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Abstract. We construct a family of functions satisfying the heat
equation and show how they can be used to generate solutions to
indeterminate moment problems. The following cases are consid-
ered: log-normal, generalized Stieltjes-Wigert and q-Laguerre.

1. Introduction

For a real-valued, measurable function f defined on [0,∞) , its nth
moment is defined as sn(f) =

∫∞
0

xnf(x)dx, n ∈ N = {0, 1, . . .}. Let
(sn)n≥0 be a sequence of real numbers. If f is a real-valued, measurable
function defined on [0,∞) with moment sequence (sn)n≥0 we say that
f is a solution to the Stieltjes moment problem (related to (sn)n≥0). If
the solution is unique, the moment problem is called M -determinate.
Otherwise the moment problem is said to be M -indeterminate. When
we replace N with Z we can formulate the same problem (the so-called
strong Stieltjes moment problem).

In [9] Stieltjes was the first to give examples of M -indeterminate
moment problems. He showed that the log-normal distribution with
density on (0,∞) given as

dσ (x) =
(
2πσ2

)−1/2
x−1 exp

(
−(log x)2

2σ2

)
, σ > 0,

together with the densities (a ∈ [−1, 1])

dσ (x)
(
1 + a sin

(
2πσ−2 log x

))
≥ 0,

have all the moment sequence
(
en2σ2/2

)
n≥0

. So, the log-normal moment

problem is M -indeterminate.
In fact, for β ∈ R we have

sn

(
xβdσ

)
= q−(n+β)2/2, n ∈ Z,
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where q = e−σ2
.

The Stieltjes’ example and the work in [2] gave rise to the present
paper. By looking for real-valued, measurable functions h such that

gσ,β (x) = xβdσ (x)
{
1 + h

(
σ−2 log

(
xqβ
))}

satisfy sn (gσ,β) = sn

(
xβdσ

)
for all n ∈ Z, we are faced (Proposition 1)

with the problem of characterizing the real-valued, measurable func-
tions h satisfying

(1)

∫
R

exp
(
−σ2x2/2

)
h (x + n) dx = 0, ∀ n ∈ Z.

In particular, if h is a 1-periodic, real-valued, measurable function, then
the last equality is equivalent to

(2)

∫ 1

0

θ
(
x, 2−1σ−2

)
h (x) dx = 0,

where θ is the so-called theta function given by

θ (x, t) = (4πt)−1/2
∑
n∈Z

e−(x+n)2/4t, (see [5, page 59]).

The 1-periodic, positive function θ satisfies the heat equation on R2
+

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t).

Notice that if h satisfies (1) or (2) then so does ah, a ∈ R. Moreover,
when h is bounded below (above) there is a ∈ R such that 1 + ah ≥ 0.
Hence in this case a probability density function can be obtained by a
standard normalizing procedure.

It only remains for us to find some interesting 1-periodic functions h
satisfying (2). By setting hc (x) = qc2/2σ2M−1

c θ (x + c, 2−1σ−2)
−1 − 1,

c ∈ [0, 1) , we obtain the well-known classical solution (see e.g. [2])

wc (x) = dσ (x)
(
1 + hc

(
σ−2 log x

))
=

xc−1

Mc

(
q,−q

1
2
−cx,−q

1
2
+c/x; q

)
∞

to the log-normal moment problem, where Mc is the constant that
makes

∫∞
0

wc (x) dx = 1. Information about theta functions and or-
thogonal polynomials can be found in [1].

To get more examples, for α ≥ −1 we define the following function

θα (x, t) =
∑
n∈Z

(2πn)2(1+α) e−4π2n2t+2πnix.
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Clearly θα is a 1-periodic function in the variable x and satisfies the
heat equation on R2

+. In addition, for α ≥ −1 and t1, t2 > 0, we show
that ∫ 1

0

θ (y, t1) θα (x− y, t2) dy = θα (x, t1 + t2) .

Therefore the following 1-periodic, continuous function satisfies the
condition (2),

hy,t,α (x) = θα (y − x, t)− θα

(
y, 2−1σ−2 + t

)
, y ∈ [0, 1) , t > 0.

