MATH 322 - SEC 001, SPRING 2013. HOMEWORK 7

INSTRUCTOR: GERARDO HERNÁNDEZ

Due : Friday, March 22

Please show all your work and/or justify your answers for full credit.

Problem 1: (*Textbook problem 3.3.2*) For the following functions, sketch the Fourier sine series of f(x) and determine its Fourier coefficients.

(a)
$$f(x) = \cos\left(\frac{\pi x}{L}\right)$$

(b) $f(x) = \begin{cases} 1 & x < L/6 \\ 3 & L/6 < x < L/2 \\ 0 & x > L/2 \end{cases}$

Problem 2: (*Textbook problem 3.3.5*) For the following functions, sketch the Fourier cosine series of f(x) and determine its Fourier coefficients

(a)
$$f(x) \begin{cases} 1 & x < L/6 \\ 3 & L/6 < x < L/2 \\ 0 & x > L/2 \end{cases}$$

(b) $f(x) = \begin{cases} 0, & x < L/2 \\ x, & x > L/2 \end{cases}$

Problem 3: (*Textbook problem 3.3.9*) What is the sum of the Fourier sine series of f(x) and the Fourier cosine series of f(x)? What is the sum of the even and odd extension of f(x)?

Problem 4: (*Textbook problem 3.3.18*) For full credit, explain your conclusions. For continuous functions,

- (a) Under what conditions does f(x) equal its Fourier series for all $x, -L \le x \le L$?
- (b) Under what conditions does f(x) equal its Fourier sine series for all $x, 0 \le x \le L$?
- (c) Under what conditions does f(x) equal its Fourier cosine series for all $x, 0 \le x \le L$?

Problem 5: *Textbook problem 3.4.6*. There are some things wrong in the following demonstration. Find the mistakes and correct them.

In this exercise we attempt to obtain the Fourier cosine coefficients of e^x :

(0.0.1)
$$e^x = A_0 + \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi x}{L}\right)$$

Differentiating yields

$$e^x = -\sum_{n=1}^{\infty} \frac{n\pi}{L} A_n \sin\left(\frac{n\pi x}{L}\right),$$

the Fourier sine series of e^x . Differentiating again yields

(0.0.2)
$$e^{x} = -\sum_{n=1}^{\infty} \left(\frac{n\pi}{L}\right)^{2} A_{n} \cos\left(\frac{n\pi x}{L}\right).$$

Since equations (0.0.1) and (0.0.2) give the Fourier cosine series of e^x , they must be identical. Thus,

$$\begin{array}{c} A_0 = 0\\ A_n = 0 \end{array} \right\} \text{obviously wrong!}.$$

By correcting the mistakes, you should be able to obtain A_0 and A_n without using the typical technique, that is, $A_n = 2/L \int_0^L e^x \cos(n\pi x/L) dx$.

Problem 6: Textbook problem 4.2.1

- (a) Using equation (4.2.7) in the textbook, compute the sagged equilibrium position $u_E(x)$ if Q(x,t) = -g. The boundary conditions are u(0) = 0 and u(L) = 0.
- (b) Show that $v(x,t) = u(x,t) u_E(x)$ satisfies the equation 4.2.9 in the textbook