where r1 = 0.28, r2 = 0.2. Here χ[a,b] is the characteristic function on any interval [a, b], and

σ2(x, z) =
1

2

(
1 +
√
z

(
1− 1

4
(cos (π(x− 0.6)/0.2) + 1)χ[0.4,0.8](x)

))
. (49)

These width functions are combined with different bottom topographies so as to render geometries suitable

to create the flows that are most challenging for the properties of the scheme to be tested on each case.

Unless otherwise stated, for the results presented below the value of the acceleration of gravity is taken

as g = 9.81 and the time step, ∆t, satisfies the CFL restriction

∆t

∆x
≤ τ

max

(
aj− 1

2
max

(
A+

j− 1
2

Aj
, 1

)
, aj+ 1

2
max

(
A−

j+1
2

Aj
, 1

)) , τ < 1. (50)

where aj± 1
2
stands for the estimates of the maximum speeds of propagation at the cell interfaces, calculated

as (43) (or (47) where appropriate). We shall note here that while the proof of proposition 2 requires τ < 1
2 ,

most of the of the numerical experiments below were computed with values 1
2 < τ < 1. The same flows

simulated with a more restrictive CFL number, τ < 1
2 , did not yield substantially better results. In section

§3.1we set τ = 0.45 and study the convergence of the scheme by progressively reducing the grid side. For the

perturbation of a steady state of rest in §3.2 we use τ = 0.45 to reduce oscillations caused by the narrowest

areas of the channel, and the oscillating lake simulation in §3.5 was computed with τ = 0.6 and α = 1 (in

equation (25)) also to prevent the onset of oscillations. All other flows were calculated with τ = 0.9 and

α = 1.5.
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Figure 7: Solution at time t = 0.01 for a trapezoidal channel with initial conditions given in equation (52).

3.1. Accuracy of the scheme

In this section we consider two flows in order to study the convergence of the scheme over a successively

refined grid. The first example consist of a trapezoidal channel with smooth initial conditions that remain

smooth for a short time. The results obtained over the successively thinner grids validate the second order

of the scheme for smooth flows. In the second example, as one would expect, the observed order of accuracy

is reduced as shock waves develop within a flow containing wet-dry fronts.

3.1.1. Accuracy in smooth regions

Complicated geometries may influence the presence of shock waves very quickly. For simplicity, and in

order to guarantee the absence of shock waves in a short period of time, we consider a trapezoidal geometry

σ(x, y) = 1 + 0.3 y, (51)

and a flat topography B = 0. Initially the total height and the velocity are given by

w(x, t = 0) = 1.7 + 0.1

(
cos

(
π(x− 0.4)

0.2

)
− 1

)
, u(x, t = 0) = 1. (52)

Assuming free boundary conditions, Figure 7 shows the total height (in 2D and 3D) at the final time

T = 0.01. No shock waves are observed, and second order accuracy is expected. We approximate the exact

solution at time T = 0.01 with a fine grid (N = 10240). In order to study convergence, we compute the L1

error for ∆x = 1/N , N = 20, 40, 80, 160, 320, 640, 1280, 2560 and 5120, respectively. The L1 error and the
22



Number of grid points L1 Error L1 Error /∆x2

20 2.7× 10−3 1.0
40 1.5× 10−3 2.4
80 5.6× 10−4 3.5
160 1.1× 10−4 2.8
320 2.9× 10−5 3.0
640 7.4× 10−6 3.0
1280 1.8× 10−6 3.1
2560 4.4× 10−7 3.1
5120 9.1× 10−8 3.1

Table 1. Second order accuracy in smooth regions
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Figure 8: Log-log plot of L1 error as a function of ∆x (dots) for the smooth flow with initial conditions (52).
The two solid lines indicate first and second order accuracy.

corresponding ratio with ∆x2 are shown in table 1. In addition, Figure 8 shows the corresponding log-log

plot of the L1 error, and two lines with slopes 1 and 2 for comparison. The results confirm the second order

accuracy of the scheme.

