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Abstract

We consider the shallow water equations for flows through channels with arbitrary cross-section.

The system forms a hyperbolic set of balance laws. Exact steady-state solutions are available and are

controlled by the relation between the bottom topography and the channel geometry. We use a Roe-

type upwind scheme for the system. Considerations of conservation, near steady-state accuracy, velocity

regularization and positivity near dry states are discussed. Numerical solutions are presented illustrating

the merits of the scheme for a variety of flows and demonstrating the effect of the interplay between

topography and geometry on the solution.

1 Introduction

The shallow water equations model a variety of atmospheric and geophysical flows. They may be derived from
the Euler equations by cross sectional averaging, and describe flows that are nearly horizontal. They form a
set of nonlinear hyperbolic conservation laws with geometric source terms representing the topography and
geometry constraining the flow. Delicate balance between the flux gradient and the geometric source terms
give rise to a range of interesting flows including a variety of non-trivial equilibrium solutions. This paper
is concerned with shallow water flows through channels of variable cross sectional area, where the interplay
between the bottom topography and the contraction of the channel affects and controls the resulting solution.
While the model is formulated for channels with a general cross section, it is convenient to think of the
channel walls as being approximated by piecewise linear segments, and the cross section being approximated
by piecewise trapezoids, see Figure 1.

��������������������������������������������������������������������������������������
��������������������������������������������������������������������

��������������������������������������������������

h(x,t)

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

(x,y)σ
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

����������������������������

h(x,t) h(x,t)

(x,y)σ

h(x,t) y

(x)σ

B(x) B(x)B(x)

y

(x,y)σ

y

B(x)

Figure 1: Schematic of channel cross section

Recent years have seen a rapidly growing interest in development of numerical methods for shallow water
systems in various numerical frameworks [22, 17, 12, 20, 23, 14, 1, 18, 19, 15, 10, 2], see also the recent
book [4] and references cited therein. Most relevant for the present work are papers involving shallow water
flows in variable geometry, including [24, 9, 13] where an upwind scheme for the single layer shallow water
is derived and generalized to rectangular channel flows, and [6] where the Q-scheme [5] is used to solve the
two layer shallow water system, the scheme in [25, 8] based on central WENO reconstruction and [2] using
a central-upwind scheme [15].

The paper is organized as follows: In Section §2, the model and its properties are described, Section §3
discusses the numerical method, and Section §4 presents numerical results. The paper has two Appendices:
Appendix A discusses the structure of steady-state solutions and the role of boundary conditions, and
Appendix B derives the numerical scheme and establishes its properties.

∗Work supported in part by NSF, award number DMS 0609766, and by Conacyt #160147.
†Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043.



2 The Model

The shallow water equations for flow through channels with variable cross section is given by

(
A
Au

)

t

+

(
Au
Au2 + I1

)

x

=

(
0

I2 − gσB(x)hBx

)
(1)

where h denotes the depth of the layer, u the velocity, B(x) the bottom topography, σ(x, y) the channel

geometry, A =
∫ B+h

B
σ(x, y)dy is the cross-sectional wet area, Au = Q is the flow rate or discharge, σB(x) =

σ(x, B(x)) the bottom channel width, and g the gravitational constant. We further use w = h+B to denote
the total surface height, I1 = g

∫ w

B (w − y)σ(x, y)dy = Ap, where p denotes the cross-sectional average of

the hydrostatic pressure, and I2 = g
∫ w

B (w − y)σx(x, y) dy (See Figure 1). Written in quasilinear form, the
system is given by 


A

Au




t

+




0 1

c2 − u2 2u






A

Au




x

=




0

c2 (hI3 − σBBx)


 (2)

where I3 = 1
h

∫ w

B
σx(x, y) dy is the averaged width variation, and c2 = gA/σT , where σT = σ(x, h + B) is

the width of the channel at the top surface. Notice that c2 reduces to the familiar expression c2 = gh for
rectangular channels. The system is hyperbolic, with eigenvectors and eigenvalues

R =




1 1

u − c u + c


 Λ =




u − c 0

0 u + c


 , (3)

and is characterized by the nondimensional Froude number F , where F 2 =
u2

c2
. The flow is described as

subcritical for F 2 < 1 and supercritical for F 2 > 1.
The system is endowed with an entropy function

E = AE − I1

satisfying an entropy inequality
∂E
∂t

+
∂

∂x

(
QE

)
≤ 0

Strict hyperbolicity is lost for h = 0, when eigenvectors coincide, representing a so-called “dry state”.

