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Abstract
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1 Introduction

There has always been interest in studying properties of digraphs under
different kinds of operations (see [1], [6], [9], [14]). Results concerning the
line digraph operator have motivated other kind of operations to be studied.
In [4] the authors look at simple state splitting (a fundamental operation in
symbolic dynamics), and generalize results known for line digraphs. Here we
look at state splittings on edge colored digraphs and compare absorbance and
independence as well as the existence of kernels, semikernels, quasikernels
and Grundy functions, all of them defined in terms of monochromatic paths,
and also consider the dual definitions. In particular, we generalize previous
results regarding kernels and line digraphs (see [5]). Some of these properties
have been studied for other kinds of operations in edge colored digraphs (see
[7]).

The importance of state splittings in symbolic dynamics comes from the
fact that they constitute the basic blocks from which a conjugacy between
shift spaces is formed. This results is known as the Decomposition Theorem
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(see e.g. [11] or [10]). Shift spaces are the central objects of study in symbolic
dynamics and consist of sets of doubly infinite sequences of symbols, defined
by specifying a set of forbidden blocks. For example, the set of all doubly
infinite walks in an oriented graph is a shift space (here the symbols are the
edges and a set of forbidden blocks consists of all ordered pair of edges not
forming a path). Two shift spaces are conjugated if they are essentially the
same, which means that there exists a bijective block code with inverse also
a block code. A block code is a particular kind of map defined in terms of
a local rule so that to determine the zero coordinate of the image it is only
necessary to look at a fixed amount of coordinates to the past (the memory)
and to the future (the anticipation). A useful standard technique that allows
one to suppose that a block code can always be chosen so that its memory
and anticipation are both equal to zero makes use of what is known as the
higher block presentation of shift spaces. For every integer n ≥ 1, then n-
higher block presentation of a shift space is a shift space where the symbols
are the blocks of length n of the original shift space. In the 1-higher block
presentation of a shift space determined by an oriented graph, the blocks
are the edges and the resulting shift space is the one determined by the
corresponding line digraph. Now, the higher block presentation of a shift
space is conjugated to the original shift space and hence, in virtue of the
Decomposition Theorem, it can be obtained by sequences of state splittings.
It is in this sense that state splitting is an operation that refines the line
digraph operator.

The shift spaces that result from oriented graphs as described above
are called Shifts of Finite Type for the set of forbidden blocks can be cho-
sen to be finite. If instead we consider colored oriented graphs, the set of
symbols is the set of colors and the resulting shift spaces are now called
Sofic Shifts (a finite set of forbidden blocks may not exist). State splittings
have been defined in the context of colored oriented graphs as well as many
other concepts in graph theory. For example, independence by monochro-
matic paths was introduced by Sands, Sauer and Woodrow in [12]. Kernels
by monochromatic paths were defined in [2] where sufficient conditions for
their existence were obtained based on results on colored tournaments and
monochromatic paths in [3] (see also [13]). Another instance is the ab-
sorbing sets by monochromatic paths that were introduced in [8]. Kernels
by monochromatic paths and line digraphs were initially studied in [5] by
Galeana-Sánchez and Pastrana-Ramı́rez and their results are generalized in
this paper by combining the results on absorbance and independece, now in
the context of state splittings.
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2 Basic definitions

In this paper, a digraph D consists of a vertex set V (D) and an arc set
A(D) ⊂ V (D) × V (D) with no loops (so (u, u) /∈ A(D) for all u ∈ V (D)).
For every u ∈ V (D) let Γ−(u) = {x ∈ V (D) | (x, u) ∈ A(D)} and Γ+(u) =
{y ∈ V (D) | (u, y) ∈ A(D)}. Let m ≤ |A(D)| be a positive integer. An m-
coloring (or m-labeling) is a function L : A(D)→ [m] where [m] = {1, . . . ,m}
(we refer to its elements as colors or labels). We say that D = (D,L) is an m-
colored digraph. A sequence of distinct vertices T = (x0, . . . , xk) such that
(xi−1, xi) ∈ A(D) for every i = 1, . . . , k is an x0xk-path in D that starts at
x0 and ends at xk and determines a colored path by looking at the sequence
of colors (L(x0, x1), . . . , L(xk−1, xk)); it is monochromatic if L(xi−1, xi) =
L(xj−1, xj) for every i, j = 1, . . . , k. We let V (T ) = {x0, . . . , xk}. For a
vertex u ∈ V (D) and a subset of vertices A ⊂ V (D), a monochromatic uA-
path is any monochromatic ux-path with x ∈ A, and define monochromatic
Au-path similarly.

