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Abstract

Motivated by the identity t(Kn+2; 1,−1) = t(Kn; 2,−1), where t(G;x, y) is the Tutte
polynomial of a graph G, we search for graphs G having the property that there is a pair of
vertices u, v such that t(G; 1,−1) = t(G − {u, v}; 2,−1). Our main result gives a sufficient
condition for a graph to have this property; moreover, it describes the graphs for which the
property still holds when each vertex is replaced by a clique or a coclique of arbitrary order.
In particular, we show that the property holds for the class of threshold graphs, a well-studied
class of perfect graphs.
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1 Introduction

The Tutte polynomial is an important polynomial graph invariant that has received much attention
in diverse areas of mathematics. For a graph G = (V,E), it is given by

t(G;x, y) =
∑
A⊆E

(x− 1)r(G)−r(A)(y − 1)|A|−r(A),

where r(A) is the rank of A, defined as |V | − c(A), where c(A) is the number of connected
components of the spanning subgraph (V,A) induced by A. Although the definition of the Tutte
polynomial allows multiple edges and loops, all graphs in this paper are simple.

We refer to [11] for details about the many combinatorial interpretations of evaluations of the
Tutte polynomial of a graph at different points of the plane and along several algebraic curves.
For example, t(G; 1, 1) is the number of spanning trees of G when G is connected and t(G; 2, 1)
is the number of spanning forests of G. As for curves, the hyperbolae Hq = {(x, y) : (x −
1)(y − 1) = q} play a significant role in the theory of the Tutte polynomial. In particular, for
q ∈ N the Tutte polynomial specializes on Hq to the partition function of the q-state Potts model.
Two interpretations especially related to our work are that t(G; 2, 0) is the number of acyclic
orientations of G, and that t(G; 1, 0) is the number of acyclic orientations of G with a unique
prescribed source. With this in mind, it follows easily that t(Kn+1; 1, 0) = t(Kn; 2, 0); in fact,
t(G; 1, 0) = t(G − {v}; 2, 0) for any graph G with a universal vertex v (a vertex adjacent to all
other vertices).
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In this paper we shall be concerned with evaluations of the Tutte polynomial at the points
(1,−1) and (2,−1). Merino [7] proved the following identity, which is the starting point for what
follows:

t(Kn+2; 1,−1) = t(Kn; 2,−1).

Non-trivial relationships between evaluations of the Tutte polynomial at points on different hy-
perbolae are uncommon. Here, the point (2,−1) lies on the hyperbola H−2 and (1,−1) on the
hyperbola H0. The question we are interested in is whether there are other graphs G with the
property that there are vertices u, v such that t(G; 1,−1) = t(G − {u, v}; 2,−1). Merino’s proof
for complete graphs used generating functions. It is not very difficult to adapt his proof to show
that the property holds for complete bipartite graphs and for graphs formed by the join of a clique
and a coclique. By a clique we mean a complete graph, and by a coclique a graph with no edges;
the join of two graphs is their disjoint union together with edges joining each vertex from the first
graph to each vertex of the second.

Our main result (Theorem 1) generalizes these examples by giving sufficient conditions for a
graph G to have such a pair of vertices u, v for which t(G; 1,−1) = t(G−{u, v}; 2,−1); moreover,
it describes graphs for which this property still holds when each vertex is replaced by a clique
or a coclique of arbitrary order. In particular, we show that the property holds for the class of
threshold graphs, a well-studied class of perfect graphs [6].

The paper is organized as follows. First we present the main theorem and discuss its conse-
quences. Section 3 is devoted to its proof, which relies heavily on the use of generating functions
for Tutte polynomials, the fundamental example being the formula

∑
n≥0

t(Kn;x, y)
un

n!
=

1

x− 1

∑
n≥0

y(n
2)(y − 1)−n

un

n!

(x−1)(y−1)

,

obtained by Tutte in an equivalent form [9].
Section 4, which is in fact independent of the previous ones, is devoted to giving a bijective

proof of Merino’s theorem by using an interpretation of the Tutte polynomial given by Gessel
and Sagan [3] in terms of spanning trees and spanning forests. In Section 5 we use the formulas
obtained in Section 3 to explore the evaluation at (2,−1) of the Tutte polynomial for complete
bipartite graphs and for the join of a clique and a coclique, and we conclude with a related open
problem in Section 6.

2 Statement of main result

Let G = (V,E) be a simple graph. For a subset of vertices U ⊆ V , G[U ] denotes the subgraph
of G induced by the vertex set U . A clique in G is a set of pairwise mutually adjacent vertices
(inducing a complete graph) and a coclique in G is a set of pairwise non-adjacent vertices (inducing
the complement of a complete graph). Vertices u and v are twin vertices in G if each vertex w
distinct from u and v is either adjacent to both u and v, or adjacent to neither u nor v.

We are now ready to state our main theorem; see Figure 1 for a diagram illustrating the
conditions contained in its statement.

Theorem 1. Let G = (V,E) be a simple graph and i and j distinct vertices of G such that {i, j}
is a vertex cover of G, that is, every vertex is adjacent to i or j. Let A = {v ∈ V \ {i, j} : vi ∈
E, vj 6∈ E}, B = {v ∈ V \ {i, j} : vi 6∈ E, vj ∈ E} and C = {v ∈ V \ {i, j} : vi ∈ E, vj ∈ E}.

Then t(G; 1,−1) = t(G− {i, j}; 2,−1) if the following conditions hold:

(i) G[A] and G[B] are cocliques, and G[C ∪ {i, j}] is a clique (in particular, ij ∈ E);

(ii) there is no induced pair of disjoint edges 2P2 with endpoints in A ∪ B and no induced path
of length three v1, v2, v3, v4 with {v2, v3} ⊆ C and either {v1, v4} ⊆ A or {v1, v4} ⊆ B;
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(iii) there is no induced path P3 of length two with one endpoint in A and the other in B, nor
the complement of such a path.

Furthermore, if G satisfies these conditions then so does any graph obtained from G by replacing
a vertex of A∪B ∪{i, j} by a coclique of twin vertices, or a vertex of C ∪{i, j} by a clique of twin
vertices.
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Figure 1: On the left, structure of the graph described in Theorem 1; A and B induce cocliques,
and C ∪ {i, j} induces a clique. On the right, the five forbidden induced subgraphs.