Steady-State Solutions

Smooth steady-state solutions are characterized by two constants, the flow rate Q, and the energy E

Q ≡ Au = Const , E ≡ 1

2
u2 + g(h + B) = Const,

of which it is easy to recognize the steady state of rest

u = 0 , h + B = Const .

Exact smooth solutions can be found by rootfinding

1

2

Q2

A2
+ g(h + B) − E = 0 , A = A(h). (4)

In the straight channel case, smooth steady solutions satisfy (here h′ = hx)

(F 2 − 1)h′ = B′.
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At the crest B′ = 0, and the solution is either critical (F 2 = 1) or symmetric (h′ = 0). If the channel is
rectangular with variable cross sectional width, then

(F 2 − 1)h′ = B′ − hσ′

σ
F 2 . (5)

If the crest (B′ = 0) and the throat (σ′ = 0) occur at the same point, the right hand side of (5) vanishes
there and the flow is either symmetric or reaches criticality at that point. Otherwise, criticality occurs where

B′ =
h

σ
F 2σ′

which is somewhere between the crest and the throat. For general channels, smooth steady-state solutions
satisfy

(F 2 − 1)h′ =

(
1 − (σT − σB) F 2

σT

)
B′ − hI3

σT
F 2

In Appendix A, we discuss further the structure of steady-state solutions and the role of boundary con-
ditions in time dependent problems.

3 Numerical Method

We write system (2) as
Wt + A(W )Wx = S(W )

and use a Roe-type upwind scheme [21], with upwinding of the geometric source terms as proposed in [22].
The scheme has the general form

Wn+1
j = Wn

j − ∆t

∆x

{
A+

j− 1

2

(
Wn

j − Wn
j−1

)
+ A−

j+ 1

2

(
Wn

j+1 − Wn
j

)}
. (6)

Here,

A+∆W =
∑

λk>0

(αkλk − βk)rk , A−∆W =
∑

λk<0

(αkλk − βk)rk (7)

where λk and rk are the eigenvalues and eigenvectors of some local linearization of the flux jacobian, to be
specified, and αk and βk are the wave strengths associated with the flux gradient and the source

∆W =
∑

k

αkrk, ∆xS =
∑

k

βkrk (8)

given by

α1 =
(û + ĉ)∆A − ∆Q

2ĉ
, β1 =

ĉ2
(
σ̂B∆B − ∆x ĥI3

)
+ Ĝ

2ĉ

α2 = − (û − ĉ)∆A − ∆Q

2ĉ
, β2 = −

ĉ2
(
σ̂B∆B − ∆x ĥI3

)
+ Ĝ

2ĉ
.

(9)

where we have used (̄ ) = ()L+()R

2 to denote arithmetic averages, and (̂ ) to denote other linearized quantities
as defined below

Â =
1

2

[∫ wL

BL

+

∫ wR

BR

]
σ̄(y)dy, σ̄(y) =

1

2

(
σL(y) + σR(y)

)
, û =

√
ALuL +

√
ARuR√

AL +
√

AR

, ĉ2 =
gÂ

σ̂T
, (10)
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σ̂T and σ̂B are the linearized widths at the top/bottom surface

σ̂T ∆(h + B) =

∫ wR

wL

σ̄(y)dy , σ̂B ∆B =

∫ BR

BL

σ̄(y)dy, (11)

and

∆x ĥI3 =
1

2

[∫ wL

BL

+

∫ wR

BR

]
∆σ(y)dy , Ĝ = g

∫ wR

wL

(w − y)σ(x, y)dy, (12)

The above linearization is conservative, and respects steady state of rest (see Appendix B for details), and
in the case of vertical walls σ(x, y) = σ(x), reduces to

Â = σ̄ h̄, σ̂T = σ̂B = σ̄ ĉ2 = gh̄, û =

√
ALuL +

√
ARuR√

AL +
√

AR

,

∆x ĥI3 = h̄ ∆σ, Ĝ = g
4∆σ (∆(h + B))2

A Comment about More General Steady States

The above version of the scheme respects steady state of rest. It is generally not easy to design a scheme
that respects all steady states, even if smooth, and often necessitates nontrivial rootfinding (see [18, 19, 7]).
We would like to make the following observations.