3.1.2. Accuracy near wet-dry states

Having demonstrated the second order accuracy of the scheme in smooth regions, in this test we consider

an oscillating lake like that in [4]. In general one can expect the accuracy of the scheme to be reduced to

first order in the presence of shock waves. As a separate issue, the regularization (31) needed near dry areas

introduces errors in the computations. As a result, the accuracy of the scheme near wet-dry states could be

drastically reduced in the oscillating lake. An analysis of the accuracy follows.
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Figure 9: Solution at time T = 0.4 for a trapezoidal channel with topography, and initial conditions given
by (53) and (54). Dashed line denotes the initial condition, and solid line is the numerical solution at time
t = 0.4.

The same trapezoidal geometry from equation (51) is considered. However, the topography is now given

by

B(x) =
1

4
(1− cos (2π(x− 1/2))) . (53)

The initial conditions are given by

ω(x, t = 0) = 5× 10−4 + max(B(x), 0.25 + 0.2 x), u = 0. (54)

The initial state is an oscillating lake as in [4], and can be seen in Figure 9 (left, dashed blue line). It

corresponds to a lake with an inclined surface in the middle of the domain, and dry states otherwise. The

evolution of the surface consist then of oscillations. At time T = 0.4, the oscillating lake has completed

half of an oscillations, as seen in Figure 9 (left, red solid line). Clear discontinuities can be identified in the

velocity field (right plot), decreasing the accuracy of the scheme. The velocity discontinuities are located

near the wet-dry states, where the velocity regularization is needed. This process introduces further errors

in the numerical results. Figure 10 shows the log-log plot of the L1 error norm. The accuracy has been

reduced to order 0.6 approximately.

3.2. Perturbations of Steady State of Rest

In this test, the geometry of the channel is given by the width (48) and a bottom topography is given

by an spline of degree three with nodes at (−0.1, 1.4), (0.3, 0.7), (0.6, 0.6), (0.7, 1), (0.8, 0.7), (0.9, 1.1), and

(1.1, 1.3). Figure 11 shows a 3D view of the channel and the vertical profile of the topography. For the
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Figure 10: Log-log plot of L1 error as a function of ∆x (dots) for the non-smooth flow with initial conditions
(54). The two solid lines indicate order of accuraccy 1 and 0.6.

convenience of the reader, details on the computation of cubic spline interpolation is included in Appendix

B.

Figure 11: 3D-view of the channel (top) and bottom topography (bottom).

The proposed numerical scheme preserves steady states at rest by construction. It has been shown in

related works (e.g., [14, 17, 31]) that recognizing steady states at rest is enough to enable the scheme to

recognize and compute near steady state solutions accurately. We begin testing our numerical scheme with

the evolution of a perturbation from a steady state. These perturbation should propagate in both directions.
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Once the perturbation leaves the free boundary, only the flat states should remain in our computational

domain, and the flow should converge to the trivial steady state (6).

The initial height is w = 1.45 and a perturbation of size ε = 10−2 is applied on the interval [0.1, 0.15].

The flow is initially at rest. The topography and geometry are non-trivial at the boundaries which requires

us to specify the values of the total height, w and the velocity u, at both boundaries so as to implement free

flow boundaries.
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Figure 12: Perturbation of steady state of rest at t = 0, 0.025, 0.2, 2. The numerical results obtained with a
Roe-type upwind scheme (solid line) and with the present scheme (dotted line) are compared, showing good
agreement.

Figure 12 shows the evolution of the perturbation at times t = 0, 0.02, 0.2, 2. We compare the numerical

results obtained by the present scheme (dotted line) to the numerical solution obtained using the upwind

Roe-type scheme (solid line) in [17]. The comparison shows a good agreement between the two schemes.

Due to the non-trivial topography and general geometry of the channel’s walls, a curved profile is developed

as the perturbation jumps over the topography and the width of the channels changes at different heights.

After the perturbation leaves the domain, we observe that an unperturbed steady state is recovered.
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3.3. Test on wet-dry states

Positivity and preservation of wet-dry states are two properties achieved by this scheme. In this test we

will verify the properties proved in propositions 2 and 3 in a discontinuous topography with a dry state on

one side and a flat wet state on the other. The topography is a piece-wise spline. To obtain it, we first

consider an spline of degree three with nodes (0, 0.3), (0.05, 0.3), (0.1, 0.2), (0.15, 0.5), (0.3, 0.4), (0.4, 0.6),

and (0.75, 0.6) (see Appendix B). Then the spline is rescaled by a factor of 0.5 for x ≤ 0.53 and of 1.3 for

x ≥ 0.53. Finally the topography is redefined to be flat near the two boundaries: 0.12 for x ≤ 0.1 and 0.8

for x ≥ 0.7. A 3D-view of the channel is shown Figure 13, the topography is shown in light brown and the

side walls in gray.