Since K2 satisfies the conditions of the theorem (it is the simplest case A = B = C = ∅), we
recover complete graphs, complete bipartite graphs and the join of a clique and a coclique. If we
take G = K3, we have A = B = ∅ and |C| = 1. This means that we cannot replace the three
vertices of a K3 by cocliques, but all other possibilities are fine.

The case B = ∅ gives a much richer class of graphs, namely threshold graphs. These are the
graphs whose vertices can be ordered so that each vertex is adjacent to either all or none of the
previous vertices. Threshold graphs are also the graphs with no induced P4, C4 or 2P2. (See [6]
for a wealth of characterizations and applications.)

Corollary 2. Let G be a connected threshold graph and let j and i be the first and last vertex
in an ordering of the vertices of G such that each vertex is adjacent to either all or none of the
previous ones. Then t(G; 1,−1) = t(G− {i, j}; 2,−1).

Proof. We show that the conditions in Theorem 1 hold. Let j = u1, . . . , un = i be an ordering of
the vertices of G such that each ur is adjacent to either all or none of the vertices u1, . . . , ur−1;
in the first case we will say that ur is dominant and in the second, that it is isolated. Since G is
connected, the last vertex added must be dominant (that is, adjacent to all other vertices). Then
certainly {i, j} is a vertex cover of G. Consider the sets A, B and C as defined in the statement
of Theorem 1. Of them, B is clearly empty, since all vertices are adjacent to i. The sets A and C
are forced to be the sets of isolated and dominant vertices in {u2, . . . , un−1}, respectively. Thus
condition (i) is seen to hold. Condition (ii) is satisfied because a threshold graph contains no
induced P4 or 2P2. Finally, condition (iii) holds vacuously, since B is empty.

In Section 3 we shall see that Theorem 1 in fact characterizes those graphs G for which we can
replace every one of its vertices by a clique or coclique of arbitrary size and still obtain a graph G′

satisfying t(G′; 1,−1) = t(G′ − {i, j}; 2,−1). (This emerges from Theorem 6.) However, it is not
the case that Theorem 1 gives a necessary condition for G to satisfy the property alone that there
are two vertices u, v such that t(G; 1,−1) = t(G − {u, v}; 2,−1). For instance, taking G to be a
cycle of length 6 and u, v two vertices at distance two in the cycle yields such a graph. Moreover, if
the vertices are, cyclically, u, x1, v, x2, w, x3, one can prove that replacing x1 by a clique and x2, x3

by a coclique, the result satisfies the equation, yet it is not of the form described in Theorem 1 (in
particular, i and j are not adjacent, and they do not cover all vertices). Characterizing all graphs
for which there are two vertices u, v such that t(G; 1,−1) = t(G − {u, v}; 2,−1) is probably an
overly ambitious goal.
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3 Proof of the main result

We begin with some notation. A clique on n vertices is denoted by Kn and its complement,
a coclique, by Kn. Let N denote the set of non-negative integers. Given a connected graph
G = (V,E), n ∈ NV and c ∈ {0, 1}V , define G(c;n) to be the graph obtained from G by replacing
each vertex k ∈ V by a clique on nk vertices if ck = 1 or by a coclique on nk vertices if ck = 0,
and for each edge ij ∈ E join the (co)clique on ni vertices to the (co)clique on nj vertices, joining
each of the ninj pairs of vertices by an edge in G(c;n); if nk = 0, the effect is the deletion of
vertex k. For example, K1(1;n) = Kn, K1(0;n) = Kn and K2((0, 0); (m,n)) = Km,n. Note that
Kr((1, 1, . . . , 1); (n1, . . . , nr)) = K1(1;n1 + · · ·+ nr) = Kn1+n2+···+nr

since the join of two cliques
is a clique.

Our goal is to find the conditions that G, c and vertices i and j must satisfy so that for all
n ∈ NV with ni, nj ≥ 1 we have

t(G(c;n); 1,−1) = t(G(c;n′); 2,−1), (1)

where n′ is obtained from n by subtracting 1 from the ith and jth components. In other words,
if u and v are vertices of G(c;n) taken from the fixed (co)cliques that replace vertices i and j of
G in making the graph G(c;n), then t(G(c;n); 1,−1) = t(G(c,n)− {u, v}; 2,−1).

Our first result (Theorem 6) characterizes pairs (G, c) for which equation (1) holds. The
remainder of the section is then devoted to showing how this first result can be rewritten in terms
of induced subgraphs, as presented in Theorem 1 above.

We begin by finding the generating function for the Tutte polynomials of the family G(c,n)
and then we express the relationship between the evaluations at (1,−1) and (2,−1) as a differential
equation. The statement of the key Theorem 6 is then read from the solutions to this equation.

Let us fix a connected graph G with two distinguished vertices i, j and a {0, 1}-labelling
c ∈ {0, 1}V . We seek conditions so that G(c;n) satisfies equation (1) for all n ∈ NV with
ni, nj ≥ 1.

A first observation is that i and j together cover V , that is, every vertex k is adjacent to either
i or j. Indeed, suppose that this is not the case for k, take a neighbour l of k (which may or may
not be adjacent to i or j), and consider equation (1) for ni = nj = nk = nl = 1 and all other
values set to zero. It is easy to check that this equation does not hold by using the following basic
facts about the Tutte polynomial: t(K2;x, y) = x; t(Kn;x, y) = 1; if G has blocks G1, . . . , Gr then
t(G;x, y) = t(G1;x, y) · · · t(Gr;x, y). So from now on we assume that i and j together cover V .

The main tool in the proof are generating functions. More concreteley, let u = (uk : k ∈ V )
and define

T (x, y;u) =
∑

n∈NV

t(G(c;n);x, y)
un

n!
, un =

∏
k

unk

k , n! =
∏
k

nk!,

taking t(G(c;0);x, y) = t(∅;x, y) = 1. Observe now that equation (1) holds for all n ∈ NV with
ni, nj ≥ 1 if and only if

∂2T (1,−1;u)

∂ui∂uj
= T (2,−1;u). (2)

Lemma 3. Let G = (V,E) be a connected graph containing vertices i and j such that ki ∈ E or
kj ∈ E for every k ∈ V \ {i, j}. Define

S(z, w;u) =
∑

n∈NV

un

n!

∑
A⊆E(G(c;n))

z|A|wc(A).