For smooth flows, one may express the governing equations in terms of the equilibrium variables Q and
E as follows

(A)t + Qx = 0

(Au)t + u Qx + A Ex = 0
. (13)

This formulation trivially respects all smooth steady states, and does not require resorting to rootfinding. Of
course, system (13) is not in conservation form, but for smooth flows, computed solutions are conservative
to the order of the numerical approximation, which can be as high as one wishes. Where (13) falls short is
in handling discontinuous flows.

In [3], a method was proposed for conservation laws with spatially varying flux functions. The method
uses the so-called f-waves, and is suitable for computations of near steady-state flows in that the entire
residual

∆F − ∆xŜ

is decomposed onto the characteristic fields, for some linearization of the source Ŝ. If a source linearization
can be found so that the steady state is recognized on the discrete level, the residual is identically zero and
so are its projections onto the characteristic fields.

For rectangular channels, we write the fluctuations in terms of the equilibrium variables, ∆Q and ∆E.
Using repeatedly the identity ∆(AB) = Ā∆B + B̄∆A where ¯( · ) indicates arithmetic average, we obtain

∆
(
σhu2 + g

2σh2
)

≡ ū∆Q + σhu∆u + g
2 σ̄∆h2 + g

2 h2 ∆σ

= ū∆Q + Q̄∆u + gσ̄ h̄∆h + g
2 h2 ∆σ

= ū∆Q +
(
Q̄ − σ̄ h̄ ū

)
∆u + σ̄ h̄ ū∆u + gσ̄ h̄∆h + g

2 h2 ∆σ

= ū∆Q + σ̄ h̄ ∆
(

1
2u2 + gh

)
+ g

2 h2 ∆σ +
(
Q̄ − σ̄ h̄ ū

)
∆u .

Using

∆x
(
Ŝ
)(2)

= −gσ̂h∆B +
1

2
gĥ2∆σ := −gσ̄h̄∆B +

1

2
gh2∆σ
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we obtain the discrete identity

(
∆F − ∆xS̄

)(2)
= ∆

(
σhu2 + g

2σh2
)

+ gσ̄h̄∆B − 1
2 gh2∆σ

= ū∆Q + σ̄ h̄ ∆E + (Q̄ − σ̄ h̄ ū)∆u︸ ︷︷ ︸
Conservation Correction Term

.

We make the following comments:

(i) It is easy to see that ∆F − ∆xS̄ ≡ 0 for steady state of rest.

(ii) For more general smooth steady states,
(
∆F − ∆xS̄)(2) = (Q̄ − σ̄ h̄ ū)∆u 6= 0. We observe that

(
Q̄ − σ̄ h̄ ū

)
∆u =

{∆u∆(σh) + ∆h∆(σu) + ∆σ∆(hu)

8

}
∆u = O(∆x)3

is small for smooth flow, so the residual that is being decomposed is very small, which may explain
good behaviour of the method for general (smooth) steady state.

(iii) The wave strengths expressed in terms of ∆Q and ∆E are given by

Z1 = 1
2∆Q − σ̄

2g c̄ ∆E − Q̄−σ̄ h̄ ū
2c̄ ∆u

Z2 = 1
2∆Q + σ̄

2g c̄ ∆E + Q̄−σ̄ h̄ ū
2c̄ ∆u.

(14)

We have used both versions of the upwind scheme (6)-(12) and (14) in the computations of the next section.
In general, we have found them to give very similar results.

Entropy Fix

It is known that Roe-type schemes require an entropy fix. We have implemented an entropy fix following
[11], as discussed in [16]. It is our experience that implementing an entropy fix is crucial for computations of
drainage problems, where the flow develops centered rarefactions in regions of very thin layers (see Section
4).