Furthermore, for α > −1 we have
∫ 1

0
θα (x, t) dx = 0 for all t > 0, thus

the following 1-periodic, continuous function satisfies the condition (2),

ht,α (x) = θα (x, t) θ
(
x, 2−1σ−2

)−1
, t > 0, α > −1.

In [3, 4] Christiansen also generates new measures from old ones.
The similarity of his work with the one developed here comes from the
quasiperiodicity of the theta function.

The paper is organized as follows. Preliminaries are given in Section
2. We define the family {θα}α≥−1 of heat functions in Section 3, where
more functions h satisfying (2) are shown. The last two sections refer to
the generalized Stieltjes-Wigert and the q-Laguerre moment problems
respectively. Finally, we show a non-periodic, continuous function h
fulfilling the condition (1).

2. Notation and Preliminaries

For (x, t) ∈ R2
+, let (see [5, pages 33, 59])

K(x, t) = (4πt)−1/2 e−x2/4t,

θ (x, t) =
∑
n∈Z

K(x + n, t)

=
∑
n∈Z

e−4π2n2t+2πnix.

The positive functions K, θ satisfy the heat equation on R2
+. Clearly θ

is a 1-periodic function in the variable x. Moreover,∫
R

K(x, t)dx = 1 and

∫ 1

0

θ (x, t) dx = 1, ∀ t > 0.

For c ∈ [0, 1) , we set

Mc :=

∫ 1

0

θ (x, 2−1σ−2)

θ (x + c, 2−1σ−2)
dx.
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Throughout this paper we will write q = e−σ2
, σ > 0 fixed. The

density of the log-normal distribution with parameter σ2 can be written
as

dσ (x) =
1

x
K(log x, 2−1σ2).

For β ∈ R, we have

(3) xβdσ (x) = qβ−β2/2dσ

(
xqβ
)
.

Therefore,

sβ (dσ) :=

∫ ∞

0

xβdσ (x) dx = q−β2/2

∫ ∞

0

dσ (x) dx

= q−β2/2

∫
R

K(x, 2−1σ2)dx = q−β2/2.

In particular, the strong Stieltjes moment sequence of xβdσ is given by

sn

(
xβdσ

)
= q−(n+β)2/2, n ∈ Z.

For 0 < q < 1, n ∈ N, we introduce some notation from q-calculus (see
[6, page 233]):

(p; q)0 := 1, (p; q)n :=
n−1∏
k=0

(
1− pqk

)
, n ≥ 1 (p; q)∞ :=

∞∏
k=0

(
1− pqk

)
.

For β ∈ R, we set

(4) (p; q)β :=
(p; q)∞

(pqβ; q)∞
.

The following easily verified identities will be used:

(5) (p; q)n =
(p; q)∞

(pqn; q)∞
, (p; q)n+β = (pqn; q)β (p; q)n .

We use the following notation:

(p1, p2, · · · , pk; q)n = (p1; q)n (p2; q)n · · · (pk; q)n ,

(p1, p2, · · · , pk; q)∞ = (p1; q)∞ (p2; q)∞ · · · (pk; q)∞ .

For z ∈ C, we consider the two q-exponential functions,

(6) eq (z) =
∞∑

k=0

zk

(q; q)k

=
1

(z; q)∞
, |z| < 1,

(7) Eq (z) =
∞∑

k=0

q(
k
2)zk

(q; q)k

= (−z; q)∞ .

For x ∈ R, we define
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Lq (x) =
∑
n∈Z

q
1
2
n2

xn.

The value of the sum Lq (x) is known by Jacobi’s triple product identity

Lq (x) = (q,−√qx,−√q/x; q)∞ .

It is easy to check the identity

(8)

√
σ2

2π
qx2/2Lq

(
q−x
)

= θ
(
x, 2−1σ−2

)
, ∀ x ∈ R.

For c ∈ [0, 1) , we introduce the following constant (see [2])

(9) Mc :=

∫ ∞

0

xc−1

Lq (xq−c)
dx =

πqc(c− 1
2)

sin (πc)

(qc, q1−c; q)∞
(q; q)2

∞

for c > 0, and M0 = log(q−1). By the Monotone Convergence Theorem
and equality (8), we have

Mc =
∑
n∈Z

∫ 1

0

K(x + n, 2−1σ−2)

θ (x + c, 2−1σ−2)
dx(10)

=

∫
R

qx2/2

q(x+c)2/2Lq (q−(x+c))
dx

= q−c2/2σ−2Mc.

