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Abstract

The spanning tree invariant of Lind and Tuncel [12] is observed in the context
of loop systems of Markov chains. For n = 1, 2, 3 the spanning tree invariants
of the loop systems of a Markov chain determined by an irreducible stochastic
(n×n)-matrix P coincide if and only if P is doubly stochastic and, in this case,
the common value of the spanning tree invariants of the loop systems is n.
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1. Introduction

Lind and Tuncel introduce the spanning tree invariant as an invariant of
block isomorphism of Markov chains [12]. Its definition is as follows. Let P
be a (finite and irreducible) stochastic matrix. For every subdigraph H of the
underlying digraph D(P ) = (V (P ), E(P )) induced by P , let

wtP (H) =
∏

e∈E(H)

wtP (e) (1.1)

where wtP (e) = Pxy is the transition probability of the edge e = xy ∈ E(P )
with x and y the initial and terminal vertices of e (since P is stochastic,∑
y∈V (P ) Pxy = 1 for all x ∈ V (P )). For every vertex u ∈ V (P ), let

S(u) = {T | T is a spanning tree rooted at u}

(a subdigraph T is a spanning tree rooted at u if u has no outgoing edges in T ,
every vertex v ∈ V (P ) \ {u} has a unique outgoing edge in T and there exists
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a unique path in T from v to u). The local spanning tree invariant at u is

τu(P ) =
∑

T∈S(u)

wtP (T ) (1.2)

and the spanning tree invariant is

τ(P ) =
∑

u∈V (P )

τu(P ). (1.3)

Our original motivation for looking at the spanning tree invariant was to deter-
mine if it was an invariant of almost isomorphism, an equivalence relation intro-
duced in [5]. We know from [12] that if the spectrum of P is {λ1 = 1, λ2, . . . , λn},
then

τ(P ) =
n∏
k=2

(1− λk)

and this implies that the spanning tree invariant is determined by the (stochas-
tic) zeta function (see [1, 14, 4])

ζP (t) =
1

det(I − tP )
.

It is well known that almost isomorphism does not preserve the zeta function
(see [5, 8]). Hence almost isomorphism does not preserve the spanning tree
invariant. Another way to see this is by means of loop systems (see [5, 8, 9]).
We describe them formally using the semiring R+ which is defined as follows.
Let (R+,×) be the multiplicative group of the positive real numbers. Let Z[R+]
be the integral group ring on R+ and let Z+[R+] be the semiring consisting
of those elements with nonnegative integral coefficients. Let R = Z[R+][[t]] be
the ring of power series with coefficients in Z[R+] and let R+ be the semiring
consisting of those elements with coefficients Z+[R+]. The first return loop
system at u ∈ V (P ) is described by the power series f (u) ∈ R+ defined by

1− f (u)(t) =
det(I − tP )

det(I − tQ(u))

where Q(u) results from P by removing the row and column corresponding to
u. For any n > 1, the nth coefficient is∑

ρ∈R+

a(ρ)
n [ρ]

where aρn equals the number of first return loops to u with weight ρ (zero is
the constant term, an instance of what is known in positive K-theory as the no
Z+-cycles condition of Boyle and Wagoner [6]). This fact comes from carrying
out the weights on the following form of the zeta function of a shift of finite
type defined by a nonnegative integral matrix A,

1
det (I − tA)

=
∏
γ

(1− t|γ|)−1
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u

Figure 1: A loop system at u.