Recall in-state splitting :

Definition 2.1. Let D = (D,L) be an m-colored digraph. Let u ∈ V (D)
and P = {F1, . . . , Fn} be a partition of Γ−(u). Let D− = (D−, L−) be the
m-colored digraph with vertex set V (D−) = (V (D) \ {u}) ∪ {u1, . . . , un}
and arc set and m-coloring defined as follows:

• For every x, y ∈ V (D)\{u}, (x, y) ∈ A(D−) if and only if (x, y) ∈ A(D)
and in this case we let L−(x, y) = L(x, y).

• For every i ∈ {1, . . . , n} and z ∈ V (D) \ {u}, (z, ui) ∈ A(D−) if and
only if (z, u) ∈ Fi and in this case we let L−(z, ui) = L(z, u).

• For every i ∈ {1, . . . , n} and z ∈ V (D) \ {u}, (ui, z) ∈ A(D−) if and
only if (u, z) ∈ A(D) and in this case we let L−(ui, z) = L(u, z).

Out-state splitting is defined similarly, substituting all the occurrences
of ‘−’ by ‘+’ and “switching” the last two items so that we would have:

• For every i ∈ {1, . . . , n} and z ∈ V (D) \ {u}, (z, ui) ∈ A(D+) if and
only if (z, u) ∈ A(D) and in this case we let L+(z, ui) = L(z, u).

• For every i ∈ {1, . . . , n} and z ∈ V (D) \ {u}, (ui, z) ∈ A(D+) if and
only if (u, z) ∈ Fi and in this case we let L+(ui, z) = L(u, z).

Line digraphs can be obtained by sequences of state splittings. This is a
well known fact in symbolic dynamics. When dealing with colored digraphs,

3



uv uw

vu wu

vw wvwvw

vu

uwuv

v w

uwuvu

wv

Figure 1: Elementary in-splittings that result in the in-colored line digraph.

the line digraph may be defined in two different ways. We shall state these
two definitions and show how the resulting objets are decomposable into
state splittings. The decomposition is exactly the same as the one shown in
[4], here we just need to carry out the colorings.

Let D = (D,L) be an m-colored digraph. The in-colored line digraph of
D is the m-colored digraph L−(D) = (L(D),L−(L)) where L(D) is the line
digraph of D, that is, V (L(D)) = A(D) and for every (u, v), (x, y) ∈ A(D),
((u, v), (x, y)) ∈ A(L(D)) if and only if v = x, and the coloring is defined by
L−(L) (((u, v), (x, y))) = L(u, v). The out-colored line digraph of D is the
m-colored digraph L+(L)(D) = (L(D),L+(L)) where L+ (((u, v), (x, y))) =
L(x, y)

Proposition 2.2. Let D = (D,L) be an m-colored digraph. The in-colored
line digraph L−(D) can be obtained by a sequence of in-state splittings.

Figure 1 describes the procedure of the proof of proposition 2.2.

Proof. Let V (D) = {u, v, . . . , w}. Start with a complete in-splitting of ver-
tex u ∈ V (D), that is, consider the partition P = {{(x, u)} | x ∈ Γ−(u)}.
Then u in-splits into |Γ−(u)| new vertices, one for each x ∈ Γ−(u). Denote
the new vertices by ux and let the coloring be defined as in the definition
of in-state splitting so that L−(x, ux) = L(x, u) and L−(ux, y) = L(u, y)
for every y ∈ Γ+(u). Next, choose a second vertex v /∈ {ux | x ∈ Γ−(u)}.
Its in-coming arcs are of the form (y, v) with y ∈ Γ−(v) \ {u} or of the
form (ux, v) if u ∈ Γ−(v) with x ∈ Γ−(u). In-split vertex v into |Γ−(v)|
new vertices according to the partition formed by the singletons {y} with
y ∈ Γ−(v) \ {u} and {ux | x ∈ Γ−(u)} if u ∈ Γ−(v). Denote by vy the new
vertices corresponding to the singletons, denote by vu the last vertex corre-
sponding to the partition element {ux | x ∈ Γ−(u)} and let the coloring be
carried out as indicated by the definition of in-splitting so that

• L−(y, vy) = L(y, v)

• L−(ux, vu) = L(u, v) if u ∈ Γ−(v),
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• L−(vy, z) = L(v, z) for all z ∈ Γ+(v) \ {u}

• L−(vy, ux) = L(v, u) if u ∈ Γ+(v) and

• L−(vu, uv) = L(v, u) if v ∈ Γ−(u).

