MATH 322-SEC 001, SPRING 2013. HOMEWORK 9

INSTRUCTOR: GERARDO HERNÁNDEZ

Due : Friday, April 19

Please show all your work and/or justify your answers for full credit.
Problem 1: (Textbook problem 5.3.2) Consider

$$
\rho \frac{\partial^{2} u}{\partial t^{2}}=T_{0} \frac{\partial^{2} u}{\partial x^{2}}+\alpha u+\beta \frac{\partial u}{\partial t}
$$

(a) Give a brief physical interpretation. What signs must α and β have to be physical?
(b) Allow ρ, α, β to be functions of x. Show that separation of variables works only if $\beta=c \rho$, where c is a constant.
(c) If $\beta=c \rho$, show that the spatial equation is a Sturm-Liouville differential equation. Solve the time equation.
Problem 2: (Textbook problem 5.3.3) Consider the non-Sturm-Liouville differential equation

$$
\frac{d^{2} \phi}{d x^{2}}+\alpha(x) \frac{d \phi}{d x}+[\lambda \beta(x)+\gamma(x)] \phi=0
$$

Multiply this equation by $H(x)$. Determine $H(x)$ such that the equation may be reduced to the standard Sturm-Liouville form

$$
\frac{d}{d x}\left[p(x) \frac{d \phi}{d x}\right]+[\lambda \sigma(x)+q(x)] \phi=0
$$

Given $\alpha(x), \beta(x)$ and $\gamma(x)$, what are $p(x), \sigma(x)$, and $q(x)$?
Problem 3: (Textbook problem 5.3.6) For the Sturm-Lioville eigenvalue problem

$$
\frac{d^{2} \phi}{d x^{2}}+\lambda \phi=0, \text { with } \frac{d \phi}{d x}(0)=0 \text { and } \phi(L)=0
$$

verify the following general properties:
(a) There is an infinite number of eigenvalues with a smallest but no largest
(b) The nth eigenfunction has $n-1$ zeros
(c) The eigenfunctions are complete and orthogonal
(d) What does the Rayleigh quotient say concerning negative and zero eigenvalues?

Problem 4: (Textbook problem 5.3.7) Which of the statements 1-5 of the theorems of this section are valid for the following eigenvalue problem?

$$
\frac{d^{2} \phi}{d x^{2}}+\lambda \phi=0
$$

with

$$
\begin{aligned}
\phi(-L) & =\phi(L) \\
\frac{d \phi}{d x}(-L) & =\frac{d \phi}{d x}(L)
\end{aligned}
$$

Problem 5: (Textbook problem 5.3.8) Show that $\lambda \geq 0$ for the eigenvalue problem

$$
\frac{d^{2} \phi}{d x^{2}}+\left(\lambda-x^{2}\right) \phi=0 \text { with } \frac{d \phi}{d x}(0)=0, \frac{d \phi}{d x}(1)=0 .
$$

Is $\lambda=0$ an eigenvalue?

