MATH 322 - SEC 001, SPRING 2013. HOMEWORK 2

INSTRUCTOR: GERARDO HERNÁNDEZ

Due : Friday, February 15

Please show all your work and/or justify your answers for full credit.
Problem 1: (Textbook problem 1.5.8) If the Laplace's equation is satisfied in three dimensions, show that

$$
\oiiint \nabla u \cdot \hat{\mathbf{n}} d S=0
$$

for any closed surface. (Hint:Use the divergence theorem). Give a physical interpretation of this results (in the context of heat flow).

Problem 2: (Textbook problem 1.5.5) Assume that the temperature is circularly symmetric: $u=u(r, t)$, where $r^{2}=x^{2}+y^{2}$. We will derive the heat equation for this problem. Consider any circular annulus $a \leq r \leq b$.
(a) Show that the total heat energy is $2 \pi \int_{a}^{b} c \rho u r d r$
(b) Show that the flow of heat energy per unit time out of the annulus at $r=b$ is

$$
-\left.2 \pi b K_{0} \frac{\partial u}{\partial r}\right|_{r=b}
$$

A similar result holds at $r=a$.
(c) Use parts (a) and (b) to derive the circularly symmetric heat equation without sources

$$
\frac{\partial u}{\partial t}=\frac{k}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)
$$

Problem 3: (Textbook problem 1.5.9) Determine the equilibrium (circularly symmetric) temperature distribution inside a circular annulus $\left(r_{1} \leq r \leq r_{2}\right)$
(a) if the outer radius is at temperature T_{2} and the inner at T_{1}
(b) if the outer radius is insulated and the inner radius is at temperature T_{1}.

Problem 4: (Textbook problem 1.5.11) Consider

$$
\frac{\partial u}{\partial t}=\frac{k}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right), a \leq r \leq b
$$

subject to

$$
u(r, 0)=f(r), \frac{\partial u}{\partial r}(a, t)=\beta, \quad \text { and } \quad \frac{\partial u}{\partial r}(b, t)=1
$$

Using physical reasoning for what value(s) of β does an equilibrium temperature exist?

Problem 5: Find the separated equations satisfied by $a(x)$ and $b(y)$ for the following partial differential equations
(a) $u_{x x}-2 u_{y y}=0$
(b) $u_{x x}+u_{y y}+2 u_{x}=0$
(c) $x^{2} u_{x x}-2 y u_{y}=0$
(d) $u_{x x}+u_{x}+u_{y}-u=0$

Problem 6: Which of the following are solutions of the Laplace's equation?
(a) $u(x, y)=e^{x} \cos 2 y$
(b) $u(x, y)=e^{x} \cos y+e^{y} \cos x$
(c) $u(x, y)=e^{x} e^{y}$
(d) $u(x, y)=(3 x+2) e^{y}$

Problem 7: Find the separated solution $u(x, y)$ of Laplace's equation

$$
u_{x x}+u_{y y}=0
$$

in the region $0<x<L, y>0$ that satisfies the boundary conditions

$$
\left\{\begin{array}{l}
u(0, y)=0 \\
u(L, y)=0
\end{array}\right.
$$

and the boundedness condition

$$
|u(x, y)| \leq M
$$

for $y>0$, where M is a constant independent of (x, y).

Problem 8: Find the separated solutions $u(x, t)$ of the heat equation $u_{t}-u_{x x}=0$ in the region $0 \leq x \leq L, t>0$, that satisfy the boundary conditions $u(0, t)=0, \frac{\partial u}{\partial x}(L, t)=0$.

Problem 9: (Textbook problem 2.2.2)
(a) Show that

$$
L(u)=\frac{\partial}{\partial x}\left[K_{0}(x) \frac{\partial u}{\partial x}\right]
$$

is a linear operator.
(b) Show that usually

$$
L(u)=\frac{\partial}{\partial x}\left[K_{o}(x, u) \frac{\partial u}{\partial x}\right]
$$

is not a linear operator.