Continue in-splitting vertices in this way until a last vertex w in-splits ac-
cording to the partition with |Γ−(w)| elements, one for each x ∈ Γ−(w) and
defined by {xy | y ∈ Γ−(x)}. Each of the new vertices is determined by a
unique x ∈ Γ−(w) and therefore we denote it by wx. Let L−(L) : A(L(D))
be the resulting m-coloring.

For every arc (x, y) ∈ A(D) there is a unique vertex yx, and the map
(x, y) 7→ yx defines a bijection between A(D) and the vertices of the resulting
digraph. If (x, y), (y, z) ∈ A(D), then (yx, zy) is an arc with L−(L)(yx, zy) =
L(x, y). Hence the map is an isomorphism of colored digraphs between
L−(D) and the resulting digraph.

The proof of the following proposition is similar.

Proposition 2.3. Let D = (D,L) be an m-colored digraph. The out-colored
line digraph L+(D) can be obtained by a sequence of out-state splittings.

Lemma 2.4. Let D and D− be as in 2.1. Let T = (x0, . . . , xk) be a
monochromatic x0xk-path in D.

1. If x0, xk 6= u, then there exists a monochromatic x0xk-path in D−.

2. If x0 = u, then there exist monochromatic uixk-paths in D− for all
i = 1, . . . , n

3. If xk = u, then there exists a monochromatic x0uq-path in D− for
some q ∈ {1, . . . , n}.

Proof. 1. If u /∈ V (T ), then T is a monochromatic x0xk-path in D−. Oth-
erwise, let u = xj for some j = 1, . . . , k− 1. Let q ∈ {1, . . . , n} be such that
(xj−1, u) ∈ Fq. Then (x0, . . . , xj−1, uq, xj+1, . . . , xk) is a monochromatic
x0xk-path in D−.

2. Clearly, for every i = 1, . . . , n, (ui, x1, . . . , xk) is a monochromatic
uixk-path in D−.

3. Let q ∈ {1, . . . , n} be such that (xk−1, u) ∈ Fq. Then (x0, . . . , xk−1, uq)
is a monochromatic x0uq-path in D−.

Lemma 2.5. Let D and D− be as in 2.1. Let T = (x0, . . . , xk) be a
monochromatic x0xn-path in D−.
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1. If x0, xk /∈ {u1, . . . , un}, then there exists a monochromatic x0xk-path
in D.

2. If x0 ∈ {u1, . . . , un} and xk /∈ {u1, . . . , un}, then there exists a mono-
chromatic uxk-path in D.

3. If x0 /∈ {u1, . . . , un} and xk ∈ {u1, . . . , un}, then there exists a mono-
chromatic x0u-path in D.

4. If x0, xk ∈ {u1, . . . , un}, then there exists a monochromatic cycle C in
D with u ∈ V (C).

Proof. 1. If V (T )∩{u1, . . . , un} = ∅, then T is a monochromatic x0xk-path
in D. Suppose that V (T ) ∩ {u1, . . . , un} 6= ∅. Let

a = min {j ∈ {0, 1, . . . , k} | xj ∈ {u1, . . . , un}} (2.6)

b = max {j ∈ {0, 1, . . . , k} | xj ∈ {u1, . . . , un}} (2.7)

By assumption, 0 < a ≤ b < k. Then (x0, . . . , xa−1, u, xb+1, . . . , xk) is a
monochromatic x0xk-path in D.

2. Let b be as in 2.7. By assumption b < k. Then (u, xb+1, . . . , xk) is a
monochromatic uxk-path in D.

3. Let a be as in 2.6. By assumption a > 0. Then (x0, . . . , xa−1, u) is a
monochromatic x0, u-path in D.

4. Let c = min{j ∈ {1, . . . , k} | xj ∈ {u1, . . . , un}}. We have that c > 1
since D has no loops. Then (u, x1, . . . , xc−1, u) is a monochromatic cycle C
in D with u ∈ C.

3 Absorbance

Let D = (D,L) be an m-colored digraph. A subset of vertices S ⊂ V (D)
is absorbent by monochromatic paths if for every x ∈ V (D) \ S there exist
u ∈ S and a monochromatic xu-path.

Theorem 3.1. Let D and D− be as in definition 2.1. If S ⊂ V (D) is
absorbent by monochromatic paths in D, then

S′ =


(S \ {u}) ∪ {u1, . . . , un} if u ∈ S

S otherwise
(3.2)

is absorbent by monochromatic paths in D−.
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Proof. Let S ⊂ V (D) be absorbent by monochromatic paths in D. We
consider the two possible cases:

Case I. Suppose that u ∈ S. In this case we have S′ = (S \ {u}) ∪
{u1, . . . , un}. Let z ∈ V (D−) \ S′. Clearly z ∈ V (D) \ S and since S is
absorbent by monochromatic paths in D, there exists a monochromatic zS-
path in D. By lemma 2.4, 1 or 3, there exists a monochromatic zS′-path in
D−.

