MATH 320 - SEC 001, SPRING 2012. PRACTICE EXAM 2

INSTRUCTOR: GERARDO HERNÁNDEZ

1. Given that two vectors \mathbf{u} and \mathbf{v} are linearly independent, are $\mathbf{u} - \mathbf{v}$ and \mathbf{v} linearly dependent or linearly independent? Prove your answer.

2.

(a) For what vectors \mathbf{b} does $\mathbf{A}\mathbf{x} = \mathbf{b}$ have a solution, with \mathbf{A} given by

$$\mathbf{A} = \begin{bmatrix} 6 & 3 & 3\\ 2 & 5 & -1\\ -4 & -8 & 1 \end{bmatrix}$$

(b) Find a basis for the vector space spanned by the columns of **A**.

- (c) Find all possible solutions for $\mathbf{b} = \begin{bmatrix} 0\\ 1\\ -3/2 \end{bmatrix}$.
- 3. Find the determinant of the following matrix using elementary row operations:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -2 & 5\\ -1 & 2 & 3 & 4\\ 1 & 3 & 1 & -2\\ -1 & -3 & 0 & -4 \end{bmatrix}$$

4. Let W be the subspace of \mathbb{R}^4 spanned by the vectors $v_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 2 \\ 1 \\ 2 \\ 1 \end{bmatrix}$. Find a

basis for \mathbb{R}^4 containing the vectors v_1 and v_2 .

5. Let A and B be $n \times n$ matrices. Show that AB is invertible if and only if both A and B are invertible.

1