A FAMILY OF HEAT FUNCTIONS AS SOLUTIONS OF
INDETERMINATE MOMENT PROBLEMS

RICARDO GOMEZ AND MARCOS LOPEZ-GARCIA

ABSTRACT. We construct a family of functions satisfying the heat
equation and show how they can be used to generate solutions to
indeterminate moment problems. The following cases are consid-
ered: log-normal, generalized Stieltjes-Wigert and g-Laguerre.

1. INTRODUCTION

For a real-valued, measurable function f defined on [0, 00), its nth
moment is defined as s,(f) = [;~ 2" f(x)dz, n € N = {0,1,...}. Let
(8n),>0 be a sequence of real numbers. If f is a real-valued, measurable
function defined on [0, 00) with moment sequence (s,,), -, We say that
f is a solution to the Stieltjes moment problem (related to (s,), ). If
the solution is unique, the moment problem is called M-determinate.
Otherwise the moment problem is said to be M-indeterminate. When
we replace N with Z we can formulate the same problem (the so-called
strong Stieltjes moment problem).

In [9] Stieltjes was the first to give examples of M-indeterminate
moment problems. He showed that the log-normal distribution with
density on (0, 00) given as

_ log )
dy (z) = (2702) 12 -1 exp <—( 05 ) ) , 0>0,

202
together with the densities (a € [—1, 1])
d, () (1 + asin (27r0_2 log .CE)) >0,

have all the moment sequence (e”Q"Z/ 2) . So, the log-normal moment
n>0

problem is M-indeterminate.
In fact, for # € R we have

0 (2%4,) = R, ez,
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_ 2
where g = e 7.

The Stieltjes” example and the work in [2] gave rise to the present
paper. By looking for real-valued, measurable functions h such that

9o () = 27dy () {1+ (07 og (vg")) }

satisty s, (90.8) = Sn (I’Bda) for all n € Z, we are faced (Proposition 1)
with the problem of characterizing the real-valued, measurable func-
tions h satisfying

(1) /Rexp (=0®2*/2) h(z +n)dx =0, ¥V n € Z

In particular, if A is a 1-periodic, real-valued, measurable function, then
the last equality is equivalent to

1

(2) / 0 (z,27'07) h(z)dx =0,
0

where 6 is the so-called theta function given by

0 (x,t) = (4mt) "/ Z e~ (@tm)?/4t, (see [5, page 59)).

ne”L

The 1-periodic, positive function 6 satisfies the heat equation on R%
ou 0%u

Notice that if h satisfies (1) or (2) then so does ah, a € R. Moreover,
when h is bounded below (above) there is a € R such that 1+ ah > 0.
Hence in this case a probability density function can be obtained by a
standard normalizing procedure.

It only remains for us to find some interesting 1-periodic functions h
satisfying (2). By setting h, (z) = ¢©/262M710 (x 4 ¢,27'072) " — 1,
c €0,1), we obtain the well-known classical solution (see e.g. [2])

we(z) = dy(z) (14 he (0% logz))

SL’C_l

M, (q, —qz %z, —q2te q)

to the log-normal moment problem, where M, is the constant that
makes [;¥ w, (z)dz = 1. Information about theta functions and or-
thogonal polynomials can be found in [1].

To get more examples, for a« > —1 we define the following function

Oa (7,) = Z (27n)2(1Te) gmdm*nt42mnic

ne”L

x,t).
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Clearly 6, is a 1-periodic function in the variable x and satisfies the
heat equation on Ri. In addition, for « > —1 and t1,t5 > 0, we show
that

1
/ H(yvtl)ga ("L‘_yat2> dyzeoa (x,tl +t2)
0
Therefore the following 1-periodic, continuous function satisfies the
condition (2),
hy,t,a (.’L’) = (904 (y - l’,t) - 904 (yv 2_10_2 + t) AS [07 1) ;1> 0.
Furthermore, for a > —1 we have fol 0o (z,t) dx = 0 for all ¢t > 0, thus
the following 1-periodic, continuous function satisfies the condition (2),
hio (2) =6, (2,1) 0 (z, 2_10_2)_1 , >0, a>—1.