Figure 13: 3D-view of the channel’s geometry.

A perturbation to the stationary state is applied to the left of the discontinuity in the topography. The

perturbation propagates and hits the “jump” in the topography. If the perturbation is small enough, it

is expected to reflect back without transmitting any wave to the right. When the perturbation is large,

however, part of the wave reflects back and part is transmitted, inundating the right side and leaving the

boundary through the right. We test both cases next.

3.3.1. Small perturbation

We first consider a perturbation of size ε = 0.1 to the left of the wet stationary state in the example

above. Figure 14 shows the 2D (top) and 3D (bottom) views of the evolution in the perturbation. As

observed above, the wave reflects back after hitting the “shore”.
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Figure 14: Small perturbation to a wet-dry state at different times. Only a reflection is observed when the
wave hits the discontinuity in the topography.

3.3.2. Large perturbation

A perturbation of size ε = 0.3 is applied on the left wet stationary state in the example above. Figure

15 shows the 2D (top) and 3D (bottom) views of the evolution in the perturbation. We observe the wave
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partially reflecting back and partially transmitting the discontinuity, eventually leaving through the right

boundary.
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Figure 15: Large perturbation to a wet-dry state. The wave partially reflects back and partially transmits
through the discontinuity when it hits it.

3.4. Convergence to Steady-States

As pointed out in §1.2, smooth steady-state flows are characterized by their constant discharge, Q, and

energy, E. These steady or near steady flows are quite common in nature. In [11,26, 33] numerical schemes
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that preserve general steady-states and not just at rest have been constructed. In nature only near steady

states are common, and in [17] it was shown that upwind schemes preserving steady states at rest enables

it to very accurately compute near steady state flows. However, in [33] well-balanced WENO schemes for

moving-water equilibria exhibited superior results over those preserving steady states at rest only. In this

section, we test the ability of the scheme to converge to such solutions when the initial conditions are close

to equilibrium. In order to simulate these conditions, we initialized the flow by confining water within the

two ends of a channel connected to two reservoirs. The reservoirs hold water with identical value of Qin

but different water heights hin and hout. At time t = 0, the water within the channel is let to flow and the

solution is evolved over time to observe whether it converges to the steady-state that is uniquely determined

by the channels geometry and the data Qin, and hout; an exact solution that we compute before hand.

The correct implementation of the boundary conditions is essential to study the convergence of these flows

to the unique steady flow determined by Qin and hout. All the flows we consider are subcritical at the left

–inflow– boundary (i.e., u−c < 0), thus for the numerical calculations, we specify the value of the discharge,

Qleft = Qin, at that boundary and the value of h (or w) is extrapolated from the computational domain. At

the right –outflow– boundary, if the flow is supercritical (i.e. u−c > 0), both h and Q are extrapolated from

the evolved solution inside the computational domain, otherwise, Q is extrapolated and the total height is

set to w = wout.

3.4.1. Subcritical Flows

The first steady flow that we investigate is a subcritical flow (i.e., its Froude number satisfies F 2 < 1

throughout the channel). The geometry of the channel is given by the width function (48) and a bot-

tom topography consisting of a 3-bump spline with nodes (x, z) = {(0.2, 0), (0.3, 0.6), (0.4, 0.4), (0.5, 0.5),

(0.6, 0.2), (0.7, 0.3), (0.8, 0)}. The flow invariants are set to Qin = 2.0494 and wout = 1.5. The flow is ini-

tially at rest and has total height wout. Figure 16 shows the solution at time t = 20. The dotted line on the

top left of the figure is the numerical solution of the subcritical flow, which is in very good agreement with

the exact solution (solid line). The solid black line on the left figure represents the topography. The top

right of the figure shows the steady variables Q and E, whose relative errors are 3.5× 10−3 and 1.2× 10−3

respectively. The 3D view of the subcritical flow is shown at the bottom of the figure. The topography is

shown in light brown, walls in gray and the water surface in blue.
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Figure 16: Steady state convergence at t = 20 for subcritical flows. Top left shows the side view of the
solutions, top right the steady variables Q and E, and bottom shows a 3D view of the flow. The numerical
approximation of the water level (dotted line) is in very good agreement