Proposition 1. Let h ∈ L1
(
R, e−σ2(x−n)2/2dx

)
for all n ∈ N (Z) .

The function gσ,β (x) = xβdσ (x)
{
1 + h

(
σ−2 log

(
xqβ
))}

has the same

(strong) Stieltjes moment sequence than xβdσ if and only if

(11)

∫
R

K
(
x, 2−1σ−2

)
h (x + n) dx = 0 for every n ∈ N (Z) .

Proof. By using (3) and changing variables y = −n + σ−2 log
(
xqβ
)

we
obtain

sn (gσ,β) = sn

(
xβdσ

)
+ q−(β+n)2/2

∫ ∞

−∞
K
(
y, 2−1σ−2

)
h (y + n) dy

and the result follows. �

In particular, if h is a 1-periodic function in L1 ((0, 1)), then sn (gσ,β) =
sn

(
xβdσ

)
for all n ∈ Z if and only if

(12)

∫ 1

0

θ
(
x, 2−1σ−2

)
h (x) dx = 0.
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Remark 2. If h satisfies (11) or (12), then so does ah, a ∈ R.
Moreover, when h is bounded below (above), there is a ∈ R such that
1 + ah ≥ 0.

Definition 3. For β ∈ R, let Ṽβ denote the set of real-valued, measur-
able functions f defined on [0,∞) solving the strong moment problem

sn (f) = q−(n+β)2/2 := sn,β, n ∈ Z.

Example 4. For β ∈ R, xβdσ ∈ Ṽβ.

Now we want to find some interesting 1-periodic functions h satisfy-
ing (12).

Example 5. By setting hc (x) = M−1
c θ (x + c, 2−1σ−2)

−1 − 1, with
c ∈ [0, 1) and using (8), (10) and (12), we obtain the classical solution

wc (x) = dσ (x)
{
1 + hc

(
σ−2 log x

)}
=

xc−1

McLq (xq−c)
∈ Ṽ0.

Example 6. If f ∈ Ṽ0, then an easy calculation shows that

qβ−β2/2f
(
qβx
)
∈ Ṽβ, β ∈ R.

Example 7. Let f be a 1-periodic function integrable on (0, 1). Then
the function

h (x) =

(
f (x)−

∫ 1

0

f (x) dx

)
θ
(
x, 2−1σ−2

)−1

satisfies (12). In particular we can put ft (x) = θ (x, t) with t > 0.

To get more examples, in the next section we introduce a family of
functions satisfying the heat equation for which functions fulfilling the
condition (12) can be defined.

3. The families of heat functions {Kα}α , {θα}α.

We follow the notation in [8, Chapter 9]. For f ∈ L1 (R) , we define
its Fourier transform as

(Φf) (ξ) =

∫ ∞

−∞
f (x) e−ixξ dx√

2π
.
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For α ≥ −1 and t > 0 fixed, the function ξ2(1+α)e−ξ2t is in L1(R), so
we define

Kα (x, t) =
1√
2π

Φ−1
(
ξ2(1+α)e−ξ2t

)
(x)(13)

=
1√
2π

∫ ∞

−∞
ξ2(1+α)e−ξ2t cos (xξ)

dξ√
2π

.

Then Kα is a real-valued function that satisfies the heat equation on
R2

+. We can rewrite

Kα (x, t) =
1√
π

t−1−αK(x, t)

∫ ∞

−∞
ξ2(1+α)e

−
(
ξ− ix

2
√

t

)2

dξ

=
1√
π

t−1−αK(x, t)

∫ ∞

−∞

(
ξ +

ix

2
√

t

)2(1+α)

e−ξ2

dξ.

Therefore

|Kα (x, t)| ≤ Cαt−1−αK(x, t)

∫ ∞

−∞

(
ξ2(1+α) +

x2(1+α)

t1+α

)
e−ξ2

dξ

≤ Cαt−1−αK(x, t)

[
1 +

x2(1+α)

t1+α

]
.