Then
∂2T (x, y;u)

∂ui∂uj
=

1

x− 1

∂2S(y−1, (x−1)(y−1); u
y−1 )

∂ui∂uj
, (3)

and
T (2, y;u) = S(y−1, y−1;

u

y−1
). (4)
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Proof. Letting |n| =
∑

k nk denote the number of vertices of G(c;n),

t(G(c;n);x, y) =
∑

A⊆E(G(c;n))

(x− 1)c(A)−c(G(c;n))(y − 1)|A|−|n|+c(A)

= (x− 1)−c(G(c;n))
∑

A⊆E(G(c;n))

[(x−1)(y−1)]c(A)(y − 1)|A|−|n|.

Hence

T (x, y;u) =
∑

n∈NV

t(G(c;n);x, y)
un

n!

=
1

x− 1
S(y−1, (x−1)(y−1);

u

y−1
)

+
∑
n∈NV

c(G(c;n))6=1

(
1

(x− 1)c(G(c;n))
− 1

x− 1

)
un

n!

∑
A⊆E(G(c;n))

[(x−1)(y−1)]c(A)(y−1)|A|−|n|.

Recall that the graph G(c;n) is connected if ni ≥ 1 and nj ≥ 1. It follows that the second
summand on the right-hand side of the above equation for T (x, y;u) is non-zero only if ni = 0 or
nj = 0 and hence vanishes upon differentiating with respect to ui and uj . This second term also
vanishes when x = 2 because in this case (x− 1)−c = 1 = (x− 1)−1 for any c.

With a view to finding an alternative expression for S(z, w;u), set

q(n) =
∑
kl∈E

nknl +
∑
k∈V

ck

(
nk
2

)
,

that is, q(n) is the number of edges of G(c;n).

Lemma 4. For any graph G,

S(z, w;u) = F (z;u)w where F (z;u) =
∑

n∈NV

(1 + z)q(n)u
n

n!
.

Proof. The key observation is that the connected components of a spanning subgraph of G(c;n)
are connected spanning subgraphs of graphs in the family {G(c;n) : n ∈ NV }. (For instance, a
spanning subgraph of a complete bipartite graph is the union of connected spanning subgraphs
of complete bipartite graphs.) From this and general properties of generating functions it follows
that S(z, w;u) = eC(z;u)w, where C(z;u) is the exponential generating function for connected
spanning subgraphs of {G(c;n) : n ∈ NV }, that is,

C(z;u) =
∑

n∈NV

un

n!

∑
A⊆E(G(c;n))

(V (G(c;n)),A) connected

z|A|.

Now F (z;u) = eC(z;u) is the exponential generating function of spanning subgraphs of {G(c;n) :
n ∈ NV } (counted by number of edges only), which is given by the expression in the statement of
the theorem.

Next we combine Lemmas 3 and 4 to get an alternative form of equation (2).

Lemma 5. Let G = (V,E) be a connected graph containing vertices i and j such that ki ∈ E or
kj ∈ E for every k ∈ V \ {i, j}. Then equation (2) is equivalent to

∂f(u)

∂ui

∂f(u)

∂uj
− f(u)

∂2f(u)

∂ui∂uj
= 2, (5)

where f(u) = F (−2;u).
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Proof. By equations (3) and (4) and Lemma 4,

∂2T (x,−1;u)

∂ui∂uj
=

1

x− 1

∂2S(−2,−2(x−1); u
−2 )

∂ui∂uj
=

1

x− 1

∂2f( u
−2 )−2(x−1)

∂ui∂uj

=
−1

2

(
(−2x+ 1)f(

u

−2
)−2x

∂f( u
−2 )

∂ui

∂f( u
−2 )

∂uj
+ f(

u

−2
)−2x+1

∂2f( u
−2 )

∂ui∂uj

)
,

T (2,−1;u) = S(−2,−2;
u

−2
) = f(

u

−2
)−2.

The desired equation is now obtained by setting x = 1 in both expressions.

Solving the differential equation (5) will put conditions on the quadratic form q(n) that trans-
late to structural conditions on the graph G and the clique/coclique parameter c that specify the
graph G(c;n). This is Theorem 6 below.

We use I(P ) to denote the indicator function, equal to 1 when the statement P is true and 0
otherwise.

Theorem 6. A pair (G, c) satisfies equation (1) for all n ∈ NV with ni, nj ≥ 1 if and only if the
following conditions hold:

(i) ij ∈ E;

(ii) for each k ∈ V \ {i, j}, I(ki ∈ E) + I(kj ∈ E) = ck + 1;

(iii) for all U ⊆ V \ {j}, either j has odd degree in G[U ∪ {j}] or there is a vertex k ∈ U whose
degree in the induced subgraph G[U ] has the same parity as ck.

Proof. Note that have already observed that each k ∈ V \ {i, j} is adjacent to at least one of i
and j. We now wish to find those f that solve equation (5).

Define the relation k ∼ l to hold if and only if kl ∈ E, or k = l and ck = 1. The graph G̃ with
edges kl when k ∼ l is equal to the graph G = (V,E) with loops added to each vertex k such that
ck = 1. We have

2q(n) =
∑

(k,l)∈V×V
k∼l

nknl −
∑
k∈V
k∼k

nk. (6)

We have also

f(u) =
∑

n∈NV

(−1)q(n)u
n

n!

from which we calculate
∂f(u)

∂ui
=
∑

n∈NV

(−1)q(n)+∆iq(n)u
n

n!
,

where ∆iq(n) = q(. . . , ni + 1, . . .) − q(. . . , ni, . . .) is the forward difference of q(n) in the ith
component, and

∂2f(u)

∂ui∂uj
=
∑

n∈NV

(−1)q(n)+∆i,jq(n)u
n

n!
,

where ∆i,jq(n) = q(. . . , ni+1, . . . , nj+1, . . .)− q(. . . , ni, . . . , nj , . . .).
Multiplying power series we find that

∂f(u)

∂ui

∂f(u)

∂uj
− f(u)

∂2f(u)

∂ui∂uj
=

∑
n∈NV

∑
m≤n

(−1)q(m)+q(n−m)
(

(−1)∆iq(m)+∆jq(n−m) − (−1)∆i,jq(m)
)∏

k

(
nk
mk

)
un

n!
. (7)

