MATH 322 , SPRING 2013. PRACTICE PROBLEMS FOR MIDTERM 1

INSTRUCTOR: GERARDO HERNÁNDEZ

Problem Find the steady-state solution of the heat equation with boundary conditions

$$
\frac{\partial u}{\partial x}(0, t)=h\left(T_{0}-u(0, t)\right), \frac{\partial u}{\partial x}(L, t)=\Phi
$$

where T_{0} and Φ are constants
Problem Suppose that $u(x, y)$ is a solution of Laplace's equation. If θ is a fixed real number, define the function $v(x, y)=u(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta)$. Show that $v(x, y)$ is a solution of Laplace's equation.

Problem Apply the result from the previous exercise to the separated solutions of Laplace's equation of the form $u(x, y)=\left(A_{1} e^{k x}+A_{2} e^{-k x}\right)\left(A_{3} \cos (k y)+A_{4} \sin (k y)\right)$, to obtain additional solutions of Laplace's equation. Are these new solutions separated?

Problem Which of the following pairs of functions are orthogonal on the interval $0 \leq x \leq 1$?

$$
\varphi_{1}=\sin 2 \pi x, \varphi_{2}=x, \varphi_{3}=\cos 2 \pi x, \varphi_{4}=1
$$

Problem Let $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ be an orthonormal set of real-valued function on the interval $-1 \leq x \leq$ 1. That is, $\left\langle\varphi_{i}, \varphi_{j}\right\rangle=0$ for $i \neq j$ and $\left\langle\varphi_{i}, \varphi_{j}\right\rangle=1$ for $i=j, i, j=1,2,3$. Here

$$
\left\langle\varphi_{i}, \varphi_{j}\right\rangle=\frac{1}{2} \int_{-1}^{1} \varphi_{i}(x) \varphi_{j}(x) d x
$$

Let f and g be any functions of the form $f(x)=a_{1} \varphi_{1}(x)+a_{2} \varphi_{2}(x)+a_{3} \varphi_{3}(x), g(x)=b_{1} \varphi_{1}(x)+$ $b_{2} \varphi_{2}(x)+b_{3} \varphi_{3}(x)$.
(a) Show that $\|f\|^{2}+\langle f, f\rangle=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}$.
(b) Show that $\left\langle f, \varphi_{1}\right\rangle=a_{1},\left\langle f, \varphi_{2}\right\rangle=a_{2},\left\langle f, \varphi_{3}\right\rangle=a_{3}$.
(c) Show that $\langle f, g\rangle=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$.

Problem Suppose $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+4, u(x, 0)=f(x), \frac{\partial u}{\partial x}(0, t)=5, \frac{\partial u}{\partial x}(L, t)=6$. Calculate the total thermal energy in the one-dimensional rod as a function of time.

Problem Isobars are lines of constant temperature. Show that isobars are perpendicular to any part of the boundary that is insulated.

Problem Consider the differential equation

$$
\frac{d^{2} \phi}{d x^{2}}+\lambda \phi=0
$$

Determine the eigenvalues λ, and the corresponding eigenfunctions if ϕ satisfies the following boundary condition

$$
\frac{d \phi}{d x}(0)=0, \frac{d \phi}{d x}(L)=0
$$

Problem Consider the heat equation

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

subject to the boundary condition

$$
\frac{\partial u}{\partial x}(0, t)=0, \frac{\partial u}{\partial x}(L, t)=0
$$

Solve the initial value problem if the temperature is initially

$$
u(x, 0)= \begin{cases}0, & 0<x \leq \frac{L}{2} \\ 1, & \frac{L}{2}<x<L\end{cases}
$$

Problem Solve Laplace's equation inside a rectangle $0 \leq x \leq L, 0 \leq y \leq H$, with the following boundary condition

$$
\frac{\partial u}{\partial x}(0, y)=g(y), \frac{\partial u}{\partial x}(L, y)=0, u(x, 0)=0, u(x, H)=0
$$

Problem Solve Laplace's equation outside a circular disk $(r \geq a)$ subject to the boundary condition
(a) $u(a, \theta)=\ln (2)+4 \cos (3 \theta)$
(b) $u(a, \theta)=f(\theta)$

Problem Solve Laplace's equation inside a semi-infinite strip $(0<x<\infty, 0<y<H)$ subject to the boundary condition

$$
u(x, 0)=0, u(x, H)=0, u(0, y)=g(y)
$$

Problem Solve Laplace's equation inside a semi-infinite strip $(0<x<\infty, 0<y<H)$ subject to the boundary condition

$$
\frac{\partial u}{\partial x}(x, 0)=0, \frac{\partial u}{\partial x}(x, H)=0, u(0, y)=g(y)
$$

Problem For what values of θ will $u_{r}=0$ off the cylinder? For these values of θ, where (for what values of r) will $u_{\theta}=0$ also?

Problem Show that $\psi=\alpha \frac{\sin \theta}{r}$ satisfies Laplace's equation. Show that the streamlines are circles. Graph the streamlines.