In [3, 4] Christiansen also generates new measures from old ones.
The similarity of his work with the one developed here comes from the
quasiperiodicity of the theta function.

The paper is organized as follows. Preliminaries are given in Section
2. We define the family {6,},. , of heat functions in Section 3, where
more functions h satisfying (2) are shown. The last two sections refer to
the generalized Stieltjes-Wigert and the ¢g-Laguerre moment problems
respectively. Finally, we show a non-periodic, continuous function h
fulfilling the condition (1).

2. NOTATION AND PRELIMINARIES
For (z,t) € R, let (see [5, pages 33, 59))
K(z,t) = (4rt) 2=/t

0(x,t) = > K(x+nt)

nel

— E 6—47r2n2t+27rnir

neL

The positive functions K, 0 satisfy the heat equation on R%. Clearly 6
is a 1-periodic function in the variable x. Moreover,

1
/K(az,t)d:vzland/9(93,t)dx=1,‘v’t>0.
R 0

For ¢ € [0,1), we set

Voo (x,2707?)
= - dx.
Me /0 0(x+c,271072) ’
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Throughout this paper we will write ¢ = e, o > 0 fixed. The
density of the log-normal distribution with parameter o can be written
as

1
d, (r) = =K(logz,2 'c0?).
x
For 3 € R, we have

(3) 2P, (r) = ¢ d, (z¢”) .
Therefore,
59(d) = [ @l @) e =g [, @)
0
_52/2/[( r,2” x:q_ﬂz/Q.

In particular, the strong Stieltjes moment sequence of 2°d, is given by
Sn (xﬁda) = q_("+ﬁ)2/2, n € 7.

For 0 < ¢ < 1, n € N, we introduce some notation from g-calculus (see
6, page 233]):

n—1 [e'e)
Pia)o =1 (a), =[] =pd"), n>21 (p0), =[]0 —pd).

k=0 k=0
For B € R, we set

(;9)
4 PiQ)g = 5=
@) #:0)y (Pa”%; 4) o
The following easily verified identities will be used:
(;q)

5 Piq), =, Piq), q";4)5 (P;q),, -
(5) (p;q) b0 q) (P Dy = ( )s (i q)

We use the following notation:

(p1, P2, 063 q),, = (P150),, (P2;0),, - (Pr; D), »
(P1, P2, 0D = P130) o P20+ (P13 @) o

For z € C, we consider the two g-exponential functions,

0 k

z 1
>, g(5) ok
N

k=

o

For x € R, we define
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1n2 n
L,(z) = Z g2 x".
nez
The value of the sum L, (x) is known by Jacobi’s triple product identity

Ly (z) = (¢ =z, —/q/7;q) . -

It is easy to check the identity

2

(8) \/ g—qxz/QLq (¢7%)=0(z,27'07%), Yz eR.
7r

For ¢ € [0,1), we introduce the following constant (see [2])

0o c—1 c(c—l) ¢ l—ec.
(9) M, ;:/ ""C__dx _Te e (¢ q ;Q)"O
0 Lq (Z‘q c) Sin (7TC> (q7 q)oo

for ¢ > 0, and My = log(q~!). By the Monotone Convergence Theorem
and equality (8), we have

(10) M, = Z/{; {9(((]74—71,2_10'_ )dl'

T+ 2 102

qw2/2
= / 73 dx
R q(x-i-c) / Lq (q—(w-i-c))
_ q_62/20_2MC.
Proposition 1. Let h € L! (R,e“’Q(l’_")Q/de) for alln € N (Z).
The function g,5(z) = 3°d, (z) {14 h (c72log (z¢”))} has the same
(strong) Stieltjes moment sequence than x°d, if and only if

(11) /RK (z,.27'0 ) h(z+n)de =0 for everyn €N (Z).