Velocity Regularization and Positivity

When h << 1 is very small, for example in drainage problems, recovering the velocity u in the standard
way u = Q/A becomes inaccurate and may cause instabilities. This is often remedied by regularizing the
velocity, for example

u =
2Q

A + max(A, ǫ)
. (15)

Typically, ǫ = O(10−5). Other formulas may be used [2, 15]. For drainage problem, we have also used

u = sign(Au) {max (2 (EStSt − g(h + B)) , 0)}1/2 for h < ǫ (16)

which replaces u in very thin layers by a value consistent with the steady-state solution towards which the
solution is converging (e.g. EStSt is the final steady-state energy for the drainage problem). This formula
often gives very smooth and clean convergence, see numerical results in Section 4. The current version of
the scheme is not positive, but has proven to be extremely robust in maintaining positivity, for example in
drainage problems (see Section 4).
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4 Numerical Results

The numerical scheme is formulated in terms of integrals over general channel cross-section. It is convenient
to think of the channel walls as being approximated by straight line segments, leading to piecewise trapezoidal
cross sections. In this section, we present results for various shallow flows through channels with various
geometries, including rectangular, trapezoidal and general (multi-trapezoidal) cross sectional area. Unless
otherwise stated, the examples use g = 9.81, a grid of 200 points, and a CFL number of 0.9.

4.1 Rectangular Channels

The examples in this subsection involve channels with rectangular variable (in x) cross sections.

Small Perturbation to Steady State

In the first example, initial data is a small perturbation to steady state of rest. By design, the scheme
(6)-(12) preserves steady state of rest, and the propagation of small perturbations thereof is computed very
accurately. Computed solutions are shown in Figure 2, for centered and off-centered channel contractions.
Once the small perturbation leaves the computational domain, the unperturbed steady state is recovered.

A comparison with results by the central-upwind scheme [2] are shown in Figure 3 for ǫ = 10−5, on a grid
of 200 points. Results are similar, with the upwind scheme better able to maintain a sharp profile of the
perturbation.

The propagation of a small perturbation to a non-rest steady state is shown in Figure 4. Again, once the
perturbation leaves the computational domain, the unperturbed steady state is recovered, indicated by Q
and E going back to their constant unperturbed levels.

Convergence to Steady State

The next set of examples illustrates the long time convergence of transient solutions to a steady state. The
channel has vertical walls, with a parabolic contraction. In all cases, the flow discharge Q was imposed at
inflow, and the depth of the layer h was imposed at (subcritical) outflow. Figure 5 (top) shows a schematic
of the geometry (not drawn to scale) and includes a straight channel, a channel with centered contraction
and a channel with off-centered contraction. Below the geometry, Figure 5 shows the topography B and
water level h + B at steady state for (i) subcritical flow (top middle), (ii) smooth transcritical flow (bottom
middle) and (iii) transcritical flow with a jump (bottom). The following boundary conditions were specified
for (i) straight channel (ii) centered and (iii) off-centered contraction respectively. The bottom topography
in all the examples is B(x) = max {(0.05(4 − x2), 0)}. The geometry is given by a parabolic contraction
extending from x0 to x1, as specified in the following table. Computed solutions are in excellent agreement
with exact solutions, also shown.

Qin hout σmin x0 x1

1.0 −10 10 : straight
subcritical flow: 4.42 2.0 0.9 −5 5 : centered

0.9 −3 9.5 : off-centered
0.4058 1.0 −10 10 : straight

smooth transcritical flow: 1.53 0.3384 0.7 −5 5 : centered
0.3356 0.6 −3 9.5 : off-centered
0.34 1.0 −10 10 : straight

transcritical flow with jump: 0.18 0.34 0.66 −5 5 : centered
0.39 0.4 −3 9.5 : off-centered

Figure 6 shows a comparison between the present upwind scheme and the central scheme of [2]. The
examples were taken from [2]. See Figure 9 (bottom), Figure 10 (top) and Figure 11 (bottom) therein. By
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Figure 2: Propagation of small perturbation to steady state of rest through a contracting rectangular channel,
ǫ = 10−2: Centered contraction (left) of off centered contraction (right) T=0,0.02,0.05, 0.15,0.25 and 0.5.

design, both schemes respect steady state of rest, but neither is able to preserve general steady states. The
closeness of Q and E to being constants is a good measure of how well the schemes do in approximating
general (smooth) steady states. It is striking to note that the present upwind scheme converges to Q and E
with relative errors consistently 2-4 orders of magnitude better than the central-upwind scheme.

