MATH 322 - SEC 001, SPRING 2013. HOMEWORK 6

INSTRUCTOR: GERARDO HERNÁNDEZ

Due : Friday, March 15

Please show all your work and/or justify your answers for full credit.

Problem 1:

(a) Set $x=\frac{\pi}{2}$ in the Fourier series of $f(x)=x,-\pi<x<\pi$, to obtain the formula

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots
$$

(b) Set $x=\frac{\pi}{4}$ in the series of part (a) to obtain

$$
\frac{\pi}{4}=\sqrt{2}\left(1+\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\ldots\right)-\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots\right)
$$

(c) Conclude from part (b) that

$$
\frac{\pi}{2 \sqrt{2}}=1+\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{9}+\frac{1}{11}-\frac{1}{13}-\frac{1}{15}+\ldots
$$

(d) If we set $x=\pi$ in the series in part (a), we find that the series sums to zero. Why doesn't it contradict $f(x)=x$?

Problem 2: From homework 5 (problem 1) we know that

$$
x^{2} \sim \frac{\pi^{2}}{3}-4 \cos x+\cos 2 x-\frac{4}{9} \cos 3 x+\ldots+(-1)^{m} \frac{4}{m^{2}} \cos (m x)+\ldots
$$

for $-\pi \leq x \leq \pi$.
(a) Setting $x=0$, find the sum

$$
1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\ldots=\sum_{m=1}^{\infty}(-1)^{m+1} \frac{1}{m^{2}}
$$

(b) What is

$$
\sum_{n=1}^{\infty} \frac{1}{m^{2}}
$$

Problem 3: Let $f(x),-L<x<L$ be a piecewise smooth function with Fourier series

$$
f(x) \sim a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

Show that $a_{n}=O(1 / n)$ and $b_{n}=O(1 / n)$ are both of order $1 / n$ when $n \rightarrow \infty$. That it, show that $n a_{n}$ and $n b_{n}$ are bounded as $n \rightarrow \infty$.

Problem 4: Among the series for x, x^{2} and $x^{3}-L^{2} x,-L<x<L$, which can be differentiated term by term obtaining the derivative of the original series?

Problem 5: Let $f(x)=x(\pi-x), 0 \leq x \leq \pi$.
(a) Compute the Fourier sine series of f.
(b) Compute the Fourier cosine series of f.
(c) Find the mean square error incurred by using N terms of each series and find asymptotic estimates when $N \rightarrow \infty$
(d) Which series gives a better mean square approximation of f ?