Proof. By using (3) and changing variables y = —n + o~ ?log (z¢”) we
obtain

S (ga,ﬂ) =5, (Iﬂda) + q_(ﬁ"rn)z/Q/ K (y7 2—10_—2) h (y + TL) dy

—0o0

and the result follows. O

In particular, if A is a 1-periodic function in L' ((0, 1)), then s, (g,.5) =
Sp (xﬂda) for all n € Z if and only if

(12) /01 0 (z,27'07%) h(z)dx = 0.
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Remark 2. If h satisfies (11) or (12), then so does ah, a € R.
Moreover, when h is bounded below (above), there is a € R such that
1+ ah > 0.

Definition 3. For § € R, let % denote the set of real-valued, measur-
able functions f defined on [0, 00) solving the strong moment problem

s (f) =2 s neZ
Example 4. For 3 € R, 2°d, € ‘75.

Now we want to find some interesting 1-periodic functions h satisfy-
ing (12).

Example 5. By setting h, (z) = M0 (z +¢,27'072)"" — 1, with
c €1[0,1) and using (8), (10) and (12), we obtain the classical solution

we(z) = dy(x) {1+ h. (0 %logz)}

e 1

= —~ eV
M.L, ($q70> ’

Example 6. If f € ‘70, then an easy calculation shows that
_32 <7
¢*h /2f (qﬁx) eVs pBeR

Example 7. Let f be a 1-periodic function integrable on (0,1). Then
the function

h(z) = (f (z) — /Olf(x) da:) 0,270

satisfies (12). In particular we can put f; () = 0 (x,t) with t > 0.

To get more examples, in the next section we introduce a family of
functions satisfying the heat equation for which functions fulfilling the
condition (12) can be defined.

3. THE FAMILIES OF HEAT FUNCTIONS {K,},, {0.},-

We follow the notation in [8, Chapter 9]. For f € L' (R), we define
its Fourier transform as

@n© = [ e
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For o > —1 and ¢ > 0 fixed, the function £20+®)e=¢* ig in LY(R), so
we define

(13) Ko (2,8) = \/%(I)l (52(1+a)e*§2t> (2)
T
_ 2(1+a) ,—€%t d§
= —_27T /_Oof e cos (x§) _—27{

Then K, is a real-valued function that satisfies the heat equation on
R?. We can rewrite

1 o0 N R 2
K, (z,t) = ﬁtflfa[((x’t) /_OO 52(1+a)€ <5 2 t) d¢
1 OO 1T 2(1+e) 2
= —tiliaK :U,t / + _) 675 d .
renn [ (e 5% ¢
Therefore
—1l-a - 2(1+a) $2(1+0¢) —£2
| Ko (x,t)] < Cut K(m,t)/_oo (6 + P )e d¢
L x2(1+o¢)
< Gyt K(x,t) {1+ e ]
Since ze™* < Cye~ 2 for z, A\ > 0, we have
2(14a) 1 2(1+a) 22
x—HQK(%t) = (m 1+o¢e4t)
(4t) VAt \ (4t)
Cq 22
< e st
4t
= C.K(x,2t).
Whence
(14) Ko (2,1)] < Cot ™7 (K (2,1) + K(z,2t))

and K,(-,t) € L'(R) for all ¢ > 0.
The convolution of f,g € L*(R) is given by

9= [ S0t o
2m
Using the fact that ® (f xg) = ®(f) P (g), the definition of K, and

the inversion formula, we get

(15) / Ko (y,12) K5 (2 — 1, 12) dy = Koppin (2,01 + ),
R

whenever o, 3 > —1, t1,t5 > 0.
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Next, for « > —1 we introduce the function
Oo (2,1) = > Ko(a+n,t).
nez

From (14) we have the estimate
00 (2, )] < Cot ™17 (O(a, ) + O(x, 21)).
Remark 8. From (13) we have that K_1 = K, 0_1 = 0. If « € N, then

