Tarea 1

Curso: Introducción a Teoría de la Computación Profesores: Sergio Rajsbaum y Ricardo Strausz. Ayudante: Paulina

Fecha: Febrero 21, 2006; entregar marzo 7

Se puede entregar en equipos de a lo más dos personas, pero cada una debe entregarla por separado, indicando el nombre de la otra persona
Explica en detalle todas tus respuestas

Una máquina de Turing (MT) es una 7-tupla $(Q, \Sigma, \Gamma, \delta, q_0, q_y, q_n)$, donde Q, Σ, y Γ son conjuntos finitos y: Q es el conjunto de estados; Σ es el alfabeto de entrada que no incluye el símbolo especial de "blanco": \bot ; Γ es el alfabeto de la cinta, $\bot \in \Gamma$ y $\Sigma \subseteq \Gamma$; $\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ es la función de transición; $q_0 \in Q$ el estado inicial; $q_y \in Q$ el de aceptación; $q_n \in Q$ el de rechazo, y $q_y \neq q_n$. El lenguaje L_M que acepta una MT M es igual al conjunto de todas las palabras x, tales que si M comienza con x como entrada, entonces M entra a q_y eventualmente. Se dice que M es un algoritmo si para cualquier entrada x, M termina (ya sea en q_y o en q_n).

- 1. Máquina de k-cintas.
 - (a) Define formalmente una máquina de k-cintas. Considérala como un tipo de MT con k cintas y un solo control finito, que está en un solo estado en cada momento. Incluye una definición del lenguaje aceptado por tal máquina.
 - (b) Demuestra que si L es un lenguaje aceptado por una máquina M de k-cintas que siempre termina, entonces existe una MT M' que acepta a L y siempre termina. Y viceversa.
- 2. Problemas no computables. Considera el conjunto de todas las MT sobre Σ, Γ . Asume que cada MT de estas tiene estados $Q = \{q_u, q_n, q_0, q_1, q_2, \dots q_k\}$, para alguna $k \geq 0$.
 - (a) Demuestra que el conjunto de todas estas MT es enumerable.
 - (b) Demuestra que el conjunto de todos los lenguajes sobre Σ no lo es.
 - (c) Concluye que existen lenguajes para los cuales no existe una MT que los acepta, y existen lenguajes para los cuales no existe un algoritmo que los acepta.
- 3. Estudia la sección 9.3 "Circuit Complexity" del libro de Sipser Introduction to the Theory of Computation, (2nda. edición).