Case II. Suppose that u /∈ S. In this case we have that S′ = S and
S ⊂ V (D−). Let z ∈ V (D−)\S′. We will prove that there exists a monochro-
matic zS′-path in D−.

• Suppose that z /∈ {u1, . . . , un}. Then z ∈ V (D) \ {u}. Since S is
absorbent by monochromatic paths in D, there exists a monochromatic
zS-path in D. By 1 in lemma 2.4, there exists a monochromatic zS′-
path in D−.

• Now suppose that z = ui for some i ∈ {1, . . . , n}. Since u /∈ S and S is
absorbent by monochromatic paths in D, there exists a monochromatic
uS-path in D. By 2 in lemma 2.4, there exists a monochromatic uiS

′-
path in D−.

Theorem 3.3. Let D and D− be as in definition 2.1. If S′ ⊂ V (D−) is
absorbent by monochromatic paths in D−, then

S =


S′ if S′ ∩ {u1, . . . , un} = ∅

(S′ \ {u1, . . . , un}) ∪ {u} otherwise
(3.4)

is absorbent by monochromatic paths in D.

Proof. Let S′ ⊂ V (D−) be absorbent by monochromatic paths in D−. We
consider the two possible cases:

Case I. Suppose that S′ ∩ {u1, . . . , un} 6= ∅. We will show that S =
(S′ \ {u1, . . . , un}) ∪ {u} is absorbent by monochromatic paths in D. Let
z ∈ V (D) \ S. By definition, z 6= u and therefore z ∈ V (D−) \ {u1, . . . , un}.
Since S′ is absorbent by monochromatic paths in D and z /∈ S′, there exists
a monochromatic zS′-path in D−. Let w ∈ S′ be the terminal vertex of
such a path. If w /∈ {u1, . . . , un}, then w ∈ S and 1 in lemma 2.5 implies
the existence of a monochromatic zw-path. If w ∈ {u1, . . . , un}, then 3 in
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lemma 2.5 implies the existence of a monochromatic zu-path (recall that
u ∈ S).

Case II. Suppose that S′∩{u1, . . . , un} = ∅. We will show that S = S′

is absorbent by monochromatic paths in D. Let z ∈ V (D) \ S. We check
the two possible cases:

• Suppose that z 6= u. It follows that z ∈ V (D−) \ {u1, . . . , un} =
V (D) \ {u}. Since z /∈ S, z /∈ S′. Then there exists a monochromatic
zS′-path in D−. By 1 in lemma 2.5, there exists a monochromatic
zS-path in D.

• Suppose that z = u. For all i = 1, . . . , n, ui /∈ S′ and since S′ is ab-
sorbent by monochromatic paths in D−, there exists a monochromatic
uiS

′-paths in D− for each i = 1, . . . , n. By 2 in lemma 2.5, there exists
a monochromatic uS-path in D.

4 Independence

Let D = (D,L) be an m-colored digraph. A subset of vertices S ⊂ V (D)
is independent by monochromatic paths if for every u, v ∈ S there exists no
monochromatic uv-path.

Theorem 4.1. Let D and D− be as in definition 2.1. Suppose that there
exists no monochromatic cycle C in D with u ∈ V (C). If S ⊂ V (D) is
independent by monochromatic paths in D, then S′ ⊂ V (D−) is independent
by monochromatic paths in D−, where S′ is as in 3.2.

Proof. We consider the two possible cases:
Case I. Suppose that u ∈ S. We will show that S′ = (S \ {u}) ∪

{u1, . . . , un} is independent by monochromatic paths in D−. Let x, y ∈ S′

with x 6= y. We need to show that there exists no monochromatic xy-path
in D−. Suppose otherwise, that is, suppose that there exist monochromatic
xy-paths in D−. We check the four possible cases:

• If x, y /∈ {u1, . . . , un}, then 1 in lemma 2.5 implies the existence
monochromatic xy-path in D contradicting that S is independent by
monochromatic paths in D.

• If x ∈ {u1, . . . , un} and y /∈ {u1, . . . , un}, then 2 in lemma 2.5 implies
the existence a monochromatic uy-path in D contradicting that S is
independent by monochromatic paths in D.
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• If x /∈ {u1, . . . , un} and y ∈ {u1, . . . , un}, then 3 in lemma 2.5 implies
the existence a monochomatic xu-path in D contradicting that S is
independent by monochromatic paths in D.