1ta al—i—aK B (_1)1+a E)H“Q
Otlta ’ @ Otl+a :

Ko =(-1)
For a > —1, the inversion formula implies

/01 Op (x,t)dx = /:: ot (5‘2(1““)6’5%) (x) j—;v_ﬂ

52(1+a)6—§2t

=0, Vt>0.
£=0

Example 9. For a > —1,t > 0, the function
Mo (2) = 0o (2,1) 0 (z, 2_10_2)71
satisfies (12).
For a, 3 > —1,t1,t5 > 0, the equality (15) implies that

1
/ 0a (?/a tl) eﬁ (95 - Y, t2) dy = 9a+ﬁ+1 (!E, t + tz) .
0

In particular, for « > —1, § = —1 we obtain

/16<y7t2)9a (z—y,t)dy = /19a (y,t1) 0 (z —y,12) dy
: = (9;) (x,t) +ta) .
Example 10. Fory € [0,1), t > 0 the following function fulfills (12)
Ryta (2) =0, (y —2,t) — 04 (y,27 072 + 1)
The following proposition gives an explicit formula for 6,.

Proposition 11. For a > —1,
0, (x,t) = Z (27rn)2(1+0‘) o —AnPn2itt2mniz

nez
Proof. From (14) we have
Ca
Y Ko(z+m,t)| < Tra (0 (@) + 0 (2,28)).
meZ
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Hence the series converges uniformly on compact subsets of R3 and
therefore it is continuous. Since the series is 1-periodic in z, it admits
a representation as a Fourier series,

Z Koz +m,t) = Z ()™
meZ meZ

where convergence is in L? ([0, 1]). Moreover,

1 c, [ Co
/O S |Kale +m Bl dr < 12 /_ (K (2,1) + K (2, 26)) dor = -2

meZ o0

By the Dominated Convergence Theorem we have

am (1) = /0 [Z Koz +n,t)

neL

6—27rm7,m d!L‘

o0 - dx
= V2K, (x,t) e 2mmie ——
/oo ( ) V2T

= (@ [vVarKa(- 1)) @27m)
= (2mm)?1F) gAmtm*t
O
The last result implies that 6, satisfies the heat equation on R?.
Example 12. If h(z) = > ¢, € L?([0,1]), then h satisfies (12)
iof and only of "<

6.2,.2/.2
E cpe 2 =,

nez

4. GENERALIZED STIELTJES-WIGERT

For 0 < p < 1, the generalized Stieltjes-Wigert moment problem has
the following weight function on (0, co):

g (x;p,q) == (p, —pvVa/2;q) do (2) .

When p = 0, the function g is the log-normal density. The next result
is based on ideas in [2].

Proposition 13. For every positive function f € ‘75, G >0, the func-
tion (p, —D\/q/7; q)oO f (z) has the Stieltjes moment sequence

—(n 2
Supp = DV piga " nEN.
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Proof. Since all the functions below are positive, using (6), (7) and (4)
we have
© k2 /2pk

| et roi = o>

(Q§Q)k

/OO 2"k f(2)dw
0

) n+8\*
— —(n+ﬁ)2/22 (pg"**)
(P9 4 —~ (¢:q),

= QD piga " neN

In fact, the last inequality holds for n € Z, 3 € R as long as pg"™* < 1.
In particular, for p = ¢'/? we obtain

(16) /0 2" (¢, —q/x;q)  f(x)dx = (¢"/% q)n+,8 g0/

for n € Z, 5 € R whenever ¢"t/+1/2 < 1. O

Example 14. For 3 > 0, ¢ %*/2 0y, (¢°z) (p. —py/@/x;q)  has the
moment sequence (Spg,p)-

More examples can be obtained if we combine (12) and the results
in Section 3.
5. ¢-LAGUERRE

The normalized g-Laguerre polynomials L'g’ (x;q) (see [7]) belong to
an M-indeterminate moment problem with moments

Sho = q_o‘”_(n;l) (qo‘+1; q)n, n e N,
with0<g<1, a>—1.
Proposition 15. Let a > —1. For every positive function f € ‘N/OHF%,

2
the function q(o"%) /2 (¢t —q/x;q) ., f(x) has the Stieltjes moment
sequence Sy, .

