MATH 320 - SEC 001, SPRING 2012. PRACTICE EXAM 2

INSTRUCTOR: GERARDO HERNÁNDEZ

1. Given that two vectors \mathbf{u} and \mathbf{v} are linearly independent, are $\mathbf{u}-\mathbf{v}$ and \mathbf{v} linearly dependent or linearly independent? Prove your answer.
2.

(a) For what vectors \mathbf{b} does $\mathbf{A x}=\mathbf{b}$ have a solution, with \mathbf{A} given by

$$
\mathbf{A}=\left[\begin{array}{rrr}
6 & 3 & 3 \\
2 & 5 & -1 \\
-4 & -8 & 1
\end{array}\right]
$$

(b) Find a basis for the vector space spanned by the columns of \mathbf{A}.
(c) Find all possible solutions for $\mathbf{b}=\left[\begin{array}{c}0 \\ 1 \\ -3 / 2\end{array}\right]$.
3. Find the determinant of the following matrix using elementary row operations:

$$
\mathbf{A}=\left[\begin{array}{rrrr}
1 & 2 & -2 & 5 \\
-1 & 2 & 3 & 4 \\
1 & 3 & 1 & -2 \\
-1 & -3 & 0 & -4
\end{array}\right]
$$

4. Let W be the subspace of \mathbb{R}^{4} spanned by the vectors $v_{1}=\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 1\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}2 \\ 1 \\ 2 \\ 1\end{array}\right]$. Find a basis for \mathbb{R}^{4} containing the vectors v_{1} and v_{2}.
5. Let \mathbf{A} and \mathbf{B} be $n \times n$ matrices. Show that $\mathbf{A B}$ is invertible if and only if both \mathbf{A} and \mathbf{B} are invertible.