• If x, y ∈ {u1, . . . , un}, then 4 in lemma 2.5 implies the existence a
monochromatic cycle C in D with u ∈ V (C), against the hypothesis.

Case II. Suppose that u /∈ S and S′ = S. Suppose that there exists
a monochromatic xy-path in D− for some x, y ∈ S′. Then 1 in lemma 2.5
implies that there exists a monochromatic xy-path in D contradicting that
S is independent by monochromatic paths in D.

Theorem 4.2. Let D and D− be as in definition 2.1. Suppose that there
exists no monochromatic cycle C in D with u ∈ V (C). Let S′ ⊂ V (D−) be
such that for every z ∈ V (D−) \ S′ for which there exists a monochromatic
S′z-path in D−, there exists a monochromatic zS′-path in D−. If S′ is
independent by monochromatic paths in D−, then S ⊂ V (D) is independent
by monochromatic paths in D, where S is as in 3.4.

Proof. We consider the two possible cases:
Case I. Suppose that S′ ∩ {u1, . . . , un} 6= ∅. We will show that S =

(S′ \ {u1, . . . , un}) ∪ {u} is independent by monochromatic paths in D. Let
x, y ∈ S with x 6= y. Suppose that there exists a monochromatic xy-path in
D.

• If x, y 6= u, then 1 in lemma 2.4 implies the existence of a monochro-
matic xy-path inD− contradicting that S′ is independent by monochro-
matic paths.

• If x = u, then 2 in lemma 2.4 implies the existence of a monochro-
matic uiy-paths in D− for all i = 1, . . . , n contradicting that S′ is
independent by monochromatic paths.

• If y = u, then 3 in lemma 2.4 implies the existence of a monochromatic
xuq-path in D− for some q ∈ {1, . . . , n}. If uq ∈ S′, then S′ would
not be independent by monochromatic paths in D−. Hence uq /∈ S′

and the additional hypothesis imply the existence of a uqS
′-path in

D. Let w ∈ S′ be the end of such a path. If w /∈ {u1, . . . , un}, then 2
in lemma 2.5 implies the existence of a monochromatic uw-path in D
and hence 2 in lemma 2.4 implies the existence of monochromatic uiw-
paths in D− for all i = 1, . . . , n, contradicting that S′ is independent by
monochromatic paths in D−. If w ∈ {u1, . . . , un}, then 4 in lemma 2.5
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implies the existence of a monochromatic cycle C in D with u ∈ V (C),
against the hypothesis.

Case II. Suppose that S′∩{u1, . . . , un} = ∅. We will show that S = S′

is independent by monochromatic paths in D. Suppose that there exists
a monochromatic xy-path in D for some x, y ∈ S. Then 1 in lemma 2.4
implies the existence of a monochromatic xy-path in D− contradicting that
S′ is independent by monochromatic paths in D−.

Let D = (D,L) be an m-colored digraph. A kernel by monochro-
matic paths is a set of vertices which is both independent and absorbent by
monochromatic paths. We let K(D) denote the set of kernels by monochro-
matic paths in D. Combining the results on absorbance and independence
we get the following result.

The following corollary generalizes [5].

Corollary 4.3. Let D and D− be as in 2.1 and suppose that there exists no
monochromatic cycle C in D with u ∈ V (C). Then |K(D)| = |K(D−)|.

Proof. It suffices to show that if S′ ⊂ V (D−) is a kernel by monochromatic
paths in D−, then S′∩{u1, . . . , un} = ∅ or {u1, . . . , un} ⊂ S′. Suppose that
ui ∈ S′ and uj /∈ S′ for some i, j ∈ {1, . . . , n}. Since S′ is a kernel in D−,
there exists a monochromatic ujS

′ path in D−. Let w ∈ S′ be the end of
such a path. If w 6= ui, then there exists a monochromatic uiw-path in D,
contradicting that S′ is independent by monochromatic paths. But w = ui

is impossible for there would exists a monochromatic cycle C with u ∈ V (C)
(observe that we do not require the additional hypothesis of theorem 4.2 for
S to be independent).

5 Semi-kernels

Definition 5.1. Let D = (D,L) be an m-colored digraph. A subset of vertices
S ⊂ V (D) is a semikernel by monochromatic paths if it is independent by
monochromatic paths and for every z ∈ V (D) \ S for which there exists a
monochromatic Sz-path, there exists monochromatic zS-path.

