MATH 320 - SEC 001, SPRING 2012. PRACTICE EXAM

INSTRUCTOR: GERARDO HERNÁNDEZ

1. For

$$
\left\{\begin{array}{l}
\frac{d y}{d x}=\left(e^{y+2}-1\right) y(y-2) \\
y(0)=y_{0}
\end{array}\right.
$$

(a) Sketch, roughly, a slope field and classify all the critical points.
(b) Determine (from your sketch), the asymptotic behavior of the solution for $y_{0}=-1$ as $t \rightarrow \infty$.
2. Solve

$$
\left\{\begin{array}{l}
(x+y) y^{\prime}=x-y \\
y(1)=0
\end{array}\right.
$$

Give the range of validity of the solution
3. Consider the initial value problem

$$
\left\{\begin{array}{l}
\frac{d y}{d x}=-\frac{5}{2} x^{4} y^{3} \\
y(0)=-1
\end{array}\right.
$$

(a) Find $y(x)$ explicitly. For what values of x is the solution defined?
(b) Use one step of the modified Euler's method with step size h to find an approximation for $y(h)$

4 Write the following systems as $\mathbf{A x}=\mathbf{b}$ and determine for what values of k the system has (i) a unique solution, (ii) no solution, and (iii) infinitely many solutions.

$$
\begin{array}{r}
x_{1}-x_{2}+2 x_{3}=4 \\
2 x_{1}+3 x_{2}-x_{3}=k \\
-2 x_{1}+x_{2}-3 x_{3}=2
\end{array}
$$

