Tarea 9

Gyivan Erick López Campos

22 de octubre de 2017

Ejercicio 1:

Sea $\alpha \in \mathbb{R}$ y $E_{\alpha} = \{x \in \mathbb{R} : \varphi(x) < \alpha\}$, probemos que E_{α} es abierto. Sea $x \in E_{\alpha}$, entonces existe $\varepsilon > 0$ tal que $\varphi(x) + \varepsilon < \alpha$. Luego como :

$$\varphi(x) = \inf_{\delta>0} \{\varphi(x, \delta)\},\$$

existe $\delta > 0$ tal que:

$$\varphi(x) + \varepsilon > \varphi(x, \delta)$$
.

Veamos que $(x - \delta, x + \delta) \subset E$. Sea $t \in (x - \delta, x + \delta)$, entonces existe $\delta_1 > 0$ tal que $(t - \delta_1, t + \delta_1) \subset (x - \delta, x + \delta)$, luego:

$$\varphi(t) \leq \varphi(t, \delta_{1})
= \sup_{\substack{r, s \in (t - \delta_{1}, t + \delta_{1})}} \{|f(r) - f(s)|\}
\leq \sup_{\substack{r, s \in (x - \delta, x + \delta)}} \{|f(r) - f(s)|\}
= \varphi(x, \delta)
< \varphi(x) + \varepsilon
< \alpha.$$

Por lo que $t \in E_{\alpha}$ lo que implica que $(x - \delta, x + \delta) \subset E$. Así que E_{α} es abierto.

Ahora supongamos que f es continua en x. Así que para todo $\varepsilon > 0$ existe $\delta > 0$ tal que $f((x - \delta, x + \delta)) \subset B(f(x), \varepsilon/2)$. Luego:

$$\varphi(x) \leq \varphi(x, \delta)$$

$$= \sup_{\substack{r, s \in (x - \delta, x + \delta) \\ r, s \in (x - \delta, x + \delta)}} \{|f(r) - f(s)|\}$$

$$\leq \sup_{\substack{r, s \in (x - \delta, x + \delta) \\ r, s \in (x - \delta, x + \delta)}} \{|f(x) - f(s)| + |f(x) - f(t)|\}$$

$$< \varepsilon/2 + \varepsilon/2 = \varepsilon$$

Como es para toda $\varepsilon > 0$ se concluye que $\varphi(x) = 0$.

Ahora supongamos que $\varphi(x) = 0$, entonces para todo $\varepsilon > 0$ existe $\delta > 0$ tal que $\varphi(x) + \varepsilon = \varepsilon > \varphi(x, \delta)$, luego

$$\sup_{r,\,s\in\left(x-\delta,\,x+\delta\right)}\left\{ \left|f\left(r\right)-f\left(s\right)\right|\right\} \quad<\quad\varepsilon$$

$$\Rightarrow |f(x) - f(s)| < \varepsilon, \forall s \in (x - \delta, x + \delta)$$

Por lo tanto f es continua en x.

Ejercicio 2:

Definamos $K_0 = [0, 1]$ e inductivamente construimos K_n al quitar el intervalo abierto de tamaño 2^{-2n} de en medio de todos los intervalos de K_{n-1} . Demostremos que esto siempre se puede hacer para todos los intervalos de K_{n-1} .

Por la simetría de la construcción, todos los intervalos de K_n van a medir lo mismo, así que digamos que miden c_n . Demostremos por inducción que $c_{n-1} > 3 \cdot 2^{-2n}$. Claramente si $c_0 = 1 > 3 \cdot 2^{-2} = \frac{3}{4}$. Supongamos que $c_{n-1} > 3 \cdot 2^{-2n}$, demostremos que $c_n > 3 \cdot 2^{-2(n+1)}$.

Como

$$3 > \frac{5}{2}$$

$$\Rightarrow 3(2^{-2n}) > 5(2^{-2n-1})$$

$$\Rightarrow c_{n-1} > 5(2^{-2n-1})$$

$$= \frac{5}{2}(2^{-2n})$$

$$= (2^{-2n}) \left[\frac{3}{2} + 1\right]$$

$$= 3(2^{-2n-1}) + (2^{-2n})$$

$$\Rightarrow c_{n-1} - (2^{-2n}) > 3(2^{-2n-1})$$

$$\Rightarrow \frac{c_{n-1} - (2^{-2n})}{2} > 3(2^{-2(n+1)}),$$

pero $c_n = \frac{c_{n-1} - \left(2^{-2n}\right)}{2}$ por construcción, así que $c_n > 3 \cdot 2^{-2(n+1)}$.

