\qquad

MATH 115 - SEC 011, WINTER 2011. QUIZ 2 TIME LIMIT: 15 MINUTES

INSTRUCTOR: GERARDO HERNÁNDEZ

Good luck!

Problem 1 One hundred kilograms of radioactive substance decay to 40 kg in 10 years. How much remains after 20 years?

The amount of the radioactive substance (in kilograms) as a function of time is of the form

$$
Q=Q_{0} a^{t}
$$

where $Q_{0}=100 \mathrm{~kg}$ is the initial amount, and a is the decay factor, and t is given in years. Since the substance decay to 40 kg in 10 years, then

$$
100 a^{1} 0=40
$$

Then $a^{1} 0=0.4$, which implies

$$
a=(0.4)^{\frac{1}{10}} .
$$

Therefore

$$
Q=100 \mathrm{~kg}(0.4)^{\frac{t}{10}}
$$

After 20 years,

$$
Q(20)=100 \mathrm{~kg}(0.4)^{\frac{20}{10}}=16 \mathrm{~kg} .
$$

Problem 2 The Bay of Fundy in Canada has the largest tides in the world. The difference between low and high water levels is 15 meters (nearly 50 feet). At a particular point the depth of water, y meters, is given as a function of time, t, in hours since the midnight by

$$
y=D+A \cos (B(t-C))
$$

(a) What is the physical meaning of D ?

This is the midline, or the average hight between the low and high water level.
(b) What is the value of A ?

We know

$$
|A|=7.5 \text { meters },
$$

So either $A=7.5$ meters, or $A=-7.5$ meters, depending on the sign of A.

[^0](c) What is the value of B ? Assume the time between successive high tides is 12.4 hours.

Since the period is 12.4 hours, then

$$
\frac{2 \pi}{B}=12.4
$$

So

$$
B=\frac{2 \pi}{12.4} \approx 0.506708
$$

(d) What is the physical meaning of C ?

At time $t=C$, we are in a low or high water level, depending on the sign of A.

Problem 3

(a) If $f(x)=a x^{2}+b x+c$, what can you say about the values of a, b, and c if
(1) $(1,1)$ is on the graph of $f(x)$?

If $(1,1)$ is on the graph of $f(x)$, this means that substituting $x=1$ and $y=1$ the equation above holds, which gives

$$
1=a+b+c
$$

So the condition for a, b, c is simply

$$
a+b+c=1
$$

(2) $(1,1)$ is the vertex of the graph of $f(x)$? [Hint: The axis of symmetry is $x=-b /(2 a)$] According to the hint, the axis of symmetry in general is $x=-\frac{b}{2 a}$. If $(1,1)$ is the vertex, then $x=1$ is the axis of symmetry. As a result we get

$$
1=-\frac{b}{2 a}, \text { or } b=-2 a
$$

Together with the condition above $(a+b+c=1)$ we get

$$
\begin{gathered}
-a+c=1 \\
b=-2 a
\end{gathered}
$$

(3) The y intercept of the graph is $(0,6)$?

The y - intercept is simple c. So $c=6$.
(b) Find a quadratic function satisfying all three conditions.

We need

$$
\begin{aligned}
& -a+c=1 \\
& b=-2 a \\
& c=6
\end{aligned}
$$

So $c=6, a=c-1=5$, and $b=-2 \cdot 5=-10$. Therefore

$$
y=5 x^{2}-10 x+6
$$

[^0]: Date: January 21, 2011.

