Name:

MATH 105 - SEC 001, FALL 2010. QUIZ 3 TIME LIMIT: 25 MINUTES

INSTRUCTOR: GERARDO HERNÁNDEZ

Problem 1

Consider the following piecewise defined function

$$
f(x)=\left\{\begin{array}{cc}
2 x-4, & -4<x \leq 1 \\
x-3, & 1<x \leq 3 \\
1-x, & 3<x<6
\end{array}\right.
$$

(a) (3 pts) Sketch the graph of this function

(b)(3 pts) Find the domain and range of this function

The domain is $(-4,6)$ and the range is $(-12,0]$

[^0]
Problem 2 (14 points)

In order to gain popularity among students, a brand new on-campus hair salon plans to offer a special promotion. The cost of a haircut, in dollars, at the salon as a function of time, in days since February 10th may be described as

$$
C(t)=\left\{\begin{array}{l}
9,0 \leq t \leq 3 \\
9+t, 3<t \leq 8 \\
20,8<t<28
\end{array}\right.
$$

(Assue t takes whole numbers values.)
(a) (3 pts.) If you want them to give them a try, on what date(s) should you have a haircut in order to get the best price?
As we can see from the formula, the best price is 9 dollars, and this happens in February 10th trough February 13th.
(b) (2 pts.) How much will a haircut cost on Feb. 18th? 17 dollars
(c) (2 pts.) On what date will a haircut cost 13 dollars?

February 14
(d) (3 pts.) The cost of a haircut at least A dollars B days into the promotion. Write an expression that describes this sentence using function notation and mathematics symbols only.
$C(B)$ is the cost of the haircut B days into the promotion, and it is at least A dollars. That means that it could be A dollars or something higuer. In symbols, it can be expressed as

$$
C(B) \geq A
$$

(e) (4 pts) Calculate $C(9)-C(8)$ and interpret its meaning in the context of the problem.
8 falls into the second category, and 9 into the third one. So $C(9)-C(8)=$ $\$ 20-\$ 17=\$ 3$. In words, it means that the difference in price of a haircut between February 18 and February 19 is $\$ 3$.

Problem 3

(3 pts).Sketch a graph which is everywhere positive, increasing, and concave up.

Problem 4.

(4 pts.) Let $P=f(t)$ be the population in millions in year t. Assume this function is invertible. Give the meaning and units of the inverse function.

Symbolically, it can be written as $f=f^{-1}(P)$ where t is in years and P is in millions, and is the size of the population. The meaning here is that this function tells you the year t when the population is P millions (in this order).

Problem 5.

(4 Pts). Find the zeros of $Q(x)=-5 x+2 x^{2}-3$ using the quadratic formula.

This equation can also be written as

$$
2 x^{2}-5 x-3=0
$$

and we can find the zeros using the quadratic formula:

$$
x=\frac{5 \pm \sqrt{5^{2}-4 \cdot 2 \cdot(-3)}}{2 \cdot 2}=\frac{5 \pm \sqrt{49}}{4}
$$

and so $x=3$ or $x=-1 / 2$.

Problem 6

(4 Pts). Determine the concavity of the graph of $f(x)=4-x^{2}$ between $x=-1$ and $x=5$ by calculating average rates of change over intervals of length 2 .

Intervals of length 2 are $[-1,1],[1,3],[3,5]$ and the rate of change in those intervals are

$$
\frac{f(1)-f(-1)}{2}=0, \frac{f(3)-f(1)}{2}=-4, \frac{f(5)-f(3)}{2}=-8 .
$$

Since the rate of change in these intervals is decreasing, the function is concave down.

[^0]: Date: September 28, 2010.