Reservoir Drainage after Dam Break

In the next example, a reservoir is being drained through a contracting channel. The water is initially at
rest u = 0, leveled at h + B = 0.8. The water drains through the right boundary, the left boundary is
assumed a line of symmetry of the domain and wall boundary conditions are applied, trapping the water to
the left of the bump. Computed solution is shown in Figure 7 for various intermediate times, the reservoir
has essentially drained by T = 15. The equilibrium variables Q and E are also shown for the solution at the
final time.

Figure 8 compares the computed solution using the velocity regularization (15) and (16) respectively. It
can be observed that the regularization (15) results in a more noisy drained solution, while regularization
(16), which makes use of the steady-state energy EStSt in the trough converges to a cleaner and generally
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0 0.5 1
1

1

1

Figure 3: Propagation of small disturbance to steady state of rest through a contracting rectangular channel,
ǫ = 10−5. Total water height, w = h+B, at t = 0.25 (dots) over initial conditions (solid line): central-upwind
[2] (left) and upwind (right) schemes.
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∆ Q

−10 −5 −2 0 2 5 10

0

0.1

∆ E

−10 −5 −2 0 2 5 10

0

0.03

∆ Q

−10 −5 −2 0 2 5 10

0

0.1

∆ E

−10 −5 −2 0 2 5 10

0

0.03

∆ Q

−10 −5 −2 0 2 5 10

0

0.1

∆ E

−10 −5 −2 0 2 5 10

0

0.03

∆ Q

−10 −5 −2 0 2 5 10

0

0.1

∆ E

−10 −5 −2 0 2 5 10

0

0.03

∆ Q

−10 −5 −2 0 2 5 10

0

0.1

∆ E

Figure 4: Propagation of small perturbation to non rest steady state through a contracting rectangular
channel, ǫ = 10−2, centered contraction. The total height for the initial perturbation (top left) and the
equilibrium variables for T = 0,0.8,1.9,2.4 and 4 are shown.

more accurate solution.
Figure 9 shows reservoir drainage through a contracting channel, this time over a double bump topography.

The water now gets trapped in two troughs. Despite the fact that the scheme is not positive, the computed
solution remains positive and we are able to integrate this solution for very long time until drainage is
reached. The equilibrium variables Q and E corresponding to the final time are also shown.

4.2 More general channels

The following tests involve channels of general cross section described by σ(x, y). We present examples for
channels consisting of one, two or several trapezoids. Exact solutions are also computed and are compared
to computations. We use the notation χ[a,b](x) to denote the characteristic function of the interval [a, b].

Propagation of Small Perturbation to Non-Rest Steady State

In this test, the topography is a cosine bump B(x) = χ[0.4,0.6](x)1
4 (cos(π(x − 1/2)/0.1) + 1). The channel

has a trapezoidal cross section with variable (in x) wall inclination σ(x, y) = σB(x) + m(x)y, with m(x) =
2 + χ[0.4,0.8](x)1

4 (cos(π(x − .6)/0.2) + 1), and σB(x) = min(1, 0.7 + 4.8(x − 0.4)2). In this example, the
steady-state flow is subcritical, with Q = 4 and hout = 1.4. The size of the perturbation is ǫ = 2 ∗ 10−3. The
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0.5

1

1.39
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0

0.2

0.45
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0

0.25

0.5

−10 −6 −2 0 2 6 10
0

0.25

0.55

Figure 5: Numerical (symbol) and exact (solid line) water level in steady-state solutions: Geometry (top),
subcritical flow (top middle), smooth transcritical flow (bottom middle) and transcritical flow with a jump
(bottom); Rectangular channel with straight walls (left), centered contraction (middle) and off-center con-
traction (right).

initial disturbance to the interface, as well as the relative errors for the equilibrium variables are shown in
Figure 10. We observe that the unperturbed steady state is recovered very accurately.