Here we write m ≤ n to mean mk ≤ nk for each k ∈ V .
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Now we use (6) to rewrite the forward differences. For instance, ∆iq(m) =
∑

k∼imk. By doing
the same for ∆jq(n−m) and ∆i,jq(n), we get that the relative parity of ∆iq(m) + ∆jq(n−m)
and ∆i,jq(m) is given by

∆iq(m) + ∆jq(n−m) + ∆i,jq(m) ≡
∑
k∼j

nk + I(i ∼ j) (mod 2), (8)

which is independent of m. If the right-hand side of equation (8) is zero then the coefficient of
un in equation (7) is equal to zero. Since the constant term (n = 0) should be equal to 2 it is
necessary that i ∼ j. Given i ∼ j, for any n, if∑

k∼j

nk ≡ 1 (mod 2)

then the coefficient of un in equation (7) is zero.
Therefore, we need only concern ourselves with the coefficients of un where

∑
k∼j nk ≡ 0

(mod 2). The coefficient
1

n!
[un]

(
∂f(u)

∂ui

∂f(u)

∂uj
− f(u)

∂2f(u)

∂ui∂uj

)
is given by

−2
∑
m≤n

(−1)q(m)+q(n−m)+∆i,jq(m)
∏
k

(
nk
mk

)
.

So we wish to find necessary and sufficient conditions for this coefficient of 1
n!u

n to equal zero
for all n 6= 0, subject to

∑
k∼j nk ≡ 0 (mod 2) and i ∼ j. Again using (6) to rewrite the exponent

of −1 in the expression above, and after some manipulation, we find that the coefficient we are
interested in vanishes if and only if:

0 =
∑
m≤n

(−1)
∑

k mk

∑
l∼k[nl+I(l=i)+I(l=j)+I(l=k)]

∏
k

(
nk
mk

)

=
∏
k

∑
mk≤nk

(−1)[
∑

l∼k nl+I(i∼k)+I(j∼k)+I(k∼k)]mk

(
nk
mk

)
=

∏
k

[
1 + (−1)

∑
l∼k nl+I(i∼k)+I(j∼k)+I(k∼k)

]nk

. (9)

By taking n to have all its entries equal to zero, except for one equal to 2, for the expression (9)
to be zero it is necessary that, for each k ∈ V ,

I(i ∼ k) + I(j ∼ k) + I(k ∼ k) ≡ 1 (mod 2). (10)

Thus if ck = 1 in G(c;n) (a clique) the vertex k must be adjacent to both i and j, whereas if
ck = 0 (a coclique) then the vertex k must be adjacent to exactly one of i, j.

Since the nullity of the expression (9) depends only on the parity of each nk, if the coefficients
subject to

∑
k∼j nk ≡ 0 (mod 2) and nk ∈ {0, 1} are all zero apart from the constant term then

the coefficients of un are zero for all n 6= 0. In terms of the graph G, this is to say we may assume
each vertex k is either deleted (nk = 0) or is present as a single vertex (nk = 1); if this induced
subgraph satisfies the required conditions then so does G(c;n) for all n ∈ NV .

Note also that the conditions i ∼ j and
∑

l∼j nl ≡ 0 (mod 2) imply that we can assume
nj = 0, otherwise expression (9) is clearly zero. Now consider the set U ⊆ V \ {j} given by
U = {k ∈ V : nk 6= 0}. Since we assume

∑
k∼j nk ≡ 0 (mod 2) the induced subgraph G[U ] of G

has the property that the number of vertices k ∈ U such that kj ∈ E is even. A necessary and
sufficient condition that the expression (9) is zero (under the assumption that i ∼ j, nj = 0 and∑

k∼j nk ≡ 0 (mod 2)) is that for any such choice of U there is a vertex k whose degree in G[U ]
has the same parity as ck.
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We remark that the roles of i and j in the previous theorem are symmetric. Indeed, if in (7)
we write ∆jq(m) + ∆iq(n−m) instead of ∆iq(m) + ∆jq(n−m), condition (iii) in the statement
of the theorem would be stated in terms of i instead of j. In other words, any consequence of
Theorem 6 about j holds as well for i.

A particular instance of this is the next lemma, that says that the values of ci and cj can be
chosen freely (that is, whether they are replaced by cliques or cocliques does not affect the validity
of equation (1)). This is clearly true for j, as the conditions of Theorem 6 do not depend on the
value of cj .

Lemma 7. If G = (V,E), i, j ∈ V and c ∈ {0, 1}V satisfy the conditions of Theorem 6, then so
does G and c′ where c′ is c with ci replaced by 1− ci or with cj replaced by 1− cj (or both).

We would now like to deduce the induced subgraph characterization of Theorem 1. For the
rest of this section, we shall use the following notation:

A = {k ∈ V \ {i, j} : ki ∈ E, ck = 0},
B = {k ∈ V \ {i, j} : kj ∈ E, ck = 0},
C = {k ∈ V \ {i, j} : ki, kj ∈ E, ck = 1}.

Clearly, by condition (ii) these sets partition V \ {i, j} (recall Figure 1).

Lemma 8. The induced subgraphs G[A] and G[B] are cocliques and the induced subgraph G[C] is
a clique.

Proof. Let k, k′ be two vertices in A. By taking U = {k, k′}, condition (iii) in Theorem 6 implies
that at least one of k and k′ must have even degree in the subgraph they induce, so they cannot be
adjacent. An analogous argument shows that G[B] is also a coclique and that G[C] is a clique.

Lemmas 7 and 8 imply that condition (iii) of Theorem 6 is satisfied if and only if:

(?)
for all U ⊆ V \ {i, j} such that |U ∩ (B ∪ C)| is even, the induced subgraph
G[U ] contains either a vertex in A ∪B of even degree or a vertex in C of odd
degree.

Proof of Theorem 1. We show how to deduce the characterization of Theorem 1 from the condition
(?). Clearly if G contains as an induced subgraph any of the subgraphs described in conditions (ii)
and (iii) in Theorem 1, then this subgraph contradicts condition (?). Next we prove the converse.
(Recall the forbidden induced subgraphs depicted in Figure 1.)

Suppose that G is as described in Theorem 1 and that condition (?) fails for a subset U ⊆
V \ {i, j}; that is, G[U ] contains none of the five forbidden induced subgraphs, |U ∩ (B ∪ C)| is
even, all vertices in U ∩ (A ∪ B) have odd degree, and all vertices in U ∩ C have even degree.
We lose no generality by restricting the discussion to the graph G[U ∪ {i, j}], so we assume that
U ∩ A = A,U ∩ B = B,U ∩ C = C. We begin by deducing two facts about the structure of the
neighbourhoods in U . For any vertex x ∈ U , let Ax (respectively, Bx, Cx) be its set of neighbours
in A (respectively, in B, C).