Since xλe−x ≤ Cλe
−x

2 for x, λ > 0, we have

x2(1+α)

(4t)1+α K(x, t) =
1√
4πt

(
x2(1+α)

(4t)1+α e−
x2

4t

)
≤ Cα√

4πt
e−

x2

8t

= CαK(x, 2t).

Whence

(14) |Kα (x, t)| ≤ Cαt−1−α (K(x, t) + K(x, 2t)) ,

and Kα(·, t) ∈ L1(R) for all t > 0.
The convolution of f, g ∈ L1(R) is given by

(f ∗ g) (x) =

∫
R

f (y) g (x− y)
dy√
2π

.

Using the fact that Φ (f ∗ g) = Φ (f) Φ (g) , the definition of Kα and
the inversion formula, we get

(15)

∫
R

Kα (y, t1) Kβ (x− y, t2) dy = Kα+β+1 (x, t1 + t2) ,

whenever α, β ≥ −1, t1, t2 > 0.
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Next, for α ≥ −1 we introduce the function

θα (x, t) =
∑
n∈Z

Kα(x + n, t).

From (14) we have the estimate

|θα (x, t)| ≤ Cαt−1−α (θ(x, t) + θ(x, 2t)) .

Remark 8. From (13) we have that K−1 ≡ K, θ−1 ≡ θ. If α ∈ N, then

Kα = (−1)1+α ∂1+αK

∂t1+α
, θα = (−1)1+α ∂1+αθ

∂t1+α
.

For α > −1, the inversion formula implies∫ 1

0

θα (x, t) dx =

∫ ∞

−∞
Φ−1

(
ξ2(1+α)e−ξ2t

)
(x)

dx√
2π

= ξ2(1+α)e−ξ2t
∣∣∣
ξ=0

= 0, ∀ t > 0.

Example 9. For α > −1, t > 0, the function

ht,α (x) = θα (x, t) θ
(
x, 2−1σ−2

)−1

satisfies (12).

For α, β ≥ −1, t1, t2 > 0, the equality (15) implies that∫ 1

0

θα (y, t1) θβ (x− y, t2) dy = θα+β+1 (x, t1 + t2) .

In particular, for α ≥ −1, β = −1 we obtain∫ 1

0

θ (y, t2) θα (x− y, t1) dy =

∫ 1

0

θα (y, t1) θ (x− y, t2) dy

= θα (x, t1 + t2) .

Example 10. For y ∈ [0, 1) , t > 0 the following function fulfills (12)

hy,t,α (x) = θα (y − x, t)− θα

(
y, 2−1σ−2 + t

)
.

The following proposition gives an explicit formula for θα.

Proposition 11. For α > −1,

θα (x, t) =
∑
n∈Z

(2πn)2(1+α) e−4π2n2t+2πnix.

Proof. From (14) we have∣∣∣∣∣∑
m∈Z

Kα(x + m, t)

∣∣∣∣∣ ≤ Cα

t1+α
(θ (x, t) + θ (x, 2t)) .
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Hence the series converges uniformly on compact subsets of R2
+ and

therefore it is continuous. Since the series is 1-periodic in x, it admits
a representation as a Fourier series,∑

m∈Z

Kα(x + m, t) =
∑
m∈Z

am(t)e2πmix,

where convergence is in L2 ([0, 1]). Moreover,∫ 1

0

∑
m∈Z

|Kα(x + m, t)| dx ≤ Cα

t1+α

∫ ∞

−∞
(K(x, t) + K(x, 2t)) dx =

Cα

t1+α
.

By the Dominated Convergence Theorem we have

am(t) =

∫ 1

0

[∑
n∈Z

Kα(x + n, t)

]
e−2πmix dx

=

∫ ∞

−∞

√
2πKα (x, t) e−2πmix dx√

2π

=
(
Φ
[√

2πKα(·, t)
])

(2πm)

= (2πm)2(1+α) e−4π2m2t.

�

The last result implies that θα satisfies the heat equation on R2
+.

Example 12. If h (x) =
∑
n∈Z

cne
2πnix ∈ L2 ([0, 1]), then h satisfies (12)

if and only if ∑
n∈Z

cne
−2π2n2/σ2

= 0.

