Name:

MATH 105 - SEC 001, FALL 2010. QUIZ 7 TIME LIMIT: 20 MINUTES

INSTRUCTOR: GERARDO HERNÁNDEZ
NOVEMBER 3, 2010

Good luck!

Problem 1. The graph of the function $g(x)$ contains the point $(5,1 / 3)$. What point must be on the graph of $y=3 g(x)+1$?

Since $(5,1 / 3)$ is on the graph, then $g(5)=1 / 3$. This implies

$$
3 g(5)+1=3 * \frac{1}{3}+1=2
$$

So, at $x=5, y=3 g(x)+1$ is 2 . As a result, $(5,2)$ is on the new graph.

Problem 2. The number of gallons of paint, $n=f(A)$, needed to cover a house is a function of the surface area, in $f t^{2}$. Match each story to one expression.
a) I figured out how many gallons I needed and then bought two extra gallons just in case.

$$
f(A)+2
$$

b) I bought enough paint to cover my house twice.

$$
f(2 A)
$$

c) I bought enough paint to cover my house and my welcome sign, which measures $2 f t^{2}$

$$
f\left(A+2 f t^{2}\right)
$$

Problem 3.

Find the value of k so that the graph of $y=(x-3)^{2}+k$ passes through the point $(6,3)$

At $x=6, y=3$, which implies

$$
3=(6-3)^{2}+k=9+k
$$

which implies

$$
k=-6
$$

and

$$
y=(x-3)^{2}-6
$$

Problem 4. Find the vertex and axis of symmetry of the graph of

$$
v(t)=2 t^{2}+11 t-4
$$

We need to convert the standard form for the quadratic equation into the vertex form, by completing squares

$$
\begin{gathered}
v(t)=2 t^{2}+11 t-4=2\left[t^{2}+\frac{11}{2} t-2\right]=\left[t^{2}+\frac{11}{2} t+\left(\frac{11}{4}\right)^{2}-\left(\frac{11}{4}\right)^{2}-2\right] \\
=2\left[\left(t+\frac{11}{4}\right)^{2}-\frac{11^{2}}{16}-2\right]=2\left[\left(t+\frac{11}{4}\right)^{2}-\frac{121+32}{16}\right] \\
=2\left[\left(t+\frac{11}{4}\right)^{2}-\frac{153}{16}\right]=2\left(t--\frac{11}{4}\right)^{2}-\frac{153}{8}
\end{gathered}
$$

Therefore, the vertex is

$$
(h, k)=\left(-\frac{11}{4},-\frac{153}{8}\right),
$$

and the axis of symmetry is the line given by the equation:

$$
x=-\frac{11}{4}
$$

Problem 5. The temperature of a chemical reaction oscillates between a low of $30^{\circ} \mathrm{C}$ and a high of $110^{\circ} \mathrm{C}$. The temperature is at its lowest point when $t=0$ and completes one cycle over a five-hour period.
a) Sketch the temperature, T, against the elapsed time, t, over a ten-hour period.

b) Find the period, the amplitude, and the midline of the graph you drew in part a)

Period: 5 hrs
Midline: $T=70^{\circ} \mathrm{C}$
Amplitude: $40^{\circ} \mathrm{C}$

