# MATH 322-SEC 001, SPRING 2013. HOMEWORK 7 

## INSTRUCTOR: GERARDO HERNÁNDEZ

## Due : Friday, March 22

Please show all your work and/or justify your answers for full credit.
Problem 1: (Textbook problem 3.3.2) For the following functions, sketch the Fourier sine series of $f(x)$ and determine its Fourier coefficients.
(a) $f(x)=\cos \left(\frac{\pi x}{L}\right)$
(b) $f(x)= \begin{cases}1 & x<L / 6 \\ 3 & L / 6<x<L / 2 \\ 0 & x>L / 2\end{cases}$

Problem 2: (Textbook problem 3.3.5) For the following functions, sketch the Fourier cosine series of $f(x)$ and determine its Fourier coefficients
(a) $f(x) \begin{cases}1 & x<L / 6 \\ 3 & L / 6<x<L / 2 \\ 0 & x>L / 2\end{cases}$
(b) $f(x)= \begin{cases}0, & x<L / 2 \\ x, & x>L / 2\end{cases}$

Problem 3: (Textbook problem 3.3.9) What is the sum of the Fourier sine series of $f(x)$ and the Fourier cosine series of $f(x)$ ? What is the sum of the even and odd extension of $f(x)$ ?

Problem 4: (Textbook problem 3.3.18) For full credit, explain your conclusions. For continuous functions,
(a) Under what conditions does $f(x)$ equal its Fourier series for all $x,-L \leq x \leq L$ ?
(b) Under what conditions does $f(x)$ equal its Fourier sine series for all $x, 0 \leq x \leq L$ ?
(c) Under what conditions does $f(x)$ equal its Fourier cosine series for all $x, 0 \leq x \leq L$ ?

Problem 5: Textbook problem 3.4.6. There are some things wrong in the following demonstration. Find the mistakes and correct them.

In this exercise we attempt to obtain the Fourier cosine coefficients of $e^{x}$ :

$$
\begin{equation*}
e^{x}=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi x}{L}\right) \tag{0.0.1}
\end{equation*}
$$

Differentiating yields

$$
e^{x}=-\sum_{n=1}^{\infty} \frac{n \pi}{L} A_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

the Fourier sine series of $e^{x}$. Differentiating again yields

$$
\begin{equation*}
e^{x}=-\sum_{n=1}^{\infty}\left(\frac{n \pi}{L}\right)^{2} A_{n} \cos \left(\frac{n \pi x}{L}\right) \tag{0.0.2}
\end{equation*}
$$

Since equations (0.0.1) and (0.0.2) give the Fourier cosine series of $e^{x}$, they must be identical. Thus,

$$
\left.\begin{array}{c}
A_{0}=0 \\
A_{n}=0
\end{array}\right\} \text { obviously wrong!. }
$$

By correcting the mistakes, you should be able to obtain $A_{0}$ and $A_{n}$ without using the typical technique, that is, $A_{n}=2 / L \int_{0}^{L} e^{x} \cos (n \pi x / L) d x$.

Problem 6: Textbook problem 4.2.1
(a) Using equation (4.2.7) in the textbook, compute the sagged equilibrium position $u_{E}(x)$ if $Q(x, t)=-g$. The boundary conditions are $u(0)=0$ and $u(L)=0$.
(b) Show that $v(x, t)=u(x, t)-u_{E}(x)$ satisfies the equation 4.2.9 in the textbook

