Name:

MATH 105 - SEC 001, FALL 2010. QUIZ 6 TIME LIMIT: 30 MINUTES

INSTRUCTOR: GERARDO HERNÁNDEZ
OCTOBER 27, 2010

Good luck!

Problem 1. Give the definition of a even function

An even function is a functions whose is symmetric around the y-axis. Algebraically, a function $f(x)$ is even if

$$
f(x)=f(-x)
$$

for all x

Problem 2. Give the definition of an odd function

An odd function is a function whose graph is symmetric through the origin. Algebraically, a function $f(x)$ is odd if

$$
f(x)=-f(-x)
$$

for all x

Problem 3. If the graph of $y=e^{x}$ is reflected about the y-axis, what is the formula for the resulting function?

$$
y=e^{-x}
$$

Problem 4. The domain of the function $g(x)$ is $-2<x<7$. What is the domain of $g(x-2)$.

$$
[0,9]
$$

Problem 5. Let $m(n)=n^{2}+3 n$. If the graph of $m(n)$ is translated to the right by 3 units, what is the formula for the resulting function? Simplify your answer as much as you can.

$$
\begin{aligned}
& m(n-3)=(n-3)^{2}+ 3 \\
&(n-3)=n^{2}-6 n+9+3 n-9 \\
&=n^{2}-3 n
\end{aligned}
$$

So the resulting formula is $n^{2}-3 n$

Problem 6. Express the following in terms of x without natural logs. Give EXACT answers, and simplify them as much as you can.
a) $\log \left(\frac{10}{1000^{5 x}}\right)$

$$
\log \left(\frac{10}{1000^{5 x}}\right)=\log (10)-\log \left(1000^{5 x}\right)=1-5 x * \log (1000)=1-5 x * 3=1-15 x
$$

b) $\log \left(\frac{\sqrt{1^{3 x}}}{10^{-2 x+1}}\right)$

Using the fact that $\sqrt{1^{3 x}}=\sqrt{1}=1$, we get

$$
\log \left(\frac{\sqrt{1^{3 x}}}{10^{-2 x+1}}\right)=\log \left(\frac{1}{10^{-2 x+1}}\right)=\log (1)-\log \left(10^{-2 x+1}\right)=0-(-2 x+1)=2 x-1
$$

c) $e^{x \ln (10)-x}$

$$
e^{x \ln (10)-x}=e^{x \ln (10)} e^{-x}=\left(e^{\ln (10)}\right)^{x} e^{-x}=10^{x} e^{-x}
$$

d) $e^{5 \ln (x)-6}+3 \log \left(10^{2 x} / 100\right)$

$$
\begin{gathered}
e^{5 \ln (x)-6}+3 \log \left(10^{2 x} / 100\right)=e^{5 \ln (x)} e^{-6}+3\left[\log \left(10^{2 x}\right)-\log (100)\right] \\
=\left(e^{\ln (x)}\right)^{5} e^{-6}+3[2 x \log (10)-2]=e^{-6} x^{5}+6 x-6
\end{gathered}
$$

Problem 7. Find the EXACT answer for the equation:

$$
11 \cdot 3^{x}=5 \cdot 7^{x}
$$

Applying the natural logarithm to both sides and using its properties, we obtain

$$
\begin{aligned}
& \ln (11)+\ln \left(3^{x}\right)=\ln (5)+\ln \left(7^{x}\right) \\
& \ln (11)+x \ln (3)=\ln (5)+x \ln (7)
\end{aligned}
$$

Solving this linear equation we get

$$
x(\ln (3)-\ln (7))=\ln (5)-\ln (11)
$$

and so

$$
x=\frac{\ln (5)-\ln (11)}{\ln (2)-\ln (7)}, \text { which is the EXACT solution }
$$

Problem 8. In 1991, the body of a man was found in melting snow in the Alps of Northern Italy. An examination of a tissue sample revealed that 46% of the carbon- 14 present in his body at the time of his dead had decayed. The half-life of the carbon-14 is approximately 5728 years. How long ago did this man die?

Let's $Q(t)=Q_{0} b^{t}$ denote the amount of carbon-14 present in his body t years after his dead. First, we need to use the information about the half life to obtain the growth factor b. We now that for $t=5728$, the amount of carbon- 14 reduces to half of what it was originally, and so

$$
Q(5728)=Q_{0} b^{5728}=\frac{1}{2} Q_{0}
$$

from where we obtain $b^{5728}=\frac{1}{2}$, which implies $b=\left(\frac{1}{2}\right)^{\frac{1}{5728}}$.

Now that we know the growth factor, we can use the rest of the information, which is that when the body was found, 46% of the carbon- 14 had decayed, so only 54% was present. So, if we want to know how many years ago this man died, we need to solve

$$
Q_{0} b^{t}=0.54 * Q_{0}
$$

or

$$
b^{t}=0.54
$$

Applying logs to both side we get

$$
t \ln (b)=\ln (0.54)
$$

and so

$$
t=\frac{\ln (0.54)}{\ln \left(\left(\frac{1}{2}\right)^{\frac{1}{5728}}\right)} \approx 5092.013 \text { years }
$$

So, this man died approximately in September of 3082 B.C.
Problem 9. Graph the following function, and label all asymptotes and intercepts.

$$
y=\log (x-4)+3
$$

Vertical asymptote at $x=4$, no horizontal asymptote, no y-intercept and for the x-intercept, need to solve $\log (x-4)+3=0$, which implies $\log (x-4)=-3$, so $x-4=10^{-3}$, giving $x=4.001$. Problem 10 on next Page

Problem 10. Find the hydrogen ion concentration $\left[H^{+}\right]$for the baking soda used to make donuts that you may be eating now, with a pH of 8.3. Hint: $\mathrm{pH}=-\log \left[H^{+}\right]$.

Here $p H=8.3$. So, plugging it into the formula, it gives

$$
\begin{aligned}
& 8.3=-\log \left[H^{+}\right] \\
& -8.3=\log \left[H^{+}\right]
\end{aligned}
$$

and so $H^{+}=10^{-8.3} \approx 5.01 \times 10^{-9}$