Convergence to Steady States for Trapezoidal Channel

We next study the convergence of transient solutions to steady state. The topography and geometry are
the same as in the previous test. For subcritical flow, Q = 4.42 and hout = 1.47. For smooth transcritical
flow, Q = 8.4992 and hout = 1.0388. For discontinuous transcritical flow, Q = 1.1104 and hout = 0.7195.
Computed and exact solutions are shown in Figure 11, with very good agreement.

Convergence to Steady States for Piecewise Trapezoidal Channel

In this test, each cross section of the channel consists of two trapezoid, with variable (in x) wall inclination.
The bottom trapezoid, with height y = 1.2, is the same as in the previous example, and the wall of the top
trapezoid has twice the slope of the bottom one. Convergence of transient solutions to steady state are shown
in Figure 12 for subcritical (left), smooth transcritical (middle) and discontinuos (right) flows. Agreement
between computed and exact solutions is excellent.
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Figure 6: Comparison between the upwind and the central schemes for convergence to steady states. For
channels with vertical walls, equilibrium variables Q and E are shown for a subcritical (left), smooth trans-
critical (middle), and discontinuous transcritical (right) flow.

Convergence to Steady State for General Channels

The last example concerns flow in a channel whose geometry is given by

σ(x, y) = 1+
3

4
cos(πx)−1

4
χ[0.4,0.6](x) (cos(π(x − 1/2)/0.1) + 1)+

√
y

(
1 − 1

4
χ[0.1,0.7](x) (cos (π(x − 0.4)/0.3) + 1)

)

−2χ[0,1]

(
(x − 0.3)2 + (y − 1.4)2

r2
1

)
cos

(√
(x − 0.3)2 + (y − 1.4)2

r2
1

π

2

)

−1.6χ[0,1]

(
(x − 0.75)2 + (y − 1.4)2

r2
2

)
cos

(√
(x − 0.75)2 + (y − 1.4)2

r2
1

π

2

)
,

where r1 = 0.28, r2 = 0.2. The topography is a 3-bump spline with nodes (x, y)=(0.2, 0), (0.3, 0.6), (0.4, 0.4),
(0.5, 0.5), (0.6, 0.2), (0.7, 0.3) and (0.8, 0), shown on top left of in Figure 13. In this example Q = 2.0583
and hout = 1.5. The cross section is approximated by 50 trapezoids. The results in Figure 13 show excellent
agreement between the computed and exact steady-state solutions. The relative errors for the equilibrium
variables Q and E are or orders 10−6 and 10−4 respectively. Figure 14 shows a 3D view of the flow.
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Figure 7: Reservoir drainage after dam break. The equilibrium variables at T=15 are also shown.
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Figure 8: Reservoir drainage after dam break. Comparison at T = 50 of the computed velocity and equilib-
rium variables using regularization (15) (top) and regularization (16) (bottom).
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Figure 9: Reservoir drainage after dam break. The equilibrium variables are also shown for T=30.
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Figure 10: Small perturbation to steady state of non-rest for a trapezoidal channel, ǫ = 2∗10−3, non-centered
contraction. The total height for the initial perturbation (top left) and the relative errors for the equilibrium
variables for T = 0,0.014,0.04,0.19, and 20 are shown.

Appendix A: Steady States and Boundary Conditions

The structure of steady-state solutions plays a role in specifying boundary conditions in time dependent
problems. We consider the straight channel case, σ = 1, and assume that Q and E are specified. At a given
elevation B(x), h can be found from equation (4) by rootfinding. Is easy to compute B(h) and reverse their
roles to plot h(B), see Figure 15. We observe that only values of B below some B∗ can be supported for
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Figure 11: Numerical (symbol) and exact (solid line) solutions in steady-state flows: Water level (top),
discharge (middle) and energy (bottom); Subcritical flow (left), smooth transcritical flow (middle) and
transcritical flow with a jump (right)

given Q and E. Within that range, for any given value of B, there are two possible values of h, corresponding
to subcritical flow (top branch) and to supercritical flow (bottom branch). At B∗, one has B′(h) = 0, which
can be easily shown to imply F 2 = u2/(gh) = 1, that is the flow is critical at B∗.

