Name:

MATH 105 - SEC 001, FALL 2010. QUIZ 5
 TIME LIMIT: 10 MINUTES

INSTRUCTOR: GERARDO HERNÁNDEZ OCTOBER 20, 2010

Good luck!

Problem 1

Express the following in terms of x without natural logs. Give EXACT answers, and simplify them as much as you can.
a) $\ln \left(e^{2 x}\right)$

Since the exponential is the inverse of the natural log, we have

$$
\ln \left(e^{2 x}\right)=2 x
$$

b) $e^{\ln (2 x+5)+6}$

$$
e^{\ln (2 x+5)+6}=e^{\ln (2 x+5)} e^{6}=e^{6}(2 x+5)
$$

c) $\ln \left(\frac{1}{e^{5 x}}\right)$

$$
\ln \left(\frac{1}{e^{5 x}}\right)=\ln \left(e^{-5 x}\right)=-5 x
$$

d) $\ln \left(\frac{\sqrt{e^{3 x}}}{e^{-2 x+1}}\right)$

$$
\ln \left(\frac{\sqrt{e^{3 x}}}{e^{-2 x+1}}\right)=\ln \left(e^{3 x / 2}\right)-\ln \left(e^{-2 x+1}\right)=\frac{3 x}{2}-(-2 x+1)=\frac{7 x}{2}-1
$$

e) $e^{x \ln (x)}$

Using the laws of exponents, we get

$$
e^{x \ln (x)}=\left(e^{\ln (x)}\right)^{x}=x^{x}
$$

$$
\begin{gathered}
\text { f) } e^{3 \ln (x)+1}-2 \ln \left(e^{2 x} / e\right) \\
\text { Problem } 2 \text { in Page } 2 \\
e^{3 \ln (x)+1}-2 \ln \left(e^{2 x} / e\right)=e^{3 \ln (x)} e^{1}-2\left(\ln \left(e^{2 x}\right)-\ln (e)\right)=e\left(e^{\ln (x)}\right)^{3}-2(2 x-1)=e x^{3}-4 x+2
\end{gathered}
$$

Problem2

A person's blood alcohol content (BAC) is a measure of how much alcohol is in the blood stream. When the person stops drinking, the BAC declines over time as the alcohol is metabolized. If Q is the amount of alcohol and Q_{0} is the initial amount, then $Q=Q_{o} e^{-t / \tau}$, where τ is known as the elimination time. How long does it take for a person's BAC to drop from 0.10 to 0.04 if the elimination time is 2.5 hours?

The elimination time is $\tau=2.5$ hours, so it make sense to express t in hours. We know $Q_{0}=0.1$, and so

$$
Q(t)=0.1 e^{-t / 2.5}
$$

We want to find t such that

$$
Q(t)=0.1 e^{-t / 2.5}=0.04
$$

so applying the natural \log to both sides we get

$$
\ln (0.1)-t /(2.5 \text { hours })=\ln (0.04)
$$

and so

$$
t=2.5 *(\ln (0.1)-\ln (0.04)) \text { hours }=2.5 \ln (2.5) \text { hours }
$$

An equivalent answer is

$$
t=-2.5 \ln (0.4) \text { hours }
$$