3.4.2. Smooth Transcritical Flows

In [5,19] the effect of the channel’s width and topography on steady-state flows was studied. Depending on

the conditions at the outflow boundary, when a subcritical flow is accelerated through a contraction and/or

a bump on the channel’s floor, it may reach criticality (i.e., F 2 = 1) at some point within the channel. From

that point on, the steady flow may remain smooth and supercritical or it may jump back to subcritical so

as to match the outflow boundary conditions. In this test, we set Qin = 0.4511 and wout = 0.1425 for a

channel whose width is given by σ2(x, z), (49), and bottom topography given by

B(x) =
1

2

(
1 + cos

(
π

(
x− 1

2

)
/0.4

))
χ[0.1,0.9](x). (55)

Figure 17 shows the solution at time t = 2. The dotted line on the top left of the figure is the numerical

solution of the transcritical flow, which is in very good agreement with the exact solution (solid line). The

solid black line represents the topography. The top right of the figure shows the computed values of the flow

invariants Q and E, whose relative errors with respect to the exact solution are 1.7 × 10−3 and 6 × 10−4

respectively. The 3D view of the transcritical flow is shown at the bottom of the figure; the topography is

shown in light brown, the walls of the channel in gray, and the water surface in blue.
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Figure 17: Steady state convergence at t = 2 for smooth transcritical flows. Top left shows the flow profile,
top right the steady variables Q and E, and bottom shows the 3D view. The numerical approximation of
the water level (dotted line) is in very good agreement

3.4.3. Transcritical Flow with Shock

Only certain boundary condition may be connected by smooth transcritical steady flows. If the conditions

at the outflow boundary are those of a subcritical flow, then, the supercritical flow must dissipate energy

through a stationary shock so as to match the outflow conditions. The jump occurs in the place where the

jump conditions are satisfied, [1]. In this subsection we test the convergence to such flows over time. The

boundary conditions consist of imposing Qin = 0.4511 at the inflow boundary, and wout = 0.9769 at the

outflow. Figure 18 shows the solution at time t = 2. The dotted line on the top left of the figure is the

numerical solution of the transcritical flow, which is in very good agreement with the exact solution (solid

line). The solid black line is the topography. The top right of the figure shows the steady variables Q and

E. The 3D view of the non smooth transcritical flow is shown at the bottom of the figure; the topography

is shown in light brown, the walls of the channel in gray, and the water surface in blue.
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Figure 18: Steady-state convergence at t = 2 for transcritical flows with shock. Top left shows the side view
of the solutions, top right the steady variables Q and E, and bottom shows the 3D view. The numerical
approximation of the water level (dotted line) is in very good agreement

3.5. The Oscillating Lake

In problems where the layer’s depth is small, e.g., flooding problems or dam break simulations, numerical

errors in the solution may lead to an unphysical negative depth of the water layer. With the following

example we test the positivity preserving property proved in proposition 2. On a channel whose geometry

is given by (48) and a centered bump described by a spline of degree three with nodes (−0.1, 1.9), (0.3, 1.2),

(0.6, 1.1), (0.7, 1.5), (0.8, 1.2), (0.9, 1.6), (1.1, 1.8) (see Appendix B), we set initial conditions similar to those

in the oscillating lake study presented in [5], and let the flow evolve over time.

Initially, the right side of the bump consists of only dry states. Figure 19 (top) shows the solution at

times t = 0, 0.15, 0.6, 20. The top right snapshot shows how the flow starts to inundate the right side of the

bump, which was initially dry. This forms two oscillating lakes interacting several times as the water jumps

over the bump, spilling to the right side causing other oscillations until both sides reach a steady state at

rest, as can be shown at t = 200. The bottom of Figure 19 shows the 3D view of the corresponding flows.
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Figure 19: Numerical solution for an oscillating lake at times t = 0, 0.15, 0.6, 20.

3.6. Dam break

The last test simulates a dam break and is also aimed at testing the positivity preserving property of our

central scheme. The topography is the 3-bump spline given in Section 3.4.1 and the initial conditions consist

of a steady-state of rest with total height w = 0.8. We apply reflecting boundary conditions at the (left)

inflow boundary and impose wout = 10−3 at the (right) outflow boundary. Figure 20 shows the evolution of
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the drainage simulation. We observe that the water drains through the right boundary, except for the areas

where the water gets trapped between the bumps.
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Figure 20: Dam break simulation at times t = 0.1, 0.5, 1.5, 10.

