MATH 320 - SEC 001, SPRING 2012. PRACTICE EXAM 3

INSTRUCTOR: GERARDO HERNÁNDEZ

1. Consider the system of equations

$$
\frac{d \mathbf{x}}{d t}=\left[\begin{array}{rr}
-3 & 5 \\
-5 & 3
\end{array}\right] \mathbf{x}
$$

(a) Find the general solution
(b) Write the solution in terms of real functions only
2. Given

$$
y^{(5)}-8 y^{(4)}+16 y^{(3)}+y^{\prime \prime}-8 y^{\prime}+16 y=x^{2} \exp (4 x)
$$

(a) Find the homogeneous solution given that the characteristic equation is $r^{5}-8 r^{4}+16 r^{3}+$ $r^{2}-8 r+16=\left(r^{3}+1\right)\left(r^{2}-8 r+16\right)$.
(b) Write down the form of the particular solution. Do not solve for the coefficients.
3. Find a general solution to

$$
y^{\prime \prime}+y^{\prime}+\frac{1}{4} y=\frac{1}{5} t^{-2} \exp (-t / 2), t>0 .
$$

4. Consider the system of equations

$$
\frac{d \mathbf{x}}{d t}=\left[\begin{array}{rrr}
2 & 0 & 0 \\
-7 & 9 & 7 \\
0 & 0 & 2
\end{array}\right] \mathbf{x}
$$

(a) Find the homogeneous solution.
(b) Find the Fundamental Matrix and its inverse.
(c) Use the Fundamental Matrix and its inverse to find the solution that satisfies the following initial condition:

$$
\mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

5. Let A be the 3×3 matrix given by

$$
A=\left[\begin{array}{rrr}
1 & -3 & 1 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

(a) Find the eigenvalues and corresponding complete set of eigenvectors
(b) Diagonalize the matrix A and use it to compute the power A^{500} of the matrix A.
6. Compute the matrix exponential $e^{A t}$, where

$$
A=\left[\begin{array}{cc}
5 & -4 \\
2 & -1
\end{array}\right]
$$