Proof. Let f € \N/aJr%. It follows from (16) with 8 = a + 1/2, (4)
2 p—
and (5) that the function q(a+%) /2 (ql/g;q)a}rl (¢"2, —q/x;q)  f(x)
2

has the moment sequence

(2772 (172, )L (2. ~(ntet3)’2 _ g
q (0% 0) 0y (67%4) i1 4 o

)

The result follows since (¢'/?; q);lr% (¢"%; q)OO = (¢“*hq) .- O
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Example 16. Ezample 6 with § = o+ 1/2 > —1/2 implies that the
function

CcC\ 1 e c—
Qa+% (ch+1 —q/x-q) w (qo“réfﬂ) = q( +3) (¢ —q/7;q) 2!
’ T o M. (q, —q* T x, —q=/x;q)

with ¢ € (0,1], has moment sequence S, o. In particular, when o = c¢—1
and using (9), we obtain the function

sin (1) (¢3¢)o @
T (%0 (20
More examples can be obtained if we combine (12) and the results
in Section 3.

Finally we show a non-periodic, continuous function h fulfilling con-
dition (11).

«

Example 17. For~ € R\27Q, consider h (x) = (1 + k cos (2mx)) cos vz
where

k=— / e =72 cos (va) dx// e=7 %2 cos () cos (2ma) da < 0.
R R
So, h is not periodic at all and satisfies (11).

ACKNOWLEDGMENTS

The work of R. Gémez was partly supported by DGAPA-PAPIIT
IN120605.

REFERENCES

[1] R. Askey, Orthogonal polynomials and theta functions, in: Theta Functions
Bowdoin 1987, Part 2, Brunswick, ME, 1987, in: Proc. Sympos. Pure Math.,
Vol. 49, Part 2, Amer. Math. Soc., Providence, RI, 1989, 299-321.

[2] C. Berg, From discrete to absolutely continuous solutions of indeterminate mo-
ment problems, Arab. J. Math. Sci. 4, 1998, 1-18.

[3] J. S. Christiansen, The moment problem associated with the Stieltjes-Wigert
polynomials, J. Math. Anal. Appl. 277 (2003), no. 1, 218-245.

[4] J. S. Christiansen, The moment problem associated with the ¢g-Laguerre poly-
nomials, Constr. Approx. 19 (2003), no. 1, 1-22.

[5] J.R. Cannon, The One-Dimensional Heat Equation, Addison-Wesley, New York,
1984.

[6] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University
Press, Cambridge, 1990.

[7] R. Koekoek R., R. F. Swarttouw, The Askey-scheme of hypergeometric or-
thogonal polynomials and its g-analogue, Report 98-17, TU-Delft, 1998,
http://aw.twi.tudelft.nl/~koekoek /askey.

[8] W. Rudin, Real and Complex Analysis, third edition, McGraw-Hill series in
higher mathematics, 1987.



12 RICARDO GOMEZ AND MARCOS LOPEZ-GARCIA

[9] T.J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse 8,
1894, 1-122; Ann. Fac. Sci. Toulouse 9, 1895, 5-47; English version contained
in T.J. Stieltjes, Collected Papers, G. van Dijk (Ed.), Vol. II, Springer, Berlin,
1993.

DRr. RicArRDO GOMEZ AlzA, DR. FRANCISCO MARCOS LOPEZ GARCIA,
INSTITUTO DE MATEMATICAS,
UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO,
Mgxico, D.F., C.P. 04510.

E-mail address: £lopez@matem.unam.mx

E-mail address: rgomez@matem.unam.mx