Conclusions: A model for shallow water flows in channels with arbitrary cross-sectional area was presented

and its properties discussed. Taking these properties into consideration, we designed a positivity preserving

high-resolution, non-oscillatory semi-discrete central scheme for simulating the flows described by the model,
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and we proved that the scheme enjoys several desirable properties for computing these solutions: the well

balance property was achieved by finding a consistent discretization of the source term that balances the

flux gradient when the flow is at rest; a reconstruction from the cell averages of the data that preserves the

positivity of the layer’s depth at the cell interfaces together with a CFL restriction guarantees the positivity

preserving property; and the ability to detect and resolve partially wet regions was built into the scheme

by introducing a modification in the numerical flux and the estimate of the speed of propagation. Several

numerical experiments were presented so as to demonstrate the robustness of the numerical algorithm, and

its ability to capture steady-flows and resolve wet-dry fronts.
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Appendix A. Deconvolution of water elevation from total Area

In order to recover the cell average of the total water elevation, wj , from the updated total area, A
T

j after

each time step, we make use of the linearization of the channel illustrated in Figure 1. That is, if σ(x, z) is

a piecewise linear function in the vertical direction with nodes (zk, βk(x)), 0 = z0 < z1 < z2 < . . . < zk <

zk+1 < . . ., we define

σ(x, z) = βk(x) +mk(x)(z − zk), for zk ≤ z < zk+1,

with the slope, mk(x), given by

mk(x) =
βk+1(x)− βk(x)

zk+1 − zk
.

Then the deconvolution consists of solving the quadratic polynomial in wj

(
βk(xj) +mk(xj)

wj − zk
2

)
(wj − zk) = A

T

j −
∫ zk

B(xj)

σ(xj , z)dz,

where k is such that zk ≤ wj < zk+1.

Appendix B. Topographies and cubic spline interpolations

The topographies used in different examples in the paper are obtained using standard cubic spline in-

terpolations. For the convenience of the reader, the algorithm is described here. Splines of degree three

interpolate n + 1 nodes (x0, z0), (x1, z1), . . . (xn, zn) with the aid of cubic polynomials. More precisely, and

assuming without loss of generality that x0 < x1 < . . . xn, the topography is defined as

B(x) = p(x) :=



p0(x), x0 ≤ x ≤ x1

p1(x), x1 ≤ x ≤ x2

...

pn−1(x), xn−1 ≤ x ≤ xn,

where each pi, i = 0, . . . , n is a cubic polynomial satisfying the following conditions

pi(xi) = zi, 0 ≤ i ≤ n− 1, and pn−1(xn) = yn,

pi−1(xi) = pi(xi), 1 ≤ i ≤ n− 1

p′i−1(xi) = p′i(xi), 1 ≤ i ≤ n− 1

p′′i−1(xi) = p′′i (xi), 1 ≤ i ≤ n− 1

p′′(x0) = p′′(xn) = 0,
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where the primes denote derivatives with respect to x. This gives 4n conditions and 4n unknowns for the

coefficients of the cubic polynomials.

To solve the system, let us define ri = S′′(xi). Since we impose the condition S′′(x0) = S′′(xn) = 0, then

r0 = rn = 0. Let hi = xi+1 − xi, and di = zi+1−zi
hi

. The cubic polynomials can be written as

pi(x) =
ri+1

6hi
(x− xi)3 +

ri
6hi

(xi+1 − x)3 +

(
zi+1

hi
− hi

6
ri+1

)
(x− xi) +

(
zi
hi
− hi

6
ri

)
(xi+1 − x),

where the unknowns ri, 1 ≤ i ≤ n can be computed by solving the system



h0+h1

3
h1

6

h1

6
h+1+h2

3
h2

6

h2

6
h2+h3

3
h3

6

. . . . . . . . .

hn−3

6
hn−3+hn−2

3 hn−2

hn−2

6
hn−2+hn−1

3





r1

r2

r3

...

rn−2

rn−1


=



d1 − d0

d2 − d1

d3 − d2

...

dn−2 − dn−3

dn−1 − dn−2


The system above involves a tridiagonal matrix. The Thomas method can be used to solve it.
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