MATH 322 - SEC 001, SPRING 2013. HOMEWORK 8

INSTRUCTOR: GERARDO HERNÁNDEZ

Due : Friday, April 5

Please show all your work and/or justify your answers for full credit.
Problem 1: (Textbook problem 4.4.3) Consider a slightly damped vibrating string that satisfies

$$
\rho_{0} \frac{\partial^{2} u}{\partial t^{2}}=T_{0} \frac{\partial^{2} u}{\partial x^{2}}-\beta \frac{\partial u}{\partial t}
$$

(a) Briefly explain why $\beta>0$.
(b) Determine the solution (by separation of variables)that satisfies the boundary conditions

$$
u(0, t)=0, u(L, t)=0
$$

and the initial conditions

$$
u(x, 0)=f(x), \frac{\partial u}{\partial t}(x, 0)=g(x)
$$

You can assume that this frictional coefficient β is relatively small ($\beta^{2}<4 \pi \rho_{0} T_{0} / L^{2}$).
Problem 2: (Textbook problem 4.4.8) If a vibrating string satisfying (4.4.1)-(4.4.3) is initially unperturbed, $f(x)=0$, with the initial velocity given, show that

$$
u(x, t)=\frac{1}{2 c} \int_{x-c t}^{x+c t} G(\bar{x}) d \bar{x}
$$

where $G(\bar{x})$ is the odd periodic extension of $g(x)$. Hints:
1 For all $x, G(x)=\sum_{n=1}^{\infty} B_{n} \frac{n \pi c}{L} \sin \frac{n \pi x}{L}$
$2 \sin a \sin b=\frac{1}{2}[\cos (a-b)-\cos (a+b)]$
Problem 3: (Textbook problem 4.4.9) From (4.4.1), derive conservation of energy for a vibrating string,

$$
\frac{d E}{d t}=\left.c^{2} \frac{\partial u}{\partial x} \frac{\partial u}{\partial t}\right|_{0} ^{L}
$$

where the total energy E is the sum of the kinetic energy, defined by $\int_{0}^{L} \frac{1}{2}\left(\frac{\partial u}{\partial t}\right)^{2} d x$, and the potential energy, defined by $\int_{0}^{L} \frac{c^{2}}{2}\left(\frac{\partial u}{\partial x}\right)^{2} d x$.

Problem 4: Let

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} \cos \left(\frac{n \pi c t}{L}\right) \sin \left(\frac{n \pi x}{L}\right)
$$

be a solution of the vibrating string problem. Suppose that the string is constrained so that $u(L / 3, t)=0$ for all t. What conditions does this impose on the coefficients B_{n} ?

Problem 5: The voltage $v(x, t)$ in a transmition cable is known to satisfy the partial differential equation

$$
v_{t t}+2 a v_{t}+a^{2} v=c^{2} v_{x x}
$$

where a and c are positive constants. Let $u(x, t)=e^{a t} v(x, t)$ and show that u satisfies the wave equation $u_{t t}=c^{2} u_{x x}$.