Ya que hemos demostrado que nuestra construcción tiene sentido, definamos $K = \bigcap_{n \in \mathbb{N}} K_n$. Por construcción, K_n tiene 2^n intervalos, así que a K_{n-1} se le tuvo que restar $2^{n-1} \cdot (2^{-2n})$ para obtener K_n y así consecutivamente, por lo que:

$$\mu(K_n) = \mu([0, 1]) - \sum_{i=1}^n \frac{1}{2^{2i}} 2^{i-1}$$

$$= 1 - \sum_{i=1}^n \frac{1}{2^{i+1}}$$

$$= 1 - \sum_{i=0}^{n-1} \frac{1}{2^i} + 1 + \frac{1}{2} - \frac{1}{2^n} - \frac{1}{2^{n+1}}$$

$$= 1 - \left(\frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}}\right) + 1 + \frac{1}{2} - \frac{1}{2^n} - \frac{1}{2^{n+1}}, \text{ aplicando serie geométrica.}$$

Luego $\mu(K) = \lim_{n\to\infty} \mu(K_n) = \frac{1}{2}$. Además como cada K_n es cerrado porque su complemento son los abierto que retiramos unión $(-\infty, 0)$ y $(1, \infty)$, entonces K es cerrado al ser intersección de cerrados en \mathbb{R} , y como K también es acotado, se tiene que K es compacto.

Por último, K es totalmente disconexo porque si existiera un intervalo (a, b) en K, entonces debería existir una n suficientemente grande tal que $2^{-2n} < b - a$ para la cual tenemos que partir el intervalo (a, b), lo que genera una contradicción.

Ejercicio 3:

La construcción es análoga al del ejercicio anterior. Definamos $K_0 = [0, 1]$ e inductivamente construimos K_n al quitar el intervalo abierto de tamaño $\left(\frac{\varepsilon}{1+2\varepsilon}\right)^n$ de en medio de todos los intervalos de K_{n-1} . Demostremos que esto siempre se puede hacer para todos los intervalos de K_{n-1} .

Por la simetría de la construcción, todos los intervalos de K_n van a medir lo mismo, así que digamos que miden c_n . Demostremos por inducción que $c_{n-1} > 3\left(\frac{\varepsilon}{1+2\varepsilon}\right)^n$. Claramente como:

$$\begin{array}{rcl}
1 & > & \varepsilon \\
\Rightarrow 1 & > & 3\varepsilon - 2\varepsilon \\
\Rightarrow 1 + 2\varepsilon & > & 3\varepsilon \\
\Rightarrow 1 & > & \frac{3\varepsilon}{1 + 2\varepsilon} \\
\Rightarrow c_0 & > & 3\frac{\varepsilon}{1 + 2\varepsilon}.
\end{array} \tag{1}$$

Supongamos que $c_{n-1} > 3\left(\frac{\varepsilon}{1+2\varepsilon}\right)^n$, demostremos que $c_n > 3\left(\frac{\varepsilon}{1+2\varepsilon}\right)^{n+1}$.

Como:

$$1 > \frac{3\varepsilon}{1+2\varepsilon} \text{ por } (1)$$

$$\Rightarrow 3\left(\frac{\varepsilon}{1+2\varepsilon}\right)^{n+1} < \left(\frac{\varepsilon}{1+2\varepsilon}\right)^{n}$$

$$= \frac{2\left(\frac{\varepsilon}{1+2\varepsilon}\right)^{n}}{2}$$

$$= \frac{3\left(\frac{\varepsilon}{1+2\varepsilon}\right)^{n} - \left(\frac{\varepsilon}{1+2\varepsilon}\right)^{n}}{2}$$

$$< \frac{c_{n-1} - \left(\frac{\varepsilon}{1+2\varepsilon}\right)^{n}}{2}$$

pero $c_n = \frac{c_{n-1} - \left(\frac{\varepsilon}{1+2\varepsilon}\right)^n}{2}$ por construcción, así que $c_n > 3 \cdot \left(\frac{\varepsilon}{1+2\varepsilon}\right)^{n+1}$.