Claim 1. Let D be one of A,B, or C and let E be one of {A,B,C} \ {D}. If x, y ∈ D, then Ex

and Ey are comparable sets.
Proof of Claim 1. We prove the case D = A and E = B, the other five cases being dealt with

analogously. Suppose there are u ∈ Bx \By and v ∈ By \Bx; then the edges xu and yv are a copy
of the forbidden induced subgraph 2P2. �

Claim 2. If x is a vertex in C, then Ax ∪Bx induces a complete bipartite graph.
Proof of Claim 2. If not, the fourth graph in Figure 1 would be an induced subgraph. �

Claim 1 with D = C and E = A implies that there is a vertex a0 ∈ A adjacent to all vertices
of C that have at least one neighbour in A.
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Now let B′ ⊆ B be the set of those vertices that are not adjacent to any vertex of C. If B′ is
non-empty, each of its vertices must be adjacent to at least one vertex in A, because vertices in
B have odd degree. Suppose b ∈ B′ is adjacent to a ∈ A. If a is not adjacent to every vertex in
C, then we find the fifth graph in Figure 1 as an induced subgraph, therefore a must be adjacent
to all vertices in C. Then a must also be adjacent to every vertex in B \B′, otherwise the fourth
forbidden induced subgraph would appear. This makes the degree of a equal to |B ∪C|, which is
even, hence contradicting our assumption. Therefore, B′ must be empty.

Hence, every vertex in B (if any) must be adjacent to at least one vertex in C. By Claim 1
again, there is a vertex in C adjacent to all vertices in B. Any vertex with this property must be
adjacent to some vertex in A, and hence to a0 as well (otherwise it would have degree |B|+ |C|−1,
which is odd). Also, a0 is adjacent to all of B by Claim 2. Now, let C ′ be the vertices in C that
are not adjacent to a0. Since a0 has odd degree and |B ∪ C| is even, |C ′| is odd. Any c′ ∈ C ′
cannot be adjacent to all of B, because we have just shown that in this case it would be adjacent
to a0 as well. But then, if c′ is not adjacent to, say, b′ ∈ B, then the edge a0b

′ and vertex c′ form
one of the forbidden induced subgraphs.

Therefore, we are forced to have B = ∅. Then either there is a vertex in C not adjacent to a0,
and hence to no vertex in A, or a0 is adjacent to every vertex in C. But in the former case there
is a vertex in C of odd degree and in the latter case a0 has even degree.

4 Bijective proofs

In this section we give a bijective proof of Merino’s identity

t(Kn+2; 1,−1) = t(Kn; 2,−1). (11)

To translate the identity into combinatorial terms, we recall the interpretation of t(G; 1 +x, y)
given by Gessel and Sagan in [3]. Let T (G) and F(G) be the set of spanning trees and spanning
forests of a graph G, respectively (assume G is connected from now on). The following is an
expression of the Tutte polynomial as a generating function of spanning forests according to the
number of connected components and an “external activity” that will be described next (it is not
the usual external activity for trees defined by Tutte):

t(G; 1 + x, y) =
∑

F∈F(G)

xc(F )−1ye(F ). (12)

The external activity e(F ) is computed in the following way. First, we fix an arbitrary linear order
< on the vertex set V and root every connected component of the forest at its smallest vertex. We
say that vertex u precedes vertex v in the forest F if u and v are in the same connected component
and u lies in the path from the root to v. If u precedes v in F , we denote by uv the child of u that
lies in the path from u to v. Define

E(F ) = {uv ∈ E(G)\F : u precedes v, v < uv}.

The edges in E(F ) are called externally active with respect to F. (See Figure 2 for examples.)
Observe that in particular the edges joining different connected components are never externally
active. The external activity of a forest F is e(F ) = |E(F )|.

By taking x ∈ {0, 1} and y = −1 in (12) we obtain expressions for the evaluations we are
interested in:

t(G; 1,−1) =
∑

T∈T (G)

(−1)e(T ), (13)

t(G; 2,−1) =
∑

F∈F(G)

(−1)e(F ). (14)
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Figure 2: With respect to the given spanning tree of K7, the edge {1, 2} is externally active
whereas the edge {3, 5} is not.

Moreover, we wish to examine these expressions when G is a complete graph. We take [n]
as the vertex set, with the usual order. In this case, it is easy to see that the external activity
of a forest F equals the number of inversions of F , where an inversion is a pair (u, v) such that
u precedes v in F and v is smaller than u. Therefore, t(Kn; 1, y) is the generating function for
inversions in trees with n vertices (rooted at 1) and t(Kn; 2, y) is the generating function for
inversions in forests with n vertices (each component rooted at its minimum). The polynomial∑

T∈T (Kn) y
inv(T ), where inv(T ) is the number of inversions of T when rooted at 1, is called the

inversion polynomial.

Remark. The identity between the Tutte polynomial of Kn at x = 1 and the inversion polyno-
mial was apparently first noticed by Björner. In [2, Exer. 7.7] he refers to Gessel and Wang [4]
for a proof that the inversion polynomial is the generating function of connected subgraphs of
Kn counted by number of edges, and to Bessinger [1] for a bijection between trees counted by
numbers of inversions and by (Tutte) external activity. Kuznetsov, Pak and Postnikov [5] prove
the identity by showing that both polynomials satisfy the same recurrence relation.

Let Tn denote the set of labelled trees on [n] rooted at 1 and Fn the set of labelled forests on
[n] where each component is rooted at its minimum. Identity (11) can be then rephrased as∑

T∈Tn+2

(−1)inv(T ) =
∑

F∈Fn

(−1)inv(F ).

To prove this identity, we first cancel out some terms in the sums so that all remaining terms are
positive. A forest F ∈ Fn is increasing if it has no inversions and it is even if all non-root vertices
have an even number of children.