4. Generalized Stieltjes-Wigert

For 0 ≤ p < 1, the generalized Stieltjes-Wigert moment problem has
the following weight function on (0,∞):

g (x; p, q) := (p,−p
√

q/x; q)∞ dσ (x) .

When p = 0, the function g is the log-normal density. The next result
is based on ideas in [2].

Proposition 13. For every positive function f ∈ Ṽβ, β ≥ 0, the func-
tion

(
p,−p

√
q/x; q

)
∞ f (x) has the Stieltjes moment sequence

sn,β,p := (p; q)n+β q−(n+β)2/2, n ∈ N.
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Proof. Since all the functions below are positive, using (6), (7) and (4)
we have∫ ∞

0

xng (x; p, q) f(x)dx = (p; q)∞

∞∑
k=0

qk2/2pk

(q; q)k

∫ ∞

0

xn−kf(x)dx

= (p; q)∞ q−(n+β)2/2

∞∑
k=0

(
pqn+β

)k
(q; q)k

= (p; q)n+β q−(n+β)2/2, n ∈ N.

In fact, the last inequality holds for n ∈ Z, β ∈ R as long as pqn+β < 1.
In particular, for p = q1/2 we obtain

(16)

∫ ∞

0

xn
(
q1/2,−q/x; q

)
∞ f(x)dx =

(
q1/2; q

)
n+β

q−(n+β)2/2

for n ∈ Z, β ∈ R whenever qn+β+1/2 < 1. �

Example 14. For β ≥ 0, q−β2/2+βwc

(
qβx
) (

p,−p
√

q/x; q
)
∞ has the

moment sequence (sn,β,p).

More examples can be obtained if we combine (12) and the results
in Section 3.

5. q-Laguerre

The normalized q-Laguerre polynomials L
(α)
m (x; q) (see [7]) belong to

an M -indeterminate moment problem with moments

Sn,α := q−αn−(n+1
2 ) (qα+1; q

)
n
, n ∈ N,

with 0 < q < 1, α > −1.

Proposition 15. Let α > −1. For every positive function f ∈ Ṽα+ 1
2
,

the function q(α+ 1
2)

2
/2 (qα+1,−q/x; q)∞ f(x) has the Stieltjes moment

sequence Sn,α.

Proof. Let f ∈ Ṽα+ 1
2
. It follows from (16) with β = α + 1/2, (4)

and (5) that the function q(α+ 1
2)

2
/2
(
q1/2; q

)−1

α+ 1
2

(
q1/2,−q/x; q

)
∞ f(x)

has the moment sequence

q(α+ 1
2)

2
/2
(
q1/2; q

)−1

α+ 1
2

(
q1/2; q

)
n+α+ 1

2

q−(n+α+ 1
2)

2
/2 = Sn,α.

The result follows since
(
q1/2; q

)−1

α+ 1
2

(
q1/2; q

)
∞ = (qα+1; q)∞. �



HEAT FUNCTIONS AS SOLUTIONS OF MOMENT PROBLEMS 11

Example 16. Example 6 with β = α + 1/2 > −1/2 implies that the
function

qα+ 1
2

(
qα+1,−q/x; q

)
∞wc

(
qα+ 1

2 x
)

=
qc(α+ 1

2) (qα+1,−q/x; q)∞ xc−1

Mc (q,−qα+1−cx,−qc−α/x; q)∞

with c ∈ (0, 1], has moment sequence Sn,α. In particular, when α = c−1
and using (9), we obtain the function

−sin (πα)

π

(q; q)∞
(q−α; q)∞

xα

(−x; q)∞
.

More examples can be obtained if we combine (12) and the results
in Section 3.

Finally we show a non-periodic, continuous function h fulfilling con-
dition (11).

Example 17. For γ ∈ R\2πQ, consider h (x) = (1 + k cos (2πx)) cos γx
where

k = −
∫

R
e−σ2x2/2 cos (γx) dx

/∫
R

e−σ2x2/2 cos (γx) cos (2πx) dx < 0.

So, h is not periodic at all and satisfies (11).
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