Ya que hemos demostrado que nuestra construcción tiene sentido, definamos $K = \bigcap_{n \in \mathbb{N}} K_n$. Por construcción, K_n tiene 2^n intervalos, así que a K_{n-1} se le tuvo que restar $2^{n-1} \cdot \left(\frac{\varepsilon}{1+2\varepsilon}\right)^n$ para obtener K_n y así consecutivamente, por lo que:

$$\mu(K_n) = \mu([0, 1]) - \sum_{i=1}^n \left(\frac{\varepsilon}{1 + 2\varepsilon}\right)^i 2^{i-1}$$

$$= 1 - \left(\frac{\varepsilon}{1 + 2\varepsilon}\right) \sum_{i=1}^n \left(\frac{\varepsilon}{1 + 2\varepsilon}\right)^{i-1} 2^{i-1}$$

$$= 1 - \left(\frac{\varepsilon}{1 + 2\varepsilon}\right) \sum_{i=0}^{n-1} \left(\frac{\varepsilon}{1 + 2\varepsilon}\right)^i 2^i$$

$$= 1 - \left(\frac{\varepsilon}{1 + 2\varepsilon}\right) \left(\frac{1 - \left(\frac{2\varepsilon}{1 + 2\varepsilon}\right)^{n-1}}{1 - \left(\frac{2\varepsilon}{1 + 2\varepsilon}\right)}\right), \text{ aplicando serie geométrica.}$$

Luego

$$\mu(K) = \lim_{n \to \infty} \mu(K_n)$$

$$= 1 - \left(\frac{\varepsilon}{1 + 2\varepsilon}\right) \lim_{n \to \infty} \left(\frac{1 - \left(\frac{2\varepsilon}{1 + 2\varepsilon}\right)^{n - 1}}{1 - \left(\frac{2\varepsilon}{1 + 2\varepsilon}\right)}\right)$$

$$= 1 - \left(\frac{\varepsilon}{1 + 2\varepsilon}\right) \left(\frac{1}{1 - \left(\frac{2\varepsilon}{1 + 2\varepsilon}\right)}\right)$$

$$= 1 - \left(\frac{\varepsilon}{1 + 2\varepsilon}\right) \left(\frac{1}{\frac{1 + 2\varepsilon - 2\varepsilon}{1 + 2\varepsilon}}\right)$$

$$= 1 - \varepsilon.$$

Tomemos $Q = [0, 1] \setminus K$. Claramente $\mu(Q) = \mu([0, 1]) - \mu(K) = \varepsilon$, además por el ejercicio anterior, vimos que K es totalmente disconexo porque si existiera un intervalo (a, b) en K, entonces debería existir una n suficientemente grande tal que $\left(\frac{\varepsilon}{1+2\varepsilon}\right)^n < b-a$ para la cual tenemos que partir el intervalo (a, b). Ahora si nos tomamos $x \in [0, 1]$ y un intervalo $(a, b) \subset [0, 1]$ que contenga a x entonces debe existir $y \in Q$ tal que $y \in (a, b)$, de lo contrario $(a, b) \subset K$ contradicción con que K es disconexo. Por lo tanto Q es denso en [0, 1].

Ejercicio 5:

■ Como queremos que $\log (1 + e^t) < c + t$, esto es si y solo si $1 + e^t < e^{c+t}$ porque a exponencial es una función creciente, al ser también una función siempre positiva, podemos dividir entre e^t sin cambiar la desigualdad, entonces

$$1 + e^t < e^{c+t}$$

$$\updownarrow$$

$$\frac{1}{e^t} + 1 < e^c$$

Como log también es una función creciente, entonces $\frac{1}{e^t} + 1 < e^c \Leftrightarrow \log(e^{-t} + 1) < c$. Ahora para $0 < t < \infty$, el máximo valor que puede tomar $\log(e^{-t} + 1)$ es cuando $t \to 0$, gracias a que log es continua y creciente, así que basta con que $c > \lim_{t \to 0} \log(e^{-t} + 1) = \log 2$.