It is well known that increasing spanning trees of Kn+1 are in bijective correspondence with
permutations of [n]; that is, the inversion polynomial evaluated at 0 is (n−1)!. Another relationship
between inversions and permutations is that the inversion polynomial evaluated at −1 gives the
number of up-down (or alternating) permutations. The first statement in Lemma 9 below says
that the inversion polynomial evaluated at −1 is precisely the number of even increasing spanning
trees of Kn. This connection between alternating permutations and even increasing spanning trees
of Kn was apparently first made by Viennot [10]. Pansiot [8] gives another proof by describing
an involution on the trees that are not even increasing that reverses the parity of the number of
inversions. Yet another proof is given in [5], together with other interpretations of the evaluation
of the inversion polynomial at −1. There it is also briefly indicated (end of Section 3.3) how to
construct an involution on trees that fixes even increasing trees and reverses the parity of the
number of inversions in the remaining trees. Since we shall use similar ideas in the following
section, we describe such an involution explicitly; let us remark that it is not exactly the same
involution as the one given by Pansiot.
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Lemma 9. (i)
∑

T∈Tn(−1)inv(T ) equals the number of even increasing trees in Tn.

(ii)
∑

F∈Fn
(−1)inv(F ) equals the number of even increasing forests in Fn.

Proof. Let Un be the collection of those trees in Tn that fail to be even increasing. We define an
involution ϕ of Un such that |inv(ϕ(T )) − inv(T )| = 1. This suffices to prove both statements in
the lemma, since the second follows by suitably applying the involution to the components of the
forest.

A subtree of a rooted tree T is a tree comprising a vertex of T and all its descendants. We say
that a subtree is strictly even increasing if it has no inversions and all its vertices, including the
root, have an even number of children. Hence a tree is even increasing if and only if all its proper
subtrees are strictly even increasing. Recall that the depth of a rooted tree is the length of the
largest possible path starting from the root. Given a tree T in Un, let d be maximum with the
property that all subtrees of T of depth at most d are strictly even increasing (clearly d ≥ 0, since
leaves are strictly even increasing). Among all subtrees of T of depth d + 1 that are not strictly
even increasing, let T ′ be the one that contains the smallest element; note that T ′ 6= T as T is not
even increasing. Let the vertices of T ′ be {a1, . . . , at} with a1 > a2 > a3 > · · · > at. The fact that
all proper subtrees of T ′ are strictly even increasing implies that if the root of T ′ has odd degree,
then t is even, whereas if the root of T ′ has even degree then t is odd. Also, if the root of T ′ has
even degree, it cannot be at, otherwise T ′ would be increasing.

We now have all the ingredients to define ϕ. If the root of T ′ is a2i, where 1 ≤ i ≤ bt/2c, let
ϕ(T ) be the tree obtained by interchanging vertices a2i and a2i−1. In T ′, an element is smaller
than a2i−1 if and only if it is smaller than a2i, therefore the only effect of the swap of a2i−1 and
a2i is that (a2i−1, a2i) becomes an inversion. Similary, if the root of T ′ is a2i−1, we interchange
a2i−1 and a2i and the number of inversions goes down by one; it is straightforward to check that
the tree ϕ(T ) obtained in this way is not even increasing.

For an example of the involution ϕ see Figure 3.

����

��

�
�
�
�

����

��
��
��
��

��

��
��
��
��

����

������

��

����

��

�
�
�
�

����

��
��
��
��

��

��
��
��
��

����

������

��

11 8 9

4 12

6

3

1

2
10

7

5

(T)ϕ

5

7 11 8 9

4 12

6

3

1

2
10

T

T l

Figure 3: An example of the involution ϕ.

To complete the proof of identity (11), we give a bijection between even increasing trees with
n+ 2 vertices and even increasing forests with n vertices.

Let T be an even increasing tree with n+ 2 vertices. The core of the bijection is the following
easy lemma.

Lemma 10. Let T be an even increasing tree and let u be any vertex of T . Then the forest F
obtained from T by removing all edges in the unique (1− u)–path is even increasing.

Proof. Clearly F is increasing. Let v be any vertex. If the (1− u)–path does not contain v, then
the degree of v in F is the same as in T , hence even. If v is in the (1 − u)–path, then v will
become the root of one of the components of F , and it is not relevant whether its degree is even
or odd.
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Figure 4: Obtaining an even increasing forest from an even increasing tree.

Hence, given an increasing even tree with n+ 2 vertices, by Lemma 10 if we remove the edges
of the path that goes from 1 to n+2 then the result is an even increasing forest with n+2 vertices.
Now remove vertices 1 and n+2 (the latter being an isolated vertex), obtaining an even increasing
forest with n vertices labelled from 2 to n + 1. Relabel them from 1 to n to obtain the desired
forest. See Figure 4 for an illustration of this procedure.

Conversely, we show how to recover T if F is given. First, increase all the labels by 1, so that
they run from 2 to n+ 1. Of the components of F , let T1, . . . , Tk be the ones where the root has
even degree and let U1, . . . , Ul be the ones with odd root-degree; let the roots of these components
be r1, . . . , rk and s1, . . . , sl, respectively, and assume also that s1 < s2 < · · · < sl. Construct T
by adding vertices 1 and n+ 2 and edges {1, r1}, . . . , {1, rk}, {1, s1}, {s1, s2}, . . . , {sl, n+ 2}. It is
clear that this procedure recovers T .

5 Evaluating t(Kn,m; 2,−1) and t(Kn +Km; 2,−1)
We referred in Section 4 to the fact that t(Kn; 2,−1) is the number of up-down permutations
of [n + 1]. The corresponding exponential generating function (EGF) is sec(t)(tan(t) + sec(t)),
recalling that the EGF for up-down permutations of [n] is tan(t) + sec(t).

In this section we shall find that the evaluations t(Kn,m; 2,−1) and t(Kn + Km; 2,−1) have
similar if more complicated combinatorial interpretations in terms of up-down permutations.

Here are the first values of t(Km,n; 2,−1) for 1 ≤ m ≤ n. (That the first column is given by
2n and the second by (3n+1 − 1)/2 are facts easily proved from the definition and properties of
the Tutte polynomial.)

n\m 1 2 3 4 5 6
1 2
2 4 13
3 8 40 176
4 16 121 736 4081
5 32 364 3008 21616 144512
6 64 1093 12160 111721 927424 7256173

Set tm,n = t(Km,n; 2,−1) and

B = B(u, v) =
∑

m,n≥0

t(Km,n; 2,−1)
um

m!

vn

n!
.