Consider a flow from left to right over a bump in B that vanishes near the domain boundaries. A solution
that starts off as subcritical at inflow, accelerates as the flow runs over the bump, and its Froude number
increases. The solution moves to the right along the top subcritical branch of the curve, until it reaches
the crest at some Bmax < B∗, beyond which the flow starts decelerating, its Froude number decreases, and
the solution moves back along the top subcritical branch, to meet the boundary condition at outflow. For
the case Bmax = B∗, the solution moves along the subcritical branch all the way to B∗, becomes critical
and ‘turns’ around to the supercritical branch. It then continues along the supercritical branch, its Froude
number continues to increase, to meet the boundary condition at outflow. This flow accelerates smoothly
from sub- to supercritical flow (similar to Laval nozzle flow in converging-diverging channels). In reference
to Figure 15, h1 and h2 are the only boundary conditions at outflow that produce smooth solutions: h1

produces a symmetric subcritical flow, and h2 an asymmetric transcritical flow. To adjust to any other
boundary condition at outflow the flow must form a discontinuity. Figure 15 (right) shows several curves of
h vs. B for the same Q but different values of E. Each one of those curves corresponds to a different smooth
steady solution. A flow that starts off as subcritical at inflow along the red curve, and needs to adjust to
h3 at outflow, becomes critical as it reaches Bmax then supercritical along the bottom red branch. It then
jumps from the red curve to the top (subcritical) branch of the dashed green curve, a curve that corresponds
to a (lower) value of E, and continues smoothly along this branch to meet the outflow boundary condition.
The jump between curves occurs at the point where the shock jump conditions are satisfied. Symmetric and
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Figure 12: Convergence to steady state for a trapezoidal channel (two trapezoids). Total height (top),
discharge (middle), and energy (bottom) are shown for subcritical (left), smooth transcritical (center) and
discontinuous transcritical (right) flows.
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Figure 13: Convergence to a subcritical flow. Exact and numerical solutions are plotted with excellent
agreement. The top surface, topography (top left), velocity (top right), and relative errors for the equilibrium
variables (bottom) are shown.

asymmetric transcritical solutions are illustrated in Figure 16
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Figure 14: 3D view of the channel (left) and the channels with the subcritical flow (right) given in Figure
13.
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Figure 15: Smooth (left) and discontinuous (right) steady-state solutions, h vs. B

Appendix B: Derivation of the Linearization

Conservation

We consider system (1), and relate the conservative and quasilinear forms. At the differential level we have




Au

Au2 + I1




x

=




0 1

c2 − u2 2u






A

Au




x

+




0

c2 (−hI3 + σBBx) + I2 − gσBhBx,


 (17)
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Figure 16: Steady flow in a channel: Symmetric subcritical (left); Asymmetric transcritical (middle); and
Asymmetric transcritical with a shock (right)
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where the geometric terms on the right hand side arise from careful application of the Fundamental Theorem
of Calculus (FTC) to I1. We further note that the underlined geometric term in (17) cancels out with an
identical term in the geometric source in (1), and while it appears in the derivation of the method, it ’washes
out’ and ends up not playing a role in the method. We focus on the second component of this vector equation,
and seek a discrete analogue. We use the following discrete version of the FTC

∆

∫ b(x)

a(x)

f(y, x)dy ≡
∫ bR

aR

f(y, xR)dy−
∫ bL

aL

f(y, xL)dy =
1

2

(∫ bL

aL

+

∫ bR

aR

)
∆f(y)dy+

∫ bR

bL

f̄(y)dy−
∫ aR

aL

f̄(y)dy,

(18)
where we have used here and it what follows ∆( ) = ( )R − ( )L, and (̄ ) =

(
( )R + ( )L

)
/2.

The discrete version of (17) requires the flux difference ∆
(
Au2 + I1

)
. We begin by seeking a linearization

of û for which
∆(Au2) = 2û∆(Au) − û2∆A

which is satisfied by the familiar expression

û =

√
ALuL +

√
ARuR√

AL +
√

AR

.