Theorem 5.2. Let D and D− be as in 2.1. Suppose that there exists no
monochromatic cycle C in D with u ∈ V (C). Let S be a semikernel by
monochromatic paths in D. Then S′ is a semikernel by monochromatic
paths in D−, where S′ is as in 3.2.
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Proof. Let S ⊂ V (D) be a semikernel by monochromatic paths in D and let
S′ be as in 3.2. By theorem 4.1, S′ is independent by monochromatic paths
in D−. We consider the two possible cases:

Case I. Suppose that u ∈ S. We will show that S′ = (S \ {u}) ∪
{u1, . . . , un} is a semikernel by monochromatic paths in D−. Let z ∈
V (D−) \S′ and suppose that there exists a monochromatic S′z-path in D−.
By 1 or 2 in lemma 2.5, there exists a monochromatic Sz-path and hence
there exists a monochromatic zS-path in D. Then, by 1 or 3 in lemma 2.4,
there exists a zS′-path in D−.
Case II. Suppose that u /∈ S. We will show that S′ = S and S ⊂ V (D−) is
a semikernel by monochromatic paths in D−. Let z ∈ V (D−) \ S′ and
suppose that there exists a monochromatic S′z-path in D−. Let T =
(x0, x1, . . . , xk = z) be such a path, with x0 ∈ S′ = S.

• If xk /∈ {u1, . . . , un}, then, by 1 in lemma 2.5, there exists a monochro-
matic x0z-path in D implying the existence of a monochromatic zS-
path inD and in virtue of 1 in lemma 2.4, there exists a monochromatic
zS′-path in D−.

• If xk ∈ {u1, . . . , un}, then, by 3 in lemma 2.5, there exists a monochro-
matic x0u-path in D and since u /∈ S, there exists a monochromatic
uS-path in D and in virtue of 2 in lemma 2.4 there exists a monochro-
matic uiS

′-path in D− for all i = 1, . . . , n.

Theorem 5.3. Let D and D− be as in 2.1. Suppose that there exists no
monochromatic cycle C in D with u ∈ V (C). Let S′ be a semikernel by
monochromatic paths in D−. Then S is a semikernel by monochromatic
paths in D, where S is as in 3.4.

Proof. Let S′ ⊂ V (D−) be a semikernel by monochromatic paths in D− and
let S be defined as in 3.4. By theorem 4.2, S is independent by monochro-
matic paths in D (the additional hypothesis of theorem 4.2 is clearly satisfied
by S′ because it is a semikernel in D−). We consider the two possible cases:

Case I. Suppose that S′ ∩ {u1, . . . , un} 6= ∅. We will show that S =
(S′ \ {u1, . . . , un}) ∪ {u} is a semikernel by monochromatic paths in D. Let
z ∈ V (D) \S and suppose that there exists a monochromatic Sz-path in D.
Let (x0, . . . , xk = z) be such a path. If x0 = u, then 2 in lemma 2.4 implies
the existence of uiz-paths in D− for all i = 1, . . . , n, otherwise 1 in lemma
2.4 implies the existence of a monochromatic x0z-path in D−. It follows
that there exists a monochromatic zS′-path in D−. Let (y0 = z, . . . , yr) be
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such a path with yr ∈ S′. If yr /∈ {u1, . . . , un}, then yr ∈ S and 1 in lemma
2.5 implies the existence of a monochromatic zyr-path in D, otherwise 3 in
lemma 2.5 implies the existence of a monochromatic zu-path in D (recall
that u ∈ S).

Case II. Suppose that S′∩{u1, . . . , un} = ∅. We will show that S = S′

is a semikernel by monochromatic paths in D. Let z ∈ V (D) \ S and
suppose that there exists a monochromatic Sz-path in D. If z 6= u, then
1 in lemma 2.4 implies the existence of a monochromatic S′z-path in D−,
otherwise 3 in lemma 2.4 implies the existence of a monochromatic S′uq-
path in D− for some q ∈ {1, . . . , n} (recall that uq /∈ S′). Hence there
exists a monochromatic zS′-path in D− or a monochromatic uqS

′-path in
D− respectively. Hence by 1 or 2 in lemma 2.5, there exists a monochromatic
zS-path in D.

For an m-colored digraph D let S(D) denote the set of semikernels by
moncochromatic paths in D.

Corollary 5.4. Let D and D− be as in 2.1. Suppose that there exists no
monochromatic cycle C in D with u ∈ V (C). Then |S(D)| ≤ |S(D−)|.