By Lemmas 3 and 4 and equation (4) for G = K2,

B(u, v) = S(−2,−2;−u/2,−v/2) = F (−2;−u/2,−v/2)−2

=

(∑
m,n≥0(−1)mn um

(−2)mm!

vn

(−2)nn!

)−2

.
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From
∑

m,n≥0(−1)nm um

m!
vn

n! = eu cosh(v) + e−u sinh(v) and after using some hyperbolic function
identities, we obtain

B(u, v) =
1

cosh(u) cosh(v)− sinh(u)− sinh(v)
.

We would like to extract the coefficient of umvn from B(u, v). Denote by Dm the m-fold
derivative with respect to u. Then

Dm(B(u, v))
∣∣
u=0

=
∑
n≥0

t(Km,n; 2,−1)
vn

n!
.

Let g = cosh(u) cosh(v) − sinh(u) − sinh(v). Applying the rule for the derivative of a product to
the equality Dm(g · g−1) = 0 we obtain the following recursion

gDm(g−1) = −
m−1∑
k=0

(
m

k

)
Dm−k(g)Dk(g−1).

It is easy to show by induction that, for i ≥ 1, D2i(g) = cosh(u) cosh(v)− sinh(u) and D2i−1(g) =
sinh(u) cosh(v)− cosh(u). By evaluating at u = 0 and using the above recurrence, we arrive at

Dm(g−1)
∣∣
u=0

= −ev
(

m−1∑
k=0

(
m

k

)
Dk(g−1)

∣∣
u=0

(
δ0
k,m cosh(v)− δ1

k,m

))
,

where δ0
k,m (respectively, δ1

k,m) is equal to 1 if m and k have the same parity (respectively, different
parity), and zero otherwise.

Writing bm for Dm(g−1)
∣∣
u=0

, we have

bm =

m−1∑
k=0

(
m

k

)
bk

(
evδ1

k,m −
1

2
(1 + e2v)δ0

k,m

)
.

Since b0 = ev, it follows that bk is a linear combination of exponentials elv with l being at most
k + 1 and of parity opposite to k. The first bk are:

b0 = ev,

b1 = e2v,

b2 =
1

2
(3e3v − ev),

b3 =
1

2
(6e4v − 4e2v),

b4 =
1

2
(2ev − 15e3v + 15e5v).

Let bm,j be the coefficient of ejv in bm, so that

t(Km,n; 2,−1) =

m+1∑
j=1

bm,jj
n.

The bm,j satisfy the recurrence

bm,j =

m−1∑
k=0

(
m

k

)(
bk,j−1δ

1
k,m −

1

2
(bk,j + bk,j−2)δ0

k,m

)
. (15)

The first values of bm,j are given in the following table:
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m\j 1 2 3 4 5 6 7 8
0 1
1 0 1
2 - 1

2 0 3
2

3 0 -2 0 3
4 1 0 - 15

2 0 15
2

5 0 17
2 0 -30 0 45

2
6 - 17

4 0 231
4 0 - 525

4 0 315
4

7 0 -62 0 378 0 -630 0 315

Notice that the elements in the table satisfy the Pascal-like recurrence

bm,j =
j

2
(bm−1,j−1 − bm−1,j+1).

Theorem 11. For m ≥ 0, t(Km,n; 2,−1) =
∑m+1

j=1 bm,jj
n, where bm,j is given by

b0,1 = 1, bm,0 = 0, bm,m+1 = 0,

bm,j =
j

2
(bm−1,j−1 − bm−1,j+1), for 1 ≤ j ≤ m.

In particular, bm,j = 0 if m and j are of the same parity.

Proof. We show by induction on m that the sequence defined recursively by

a0,1 = 1, am,0 = 0, am,m+1 = 0,

am,j =
j

2
(am−1,j−1 − am−1,j+1), for 1 ≤ j ≤ m,

satisfies recurrence (15).

am,j =
j

2
(am−1,j−1−am−1,j+1)

=
j

2

m−2∑
k=1

(
m−1

k

)(
(ak,j−2−ak,j)δ1

k,m−1−
1

2
(ak,j−1+ak,j−3−ak,j+1−ak,j−1)δ0

k,m−1)

)
. (16)

From the recursion satisfied by the ak,j , we have that

j

2
(ak,j−2 − ak,j) = ak+1,j−1 +

1

2
ak,j−2 −

1

2
ak,j−2.

By applying the same trick to the other terms within the parentheses, the right-hand side of
equation (16) becomes

m−2∑
k=1

(
m−1

k

)(
(ak+1,j−1+

1

2
ak,j−2−

1

2
ak,j)δ

1
k,m−1−

1

2
(ak+1,j+ak+1,j−2+ak,j−3−ak,j−1)δ0

k,m−1)

)
.

We rewrite the previous line as(
m− 1

m− 2

)
am−1,j−1 +

m−2∑
k=1

(
m− 1

k − 1

)
ak,j−1δ

0
k,m−1 + (17)

1

2

m−2∑
k=1

(
m− 1

k

)
(ak,j−2 − ak,j)δ1

k,m−1 + (18)

−1

2

m−2∑
k=1

(
m− 1

k − 1

)
(ak,j + ak,j−2)δ1

k,m−1 + (19)

1

2

m−2∑
k=1

(
m− 1

k

)
(ak,j−1 − ak,j−3)δ0

k,m−1. (20)
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Adding up lines (18) and (19) we obtain

−1

2

m−2∑
k=1

(
m

k

)
(ak,j + ak,j−2)δ1

k,m−1 + (21)

m−2∑
k=1

(
m

k

)
ak,j−2δ

1
k,m−1. (22)

From lines (20) and (22) and the induction hypothesis we get

am−1,j−1 +

m−1∑
k=1

(
m− 1

k

)
ak,j−1δ

0
k,m−1. (23)

Finally, lines (17), (21) and (23) add up to(
m

m− 1

)
am−1,j−1 +

m−2∑
k=1

(
m

k

)(
ak,j−1δ

1
k,m −

1

2
(ak,j + ak,j−2)δ0

k,m

)
,

which is what we needed to show.

We use the preceding theorem to give a relationship between the numbers bm,j and up-down
permutations. Observe that∑

m,j

bm,jx
j u

m

m!
=

1
x+x−1

2 cosh(u)− x−x−1

2 − sinh(u)
.

From this it follows, by extracting the coefficient of x, that∑
m

bm,1
um

m!
=

2

1 + cosh(u)
.

