MATH 322 - SEC 001, SPRING 2013. HOMEWORK 3

INSTRUCTOR: GERARDO HERNÁNDEZ

Due : Friday, February 22

Please show all your work and/or justify your answers for full credit.
Problem 1: (Textbook problem 2.3.2) Consider the differential equation

$$
\frac{d^{2} \phi}{d x^{2}}+\lambda \phi=0
$$

Determine the eigenvalues λ (and the corresponding eigenfunctions) if ϕ satisfies the following boundary conditions. Analyze three cases $(\lambda>0, \lambda=0, \lambda<0)$. You may assume that the eigenvalues are real.
(f) $\phi(a)=0$, and $\phi(b)=0$ (You may assume that $\lambda>0$)
(g) $\quad \phi(0)=0$ and $\frac{d \phi}{d x}(L)+\phi(L)=0$

Problem 2: (Textbook problem 2.3.3) Consider the heat equation

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

subject to the boundary conditions

$$
u(0, t)=0 \text { and } u(L, t)=0
$$

Solve the initial value problem if the temperature is initially
(b) $u(x, 0)=3 \sin \left(\frac{\pi x}{L}\right)-\sin \left(\frac{3 \pi x}{L}\right)$
(c) $u(x, 0)=2 \cos \frac{3 \pi x}{L}$
(d)

$$
u(x, 0)=\left\{\begin{array}{l}
1,0<x \leq \frac{L}{2} \\
2, \frac{L}{2}<x<L
\end{array}\right.
$$

Problem 3: (Textbook problem 2.3.6) Evaluate

$$
\int_{0}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x \text { for } n \geq 0, m \geq 0
$$

Use the trigonometric identity

$$
\cos (a) \cos (b)=\frac{1}{2}[\cos (a+b)+\cos (a-b)]
$$

(Be careful if $a-b=0$, or $a+b=0$).
Problem 4: (Textbook problem 2.3.8) Consider

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}-\alpha u
$$

This corresponds to a one-dimensional rod either with heat loss through the lateral sides with outside temperature 0° or with insulated lateral sides with a heat sink proportional to the temperature. Suppose that the boundary conditions are

$$
u(0, t)=0, \text { and } u(L, t)=0
$$

(a) What are the possible equilibrium temperature distributions if $\alpha>0$?
(b) Solve the time-dependent problem $[u(x, 0)=f(x)]$ if $\alpha>0$. Analyze the temperature for large time $(t \rightarrow \infty)$ and compare to part (a).

Problem 5: (Textbook problem 2.4.4) Explicitly show that there are no negative eigenvalues for

$$
\frac{d^{2} \phi}{d x^{2}}=-\lambda \phi, \text { subject to } \frac{d \phi}{d x}(0)=0, \frac{d \phi}{d x}(L)=0
$$

Problem 6: (Textbook problem 2.5.12)
(a) Using the divergence theorem, determine an alternative expression for

$$
\iiint u \nabla^{2} u d x d y d z
$$

(b) Using part (a), prove that the solution of Laplace's equation $\nabla^{2} u=0$ (with u given on the boundary) is unique
Problem 7: (Textbook problem 2.5.14) Show that the "backward" heat equation

$$
\frac{\partial u}{\partial t}=-k \frac{\partial^{2} u}{\partial x^{2}}
$$

subject to $u(0, t)=u(L, t)=0$ and $u(x, 0)=f(x)$, is not well posed. [Hint: Show that if the data are changed an arbitrary small amount, for example,

$$
f(x) \rightarrow f(x)+\frac{1}{n} \sin \frac{n \pi x}{L}
$$

for large n, then the solution $u(x, t)$ changes by a large amount.]

