Math 322 : Midterm 1
Instructor: Gerardo Hernández
March 1st, 2013

YOUR NAME:

PLEASE WRITE YOUR NAME ON EVERY PAGE.

Prob 1	
$/ 25$	
Prob 2	
$/ 20$	
Prob 3	
$/ 20$	
Prob 4	
$/ 20$	
Prob 5	
$/ 20$	
TOTAL	
100	

Problem 1. Solve Laplace's equation inside a semicircle of radius $a(0<r<a, 0<\theta<\pi)$ subject to the boundary conditions (see figure above).

$$
\left\{\begin{array}{l}
\text { the diameter is insulated, and } \\
u(a, \theta)=f(\theta)
\end{array}\right.
$$

Hint: $\frac{\partial u}{\partial y}=\sin (\theta) \frac{\partial u}{\partial r}+\frac{\cos (\theta)}{r} \frac{\partial u}{\partial \theta}$.
You can assume that the solution remains finite at the origin.

Math 322 Midterm1

Problem 2. Find the steady-state solution of the heat equation

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

with the boundary conditions

$$
\begin{aligned}
& -\frac{\partial u}{\partial x}(0, t)=h\left(T_{0}-u(0, t)\right), \\
& \frac{\partial u}{\partial x}(L, t)=h\left(T_{1}-u(L, t)\right),
\end{aligned}
$$

where T_{0}, T_{1}, h are constants with $h>0$.

Problem 3. This problem shows that not every linear PDE has non-trivial separated solutions. Suppose that $u(x, y)=a(x) b(y)$ is a solution of the equation

$$
\frac{\partial u}{\partial x}+(x+y) \frac{\partial u}{\partial y}=0 .
$$

Show that $a(x)$ and $b(y)$ are both constant.

Problem 4. Consider the heat equation

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}},
$$

subject to the boundary condition

$$
u(0, t)=0, u(L, t)=0 .
$$

Solve the initial value problem if the temperature is initially

$$
u(x, 0)= \begin{cases}-1, & 0<x \leq \frac{L}{2} \\ 1, & \frac{L}{2}<x<L\end{cases}
$$

Problem 5. Suppose $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+x, u(x, 0)=f(x), \frac{\partial u}{\partial x}(0, t)=\beta, \frac{\partial u}{\partial x}(L, t)=1$.
(a) Calculate the total thermal energy in the one-dimensional rod as a function of time
(b) From part (a), determine a value of β for which an equilibrium exists. For this value of β, determine $\lim _{t \rightarrow \infty} u(x, t)$.

Math 322 Midterm1