Define Bj(u) =
∑

m≥0 bm,j
um

m! . The recurrence for the bm,j in Theorem 11 becomes

Bj+1(u) = Bj−1(u)− 2

j
B′j(u).

From the initial case B1 = 2/(1 + cosh(u)) and induction it follows that

B2i(u) =
4i sinh(u)(cosh(u)− 1)i−1

(1 + cosh(u)i+1)
= 2i sech2(

u

2
) tanh2i−1(

u

2
)

B2i+1(u) =
2(2i+ 1)(cosh(u)− 1)i−1

(1 + cosh(u)i+1)
= (2i+ 1)sech2(

u

2
) tanh2i(

u

2
)

In conclusion,

Bj(u) = 2(tanhj(
u

2
))′.

The coefficients of tanhj(u) can be interpreted combinatorially in the following way. Recall
that tan(x) is the EGF of up-down permutations of [n], for odd n (odd up-down permutations).
Then tanh(x) is the EGF for signed odd up-down permutations, where the sign depends only on n
and is given by (−1)(n−1)/2. Finally, tanh(x)j is the EGF for sequences of j signed odd up-down
permutations.

For instance, consider b3,2. There is one odd up-down permutation of [1] and two odd up-down
permutations of [3]. There are thus 16 permutations of [4] that can be split as a sequence of two
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odd up-down permutations. Then the coefficient of u3 in 2(tanh2(u/2))′ is 2 · 16/(3! · 24) = 2/3!,
which agrees with |b3,2| = 2.

Next we look at the evaluation of t(Km + Kn; 2,−1), following the same strategy. Here is a
table for the first values of m and n. The first column is again 2n and the sequence in the first
row is the number of up-down permutations.

n\m 1 2 3 4 5 6
1 2 5 16 61 272 1385
2 4 14 56 256 1324 7664
3 8 41 208 1141 6848 44981
4 16 122 800 5296 36976 275792
5 32 365 3136 25261 205952 1747745
6 64 1094 12416 122656 1173184 11357744

Define

C(u, v) =

 ∑
m,n≥0

(−1)mn+(m
2 ) um

(−2)mm!

vn

(−2)nn!

−2

.

Since ∑
m,n≥0

(−1)nm+(m
2 )u

m

m!

vn

n!
= ev cos(u) + e−v sin(u),

after some manipulation we obtain

C(u, v) =
1

cosh(v)− cos(u) sinh(v)− sin(u)
.

To extract the coefficient of um in C(u, v) we take derivatives as before. The calculations are
routine and analogous to the previous ones, so we present the result directly. Setting cm =
Dm(C(u, v))

∣∣
u=0

, we obtain the recurrence relation

cm = −ev
m−1∑
k=0

(
m

k

)
ck

(
sinh(v)(−1)

m−k
2 −1δ0

k,m + (−1)
m−k−1

2 −1δ1
k,m

)
=

m−1∑
k=0

(
m

k

)
ck

(
ev(−1)

m−k−1
2 δ1

k,m +
e2v − 1

2
(−1)

m−k
2 δ0

k,m

)
,

with initial term c0 = ev. Then, again, each cm can be written as
∑m+1

j=1 cm,je
jv, where cm,j is zero

when m and j have the same parity. Computing the first terms of the double sequence {cm,j}m,j

one is led to the conjecture that cm,j = |bm,j |.

Theorem 12. For m ≥ 0, t(Km +Kn; 2,−1) =
∑m+1

j=1 cm,jj
n, where cm,j = bm,j(−1)(m−j−1)/2.

Proof. The proof follows easily by induction, using the recurrence for cm to write a recurrence for
the cm,j very similar to the one for bm,j .

The EGF for the sequence {cm,j}m follows immediately from the one for {bm,j}m:∑
m≥0

cm,j
um

m!
= (tan(u)j)′
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6 An open question

We would like to find a bijective proof of the identity

t(Kn+1,m+1; 1,−1) = t(Kn,m; 2,−1). (24)

The interpretation of Gessel and Sagan of t(G;x,−1) allows us to translate this identity into
more combinatorial terms, in a similar way to that followed in Section 4 for the corresponding
identity for complete graphs. We first consider equations (13) and (14) when G is a complete
bipartite graph. Take [n] ∪ [m]′ = [n] ∪ {1′, 2′, . . . ,m′} as the vertex set of Kn,m and call the
vertices in [n] black and the vertices in [m]′ white. Black vertices amongst themselves are ordered
by the usual order; the same applies to white vertices. A black vertex is smaller than a white one.
Trees are thus rooted at black vertices, unless they consist of a single white vertex.

If the edge uv is externally active, the vertices uv and v belong to the same class, therefore
the external activity of a forest F is the number of pairs of vertices (x, y) such that x precedes
y, x < y and x and y are both white or both black. We refer to these as white inversions and
black inversions, respectively. Their union is the set of monochromatic inversions of F and its
cardinality is denoted by binv(F ).

As before, let Tn,m be the set of spanning trees of Kn,m, rooted at 1, and let Fn,m be the
set of spanning forests of Kn,m, each component rooted at its minimum vertex. Equality (24) is
equivalent to ∑

T∈Tn,m

(−1)binv(T ) =
∑

F∈Fn,m

(−1)binv(F ).

Next, we would like to reduce this equality between alternating sums to an equality between
cardinalities of sets. That is, to find an analogue to Lemma 9.

A forest in Fn,m is χ-increasing if it has no monochromatic inversions, and it is bi-even if each
non-root vertex has an even number of grandchildren (descendants at distance two).

Lemma 13. (i)
∑

T∈Tn,m
(−1)binv(T ) equals the number of bi-even χ-increasing trees in Tn,m.

(ii)
∑

F∈Fn,m
(−1)binv(F ) equals the number of bi-even χ-increasing forests of Fn,m.

Proof. The proof goes along the same lines as the case of the complete graph.

So far we have not been able to find a bijection that proves identity (24).

Problem 14. Find a bijection between bi-even χ-increasing trees of Tn+1,m+1 and bi-even χ-
increasing forests of Fn,m.

The numbers of bi-even χ-increasing trees in Tn,m appear at the beginning of Section 5. As
previously mentioned, even increasing trees are in bijection with (among other objects) up-down
permutations. We do not know of any family of permutations equinumerous with bi-even χ-
increasing trees.
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