MATH 322-SEC 001, SPRING 2013. HOMEWORK 11

INSTRUCTOR: GERARDO HERNÁNDEZ

Due : Friday, May 3rd

Please show all your work and/or justify your answers for full credit.
Problem 1: (Textbook problem 5.8.6) Consider (with $h>0$)

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2}}{\partial x^{2}} \\
\left\{\begin{array}{l}
\frac{\partial u}{\partial x}(0, t)-h u(0, t)=0 \\
\frac{\partial u}{\partial x}(L, t)=0
\end{array}\right. \\
\left\{\begin{array}{l}
u(x, 0)=f(x) \\
\frac{\partial u}{\partial t}(x, 0)=g(x) .
\end{array}\right.
\end{array}\right.
$$

(a) Show that there are an infinite number of different frequencies of oscillation.
(b) Estimate the large frequencies of oscillation
(c) Solve the initial value problem

Problem 2: (Textbook problem 5.8.8) Consider the boundary value problem

$$
\left\{\begin{array}{l}
\frac{d^{2} \phi}{d x^{2}}+\lambda \phi=0 \\
\phi(0)-\frac{d \phi}{d x}(0)=0 \\
\phi(1)+\frac{d \phi}{d x}(1)=0
\end{array}\right.
$$

(a) Using the Rayleigh quotient, show that $\lambda \geq 0$. Why is $\lambda>0$?
(b) Prove that eigenfunctions corresponding to different eigenvalues are orthogonal
(c) Show that

$$
\tan \sqrt{\lambda}=\frac{2 \sqrt{\lambda}}{\lambda-1} .
$$

Determine the eigenvalues graphically. Estimate the large eigenvalues (using the graph).
(d) Solve

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

with

$$
\left\{\begin{array}{l}
u(0, t)-\frac{\partial u}{\partial x}(0, t)=0 \\
u(1, t)+\frac{\partial u}{\partial x}(1, t)=0 \\
u(x, 0)=f(x) .
\end{array}\right.
$$

You may call the relevant eigenfunctions $\phi_{n}(x)$ and assume that they are known.
Problem 3: (Textbook problem 5.9.1) Estimate (to leading order) the large eigenvalues and corresponding eigenfunctions for

$$
\frac{d}{d x}\left(p(x) \frac{d \phi}{d x}\right)+[\lambda \sigma(x)+q(x)] \phi=0
$$

if the boundary conditions are
(a)

$$
\frac{d \phi}{d x}(0)=0 \text { and } \frac{d \phi}{d x}(L)=0
$$

(b)

$$
\phi(0)=0 \text { and } \frac{d \phi}{d x}(L)=0
$$

(c)

$$
\phi(0)=0 \text { and } \frac{d \phi}{d x}(L)+h \phi(L)=0 .
$$