■ Sea $X \subset [0, 1]$ tal que si $x \in X$, $f(x) \ge 0$. Entonces por el inciso anterior viendo a t = nf(x) tenemos que:

$$\int_{X} \log \left(1 + e^{nf(x)}\right) dx \leq \int_{X} \left(\log 2 + nf(x)\right) dx$$

$$= \int_{X} \log 2 dx + \int_{X} nf(x) dx$$

$$\leq \int_{0}^{1} \log 2 dx + \int_{X} nf(x) dx$$

$$= \log 2 + \int_{X} nf(x) dx$$

$$\Rightarrow \lim_{n \to \infty} \frac{1}{n} \int_{X} \log \left(1 + e^{nf(x)}\right) dx \leq \lim_{n \to \infty} \frac{1}{n} \left[\log 2 + \int_{X} nf(x) dx\right]$$

$$= \lim_{n \to \infty} \frac{\log 2}{n} + \lim_{n \to \infty} \frac{1}{n} \int_{X} nf(x) dx$$

$$= \int_{X} f(x) dx$$

Además sabemos que para todo $\varepsilon > 0$, existe $N \in \mathbb{N}$ suficientemente grande tal que para toda n > N se tiene que $\log (1 + e^{nf(x)}) + \varepsilon > \log 2 + nf(x)$ por que en el inciso anterior vimos que log 2 es la constante mas pequeña que acotaba al lado izquierdo. Luego para toda n > Nse sigue que:

$$\begin{split} \int_X \left[\log \left(1 + e^{nf(x)} \right) + \varepsilon \right] dx & \geq \int_X \left(\log 2 + nf(x) \right) dx \\ & = \int_X \log 2 dx + \int_X nf(x) \, dx \\ \Rightarrow \lim_{n \to \infty} \frac{1}{n} \int_X \left[\log \left(1 + e^{nf(x)} \right) + \varepsilon \right] dx & \geq \lim_{n \to \infty} \frac{1}{n} \left[\int_X \log 2 dx + \int_X nf(x) \, dx \right] \\ \Rightarrow \lim_{n \to \infty} \frac{1}{n} \int_X \log \left(1 + e^{nf(x)} \right) dx + \lim_{n \to \infty} \frac{1}{n} \int_X \varepsilon dx & \geq \lim_{n \to \infty} \frac{\int_X \log 2 dx}{n} + \lim_{n \to \infty} \frac{1}{n} \int_X nf(x) \, dx \\ \lim_{n \to \infty} \frac{1}{n} \int_X \log \left(1 + e^{nf(x)} \right) dx & \geq \int_X f(x) \, dx, \end{split}$$

ya que $\lim_{n\to\infty} \frac{\int_X \log 2dx}{n} = 0$ porque $\int_X \log 2dx$ es una constante y $\lim_{n\to\infty} \frac{1}{n} \int_X \varepsilon dx = \lim_{n\to\infty} \frac{\varepsilon}{n} \int_X dx = 0$. Por lo tanto

$$\lim_{n \to \infty} \frac{1}{n} \int_{X} \log \left(1 + e^{nf(x)} \right) dx = \int_{X} f(x) dx$$

Además, si definimos $g_n(x) := \frac{1+e^{nf(x)}}{n}$ para $x \in [0, 1] \setminus X$, entonces $h_n(x) := \frac{\log \circ g_n(x)}{n}$ converge puntualmente a $h(x) := \lim_{n \to \infty} \frac{\log \left(1+e^{\ln n}\right)}{n} = \frac{\log \left(1+e^{\ln n}\right)}{\ln n} = 0$ para toda $x \in [0, 1] \setminus X$. Luego por ele ejercicio de la tarea pasada el límite puede entrar a la integral y obtenemos que:

$$\lim_{n \to \infty} \frac{1}{n} \int_{[0, 1] \setminus X} \log \left(1 + e^{nf(x)} \right) dx = \lim_{n \to \infty} \int_{[0, 1] \setminus X} h_n(x) dx$$
$$= \int_{[0, 1] \setminus X} \lim_{n \to \infty} h_n(x) dx$$
$$= 0$$

Concluyendo tenemos que $\lim_{n\to\infty}\frac{1}{n}\int_0^1\log\left(1+e^{nf(x)}\right)dx$ existe y

$$\lim_{n \to \infty} \frac{1}{n} \int_0^1 \log\left(1 + e^{nf(x)}\right) dx = \lim_{n \to \infty} \frac{1}{n} \int_X \log\left(1 + e^{nf(x)}\right) dx + \lim_{n \to \infty} \frac{1}{n} \int_{[0, 1] \setminus X} \log\left(1 + e^{nf(x)}\right) dx$$
$$= \int_X f(x) dx.$$