We next apply the discrete FTC (18) to express ∆I1

∆I1 = g∆
∫ w

B (w − y)σ(x, y)dy

=
g

2

[∫ wL

BL
+
∫ wR

BR

]
∆
(
(w − y)σ(x, y)

)
dy + g

∫ wR

wL
(w − y)σ(x, y)dy − g

∫ BR

BL
(w − y)σ(x, y)dy

=
g

2

[∫ wL

BL

+
∫ wR

BR

]
(σ̄(y)∆w + (w̄ − y)∆σ(y)) dy + g

∫ wR

wL

(w − y)σ(x, y)dy − g
∫ BR

BL

(w − y)σ(x, y)dy

= gÂ∆w + ∆x Î2 + Ĝ − gσ̂Bh ∆B
(19)

where we define

Â :=
1

2

[∫ wL

BL

+

∫ wR

BR

]
σ̄(y)dy, ∆x Î2 :=

g

2

[∫ wL

BL

+

∫ wR

BR

]
(w̄ − y)∆σ(y)dy,

In order to express ∆w in (19) in terms of the conserved variables, we apply the discrete FTC (18) to the
wet area A(x) =

∫ w

B σ(x, y)dy and obtain

∆A =
1

2

[∫ wL

BL

+

∫ wR

BR

]
∆σ(y)dy +

∫ wR

wL

σ̄(y)dy −
∫ BR

BL

σ̄(y)dy = ∆x ĥI3 + σ̂T ∆(h + B) − σ̂B∆B , (20)

where we define

∆x ĥI3 :=
1

2

[∫ wL

BL

+

∫ wR

BR

]
∆σ(y)dy, σ̂T ∆(h + B) :=

∫ wR

wL

σ̄(y)dy , and σ̂B ∆B :=

∫ BR

BL

σ̄(y)dy.

Rearranging (20) yields

∆(h + B) =
1

σ̂T

{
∆A + σ̂B∆B − ∆x ĥI3

}
. (21)

and ∆I1 becomes

∆I1 =
gÂ

σ̂T

[
∆A + σ̂B∆B − ∆x ĥI3

]
+ Ĝ + ∆x Î2 − gσ̂Bh ∆B.
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This suggest to define

ĉ2 =
gÂ

σ̂T
.

yielding

∆I1 = ĉ2∆A + ĉ2
[
−∆x ĥI3 + σ̂B∆B

]
+ Ĝ + ∆x Î2 − gσ̂Bh ∆B

The discrete version of (17) then becomes

∆




Au

Au2 + I1


 =




0 1

ĉ2 − û2 2û






∆A

∆(Au)


+




0

ĉ2
(
−∆x ĥI3 + σ̂B ∆B

)
+ Ĝ + ∆x Î2 − gσ̂Bh ∆B


 ,

(22)
and the last two terms cancel out with identical terms in the numerical approximation of the geometric
source, in the same way that they do at the differential equation level in (1).

It is easy to verify that

∆




Au

Au2 + I1


− ∆x




0

∆x Î2 − gσ̂Bh ∆B


 =

∑

k

(
λkαk − βk

)
rk

where

α1 =
(û + ĉ)∆A − ∆

(
Au
)

2ĉ
, β1 =

ĉ2
(
σ̂B∆B − ∆x ĥI3

)
+ Ĝ

2ĉ

α2 = − (û − ĉ)∆A − ∆
(
Au
)

2ĉ
, β2 = −

ĉ2
(
σ̂B∆B − ∆x ĥI3

)
+ Ĝ

2ĉ
.

Respecting Steady State of Rest

Consider the total fluctuation in the first wave family

α1λ1 − β1 = (û − ĉ)
(û + ĉ)∆A − ∆

(
Au
)

2ĉ
−

ĉ2
(
σ̂B∆B − ∆xĥI3

)
+ Ĝ

2ĉ

which, for steady state of rest, u = 0, ∆(h + B) = 0, reduces to

α1λ1 − β1 = − ĉ

2

(
∆A + σ̂B∆B − ∆xĥI3

)
= −(α2λ2 − β2)

and observe that (21) implies the total fluctuation vanishes, which insures that steady states of rest are
recognized and respected.
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