MATH 320 - SEC 001, SPRING 2012. PRACTICE EXAM

INSTRUCTOR: GERARDO HERNÁNDEZ

1. For

$$\begin{cases} \frac{dy}{dx} = (e^{y+2} - 1) \ y \ (y - 2) \\ y(0) = y_0 \end{cases}$$

(a) Sketch, roughly, a slope field and classify all the critical points.

(b) Determine (from your sketch), the asymptotic behavior of the solution for $y_0 = -1$ as $t \to \infty$.

2. Solve

$$\begin{cases} (x+y)y' = x - y\\ y(1) = 0 \end{cases}$$

Give the range of validity of the solution

3. Consider the initial value problem

$$\begin{cases} \frac{dy}{dx} = -\frac{5}{2}x^4y^3\\ y(0) = -1 \end{cases}$$

- (a) Find y(x) explicitly. For what values of x is the solution defined?
- (b) Use one step of the modified Euler's method with step size h to find an approximation for y(h)

4 Write the following systems as $\mathbf{A}\mathbf{x} = \mathbf{b}$ and determine for what values of k the system has (i) a unique solution, (ii) no solution, and (iii) infinitely many solutions.

x_1	—	x_2	+	$2x_3$	=	4
$2x_1$	+	$3x_2$	_	x_3	=	k
$-2x_{1}$	+	x_2	_	$3x_3$	=	2