\qquad

MATH 115 - SEC 011, WINTER 2011. QUIZ 3
 TIME LIMIT: 15 MINUTES

INSTRUCTOR: GERARDO HERNÁNDEZ

Good luck!

Problem 1

For each problem below, find a value if the constant k such that the limit exists. Show your reasoning.

- $\lim _{x \rightarrow 4} \frac{x^{2}-k^{2}}{x-4}$

Since $x-4$ approaches zero as $x \rightarrow 4$, then the only chance for the limit to exist is if the limit of the numerator is also zero as $x \rightarrow 4$, otherwise the fractional function has a vertical asymptote at $x=4$. So we need

$$
0=\lim _{x \rightarrow 4}\left(x^{2}-k^{2}\right)=4^{2}-k^{2}
$$

So $k=4$ satisfies the required condition. In fact, if $k=4$,

$$
\lim _{x \rightarrow 4} \frac{x^{2}-k^{2}}{x-4}=\lim _{x \rightarrow 4} \frac{x^{2}-4^{2}}{x-4}=\lim _{x \rightarrow 4} \frac{(x-4)(x+4)}{x-4}=\lim _{x \rightarrow 4}(x+4)=4+4=8
$$

- $\lim _{x \rightarrow 1} \frac{x^{2}-k x+4}{x-1}$

Analogously, we need the limit of the numerator to be zero as $x \rightarrow 1$. So, we need

$$
0=\lim _{x \rightarrow 1}\left(x^{2}-k x+4\right)=1-k+4=0
$$

So, $k=5$ works. In fact, if $k=5$,

$$
\lim _{x \rightarrow 1} \frac{x^{2}-5 x+4}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)(x-4)}{x-1}=\lim _{x \rightarrow 1}(x-4)=1-4=-3
$$

- $\lim _{x \rightarrow \infty} \frac{x^{2}+3 x+5}{4 x+1+x^{k}}$

Here, we need to check the long-run behavior of the fractional function. The leading term of the numerator is x^{2}. If k is a non-negative integer, the denominator is a polynomial. If $k=0$ or $k=1$, the order of the polynomial in the numerator would be greater than the order of the polynomial of the denominator, and the limit would be ∞. On the other hand, if $k=2$, then the leading term of the polynomial in the denominator is x^{2}. So $k=2$ works, and in fact

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+3 x+5}{4 x+1+x^{2}}=\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{2}}=1
$$

Problem 2In a tine of t in seconds, a particle moves a distance of s meters from its starting point, where $s=4 t^{2}+3$. Include units.
(a) Find the average velocity between $t=1$ and $t=1+h$ if
(i) $h=0.1$

The average velocity is

$$
\begin{gathered}
\frac{4(1+h)^{2}+3-4-3}{h}=\frac{4(1+h)^{2}-4}{h} \\
\approx 8.4 \mathrm{~m} / \mathrm{s} \text { if } h=0.1
\end{gathered}
$$

(ii) $h=0.01$

The average velocity here is

$$
\frac{4(1+h)^{2}-4}{h} \approx 8.04 \mathrm{~m} / \mathrm{s} \text { if } h=0.01
$$

(iii) $h=0.001$

Finally, the average velocity here is

$$
\frac{4(1+h)^{2}-4}{h} \approx 8.004 m / s \text { if } h=0.001
$$

(b) Use your answer to part (a) to estimate the instantaneous velocity of the particle at time $t=1$.

As $h \rightarrow 0$, the average velocity seems to be converging to

$$
8 \mathrm{~m} / \mathrm{s}
$$

Problem 3

(a) Sketch the graph of a continuous function f with all of the following properties:
(i) $f(0)=2$
(ii) $f(x)$ is decreasing for $0 \leq x \leq 3$
(iii) $f(x)$ is increasing for $3<x \leq 5$
(iv) $f(x)$ is decreasing for $x>5$
(v) $f(x) \rightarrow 9$ as $x \rightarrow \infty$

(b) Is it possible that the graph of f is concave down for all $x>6$? Explain

No. Since the function has to be decreasing for $x \geq 5$, it needs to approach the horizontal asymptote $y=9$ from above, as can be seen from the graph. As a result, it needs to be concave up for $x \gg 0$ big enough. If if was concave down, it would cross the horizontal asymptote and will keep decreasing.

