\qquad

MATH 115 - SEC 011, WINTER 2011. QUIZ 1 TIME LIMIT: 20 MINUTES

INSTRUCTOR: GERARDO HERNÁNDEZ

Good luck!

Problem 1 Find an equation for the line through the point $(2,1)$, which is perpendicular to the line $y=5 x-3$.

Since the new line is perpendicular, we know $m=-1 / 5$. So the equation for the line show be

$$
y=b-\frac{1}{5} x
$$

and we need to find b. Since the point $(2,1)$ is on the graph, we know

$$
1=b-\frac{1}{5}(2)
$$

So $b=7 / 5$, and so

$$
y=\frac{7}{5}-\frac{1}{5} x
$$

Problem 2 Fin x when $6 \cdot 7^{x}=4 \cdot 2^{x}$. Please give the exact answer, and also express it in decimal form with four significant digits.

$$
6 \cdot 7^{x}=4 \cdot 2^{x} \text { implies }\left(\frac{7}{2}\right)^{x}=\frac{4}{6}=\frac{2}{3}
$$

Taking the natural logarithm on both sides we obtain:

$$
\ln \left(\frac{2}{3}\right)=\ln \left(\left(\frac{7}{2}\right)^{x}\right)=x \ln \left(\frac{7}{2}\right)
$$

which gives

$$
x=\frac{\ln \left(\frac{2}{3}\right)}{\ln \left(\frac{7}{2}\right)} \approx-0.3237
$$

Problem 3 (5 Points)

Find a formula the exponential function that passes through the points $(1,6)$ and $(2,18)$.

The exponential function is of the form

$$
y=y_{0} a^{x}
$$

where $y+0$ and a are constants. They need to satisfy

$$
\begin{gathered}
y_{0} a^{1}=6 \\
y_{0} a^{2}=18
\end{gathered}
$$

Diving the two equations gives:

$$
\frac{y_{0} a^{2}}{y_{0} a}=\frac{18}{6}=3
$$

So $a=3$. Also,

$$
6=y_{0} a^{1}=y_{0} 3 . \text { Then } y_{0}=2
$$

Therefore

$$
y=2 \cdot 3^{x}
$$

Problem 4

A spherical balloon is growing with radius $r=3 t+1$, in centimeters, for time t is seconds. Find a formula for the volume of the balloon as a function of time (t). Find the volume of the balloon at 3 seconds.

The volume of a balloon of radius r is given by

$$
V=\frac{4}{3} r^{3}
$$

The radius as a function of time is $r=3 t+1$. Composing the two functions, it gives

$$
V=\frac{4}{3} \pi(3 t+1)^{3}
$$

Evaluating the function at $t=3$ seconds, we obtain

$$
V(3)=\frac{4}{3} \pi 10^{3} \approx 4188.79 \mathrm{~cm}^{3}
$$

Problem 5 A photocopy machine can reduce copies to 80% of their original size. By copying an already reduced copy, further reductions can be made. Estimate the number of times in succession that a page must be copied to make the final copy less than 15% of the size of the original.

The size of the copy after t reductions is given by

$$
C(t)=C_{0}(0.8)^{t}
$$

where C_{0} is the initial size. We want to find an integer t such that

$$
(0.80)^{t} \geq 0.15
$$

Applying the natural logarithm to both sides it gives

$$
\ln \left((0.8)^{t}\right)=t \ln (0.8) \geq \ln (0.5)
$$

Since $\ln (0.8)$ is negative, it gives

$$
t \geq \frac{\ln (0.15)}{\ln (0.8)} \approx 8.50
$$

So after $t=9$ photocopies, the size of the final copy will be les sthan 15%.