6 Quasi-kernels

Definition 6.1. Let D = (D,L) be an m-colored digraph. A subset of vertices
S ⊂ V (D) is a quasi-kernel by monochromatic paths if it is independent by
monochromatic paths and for every z ∈ V (D) \ S, there exists a monochro-
matic zS-path or there exists w ∈ V (D) \S, a monochromatic zw-path and
a monochromatic wS-path.

Theorem 6.2. Let D and D− be as in 2.1. Suppose that there exists no
monochromatic cycle C in D with u ∈ V (C). Let S be a quasikernel by
monochromatic paths in D. Then S′ is a quasikernel by monochromatic
paths in D−, where S′ is as in 3.2.

Proof. Let S ⊂ V (D) be a quasikernel by monochromatic paths in D and
let S′ be as in 3.2. By theorem 4.1, S′ is independent by monochromatic
paths in D−. We consider the two possible cases:

Case I. Suppose that u ∈ S. In this case we have S′ = (S \ {u}) ∪
{u1, . . . , un}. Let z ∈ V (D−) \ S′. Clearly z ∈ V (D) \ S. If there exists a
monochromatic zS-path in D, then we argue exactly in the same way as in
the proof of theorem 3.1, case I. Therefore we suppose that no such path
exists and hence we assume that there exists w ∈ V (D)\S, a monochromatic
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uw-path in D and a monochromatic wS-path in D. By 1 in lemma 2.4, there
exists a monochromatic uw-path in D−, and by 1 or 3 in lemma 2.4, there
exists a monochromatic wS′-path in D−.

Case II. Suppose that u /∈ S. In this case we have that S′ = S and
S ⊂ V (D−). Let z ∈ V (D−) \ S′. We will prove that either there exists a
monochromatic zS′-path in D− or there exist w ∈ V (D−) \ S, a monochro-
matic zw-path in D− and a monochromatic wS′-path in D−.

• Suppose that z /∈ {u1, . . . , un}. Then z ∈ V (D). If there exists a
monochromatic zS-path in D, then we argue exactly in the same way
as in the proof of theorem 3.1, case II, first item. Therefore we suppose
that no such path exists and hence we assume that there exists w ∈
V (D) \ S, a monochromatic zw-path in D and a monochromatic wS-
path in D. If w 6= u, then by 1 in lemma 2.4 applied twice we have that
there exists a monochromatic zw-path in D− and a monochromatic
wS′-path in D−. If w = u, then by 3 in lemma 2.4, there exists q ∈
{1, . . . , n} and a monochromatic zuq-path in D−, and by 2 in lemma
2.4, there exists a monochromatic uiS

′-path in D− for all i = 1, . . . , n
(in particular for i = q).

• Now suppose that z = ui for some i ∈ {1, . . . , n}. We have that u /∈ S.
If there exists a monochromatic uS-path in D then we argue exactly
in the same way as in the proof of theorem 3.1, case II, second item.
Therefore we suppose that no such path exists and hence we assume
that there exists w ∈ V (D) \ S, a monochromatic uw-path in D and
a monochromatic wS-path in D (necessarily w 6= u). By 2 in lemma
2.4, there exists monochromatic uiw-paths in D− for all i = 1, . . . , n.
By 1 in lemma 2.4, there exists a monochromatic wS′-path in D−.

Theorem 6.3. Let D and D− be as in 2.1. Let S′ be a quasikernel by
monochromatic paths in D−. Suppose that there exists no monochromatic
cycle C in D with u ∈ V (C). Let S′ ⊂ V (D−) be such that for every
z ∈ V (D−) \ S′ for which there exists a monochromatic S′z-path in D−,
there exists a monochromatic zS′-path in D−. If S′ is a quasikernel by
monochromatic paths in D−, then S is a quasikernel by monochromatic paths
in D, where S is as in 3.4.

Proof. Let S′ ⊂ V (D−) be a quasikernel by monochromatic paths in D−
and let S be as in 3.4. By theorem 4.2, S is independent by monochromatic
paths in D. We consider the two possible cases:
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Case I. Suppose that S′ ∩ {u1, . . . , un} 6= ∅. We will show that S =
(S′ \ {u1, . . . , un}) ∪ {u} is a quasikernel by monochromatic paths in D.
Let z ∈ V (D) \ S. Since z 6= u, z ∈ V (D−) \ S′ and hence there exists a
monochromatic zS′-path in D− or there exists w ∈ V (D−) \ S′ such that
there exists a monochromatic zw-path in D− and a monochromatic wS′-
path in D−. By lemma 2.5, there exists a monochromatic zS-path in D or
there exists a monochromatic uw-path in D and a monochromatic wS-path
in D−.

Case II. Suppose that S′∩{u1, . . . , un} = ∅. We will show that S = S′

is a quasikernel by monochromatic paths in D. Let z ∈ V (D) \ S.

• Suppose that z = u. For each i = 1, . . . , n, ui /∈ S′ and since S′ is a
quasikernel by monochromatic paths in D−, there exists a monochro-
matic uiS

′-path in D− or there exists w ∈ V (D−) \S′ such that there
exists a monochromatic uiw-path in D− and a monochromatic wS′-
path in D−. By lemma 2.5, there exists a monochromatic uS-path in
D or there exists a monochromatic uw-path in D and a monochromatic
wS-path in D−.

• Suppose that z 6= u. Then z ∈ V (D−) \ S′. Since S′ is a quasikernel
by monochromatic paths in D−, there exists a monochromatic zS′-
path in D− or there exists w ∈ V (D−) \ S′ such that there exists a
monochromatic zw-path in D− and a monochromatic wS′-path in D−.
By lemma 2.5, there exists a monochromatic zS-path in D or there
exists a monochromatic uw-path in D and a monochromatic wS-path
in D−.

For an m-colored digraph D let Q(D) denote the set of quasikernels by
moncochromatic paths in D.

Corollary 6.4. Let D and D− be as in 2.1. Suppose that there exists no
monochromatic cycle C in D with u ∈ V (C). Then |Q(D)| ≤ |Q(D−)|.

7 Grundy functions

In this section, given v ∈ V (D), we let

M+
D (v) = {x ∈ V (D) | there exists a monochromatic vx-path}

M−
D (v) = {y ∈ V (D) | there exists a monochromatic yv-path}
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Definition 7.1. Let D = (D,L) be an m-colored digraph. A function
g : V (D) → N is a Grundy function by monochromatic paths of D if for
every x ∈ V (D),

g(x) = min
{
N \ {g(z) ∈ V (D) | z ∈M+

D (x)}
}

.

Let G(D) be the set of Grundy functions by monochromatic paths.

Theorem 7.2. Let D and D− be as in 2.1. Suppose that there exist no
monochromatic cycles in D. Then |G(D)| = |G(D−)|.

Proof. Let g ∈ G(D) and define g0 : V (D−)→ N by

g0(x) =


g(x) if x /∈ {u1, . . . , un}

g(u) otherwise.

Let x ∈ V (D0). If x ∈ {u1, . . . , un}, then M+
D−(x) = M+

D (u) because there
exist no monochromatic cycles in D. Then g0(ui) = min{N \ {g0(z) | z ∈
M+

D (u)}}. Suppose that x /∈ {u1, . . . , un}. If {u1, . . . , un} ∩M+
D−(x) = ∅,

then M+
D−(x) = M+

D (x) and hence g0(x) = min{N− {g0(z) | z ∈ M+
D−(x)}.

Suppose that {u1, . . . , un} ∩M+
D−(x) 6= ∅. Then u ∈ M+

D (x) and M+
D (x) \

{u} differs from M+
D−(x) in at most {u1, . . . , un} \M+

D−(x), hence g0(x) =
min{N \ {g0(z) |M+

D−(x)}}. Thus g0 ∈ G(D−). Clearly, the map g 7→ g0 is
injective, so |G(D)| ≤ |G(D−)|.

Now let g0 ∈ G(D−). Having no monochromatic cycles implies that
M+

D−(ui) = M+
D−(uj) for all i, j ∈ {1, . . . , n}, therefore g0(ui) = g0(uj).

Define g : V (D)→ N by

g(x) =


g0(x) if x 6= u

g0(ui) otherwise.

It is straightforward to verify that g ∈ G(D−) and that the map g0 7→
g is actually the inverse of the map defined above. Therefore the result
follows.

8 Duality

Out-state duals in-state splittings for partitions of the out-going edges are
considered. Obtaining lemmas similar to lemmas 2.4 and 2.5 is straight-
forward. With them we can rephrase all our results for out-splittings, we

15



just need to state the corresponding duals of each concept. For example,
let D = (D,L) be an m-colored digraph. A subset of vertices S ⊂ V (D) is
dominant by monochromatic paths if for every z ∈ V (D) \ S, there exists a
monochromatic Sz-path in D. So dominance by monochromatic paths duals
absorbance by monochromatic paths. A solution by monochromatic paths is
a subset of vertices which is both independent and dominant by monochro-
matic paths and this definition duals kernels by monochromatic paths. A
semisolution and a quasisolution by monochromatic paths are defined simi-
larly as well as dual Grundy functions by monochromatic paths. Stating the
dual results and verifying their proofs is an exercise left to the reader.
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