with γ ranging over all periodic orbits of length |γ| (see [13]).
The power series f (u) determines a countable state Markov chain called a

loop system (we let P (u) be its transition matrix and henceforth we may identify
it with f (u)). It is a Markov chain on the loop digraph D(f (u)) with vertex set
V (f (u)) and edge set E(f (u)) determined by first setting a distinguished vertex
that we also denote by u ∈ V (f (u)) and then, for each ρ which appears in f (u)

and every n ≥ 1, a(ρ)
n simple directed cycles at u of length n ≥ 1, all vertex

disjoint except for u, with the weight of the outgoing edges of u being ρ and
1 the weight of all other edges. Figure 1 describes a loop system with two
first return loops of length one, three of length two, two of length three and so
forth; the weights are not illustrated (clearly P yields at most one first return
loop of length one, the illustration shows more to put this in the context of
matrices over more general rings as in [8, 14]). Loop systems are important in
studying almost isomorphisms, in particular, because an irreducible and strongly
positive recurrent Markov shift is always almost isomorphic to its loop systems
via finitary isomorphisms which are magic word isomorphisms and hence have
finite (exponentially fast) coding time (see also [5, 8, 18]).

If P were an infinite stochastic matrix, then (1.1), (1.2) and (1.3) would
make sense only as limits. We assume that P is finite, but P (u) is infinite.
Still, it is simple to determine the spanning trees on the loop digraph D(f (u))
and therefore to obtain for the loop system f (u) an expression for the spanning
tree invariant τ(f (u)) (see Lemma 2.1). In general a Markov chain possesses
loop systems with distinct spanning tree invariants (see Theorem 2.3). Let the
spanning tree invariant spectrum be

{
τ(f (u))

}
u∈V (P )

with f (u) the loop system
at u ∈ V (P ). The following is a natural question.

Question 1.4. When does the spanning tree invariant spectrum consist of a
singleton?

If |V (P )| ≤ 3, then the spanning tree invariants of the loop systems coincide
if and only if P is doubly stochastic (i.e. if and only if

∑
x∈V (P ) Pxy = 1 for all

y ∈ V (P )), and in this case |V (P )| is the common value of the spanning tree
invariants. We think that this holds in general for irreducible systems, and that
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it is equivalent to a condition that we call the doubly stochastic condition on
spanning tree invariants, namely

τ(P )− τu(P )
τu(P )

=
τ(P )− τv(P )

τv(P )
∀u, v ∈ V (P ). (1.5)

On their spanning tree invariant Lind and Tuncel comment: “Since spanning
trees are maximal subgraphs without loops, this is in some sense an operation
orthogonal to recurrent behavior”. (They also point out that it is possible to
construct finer invariants e.g. by the matrix of powers P t, see [14].) In this note
we use the spanning tree invariant spectrum to detect symmetries like double
stochasticity.

There exists a general interest in doubly stochastic processes and the lit-
erature is extensive. A fundamental fact on doubly stochastic matrices is
due to Birkhoff who showed in [3] that the set of doubly stochastic matri-
ces is a polytope with the permutation matrices as extreme points. Recent
work on doubly stochastic matrices includes problems on (inverse) eigenvalues
[10, 11, 15, 19, 17, 16], tridiagonal matrices [7, 20] and trees [21, 2].

2. The spanning tree invariant of loop systems

Henceforth P is a finite stochastic irreducible matrix such that the adjacency
matrix of the underlying Markov shift has Perron value greater than one.

Lemma 2.1. Let f (u) ∈ R+ be a loop system of P . Write

f (u)(t) =
∞∑
k=1

∑
ρ∈R+

a
(ρ)
k [ρ]tk.

Then

τ(f (u)) = 1 +
∞∑
k=2

∑
ρ∈R+

(k − 1)a(ρ)
k ρ.

Proof. For each vertex r ∈ V (f (u)) in the loop graph defined by f (u), there is
one and only one spanning tree rooted at r and is as follows:

1. If the root r is the distinguished vertex u, then the tree is the one that
results from removing all edges that start at u. Clearly, in this case, the
weight of the tree is 1 (see Figure 2).

2. If the root r is not the distinguished vertex u, then r belongs to a unique
loop γ at u of some length n ≥ 2 and weight ρ (γ possesses k − 1 of this
kind of vertices). The tree is the one that results from removing all edges
that start at u except for the edge that belongs to γ, and in its place
remove the only edge that starts at r. Clearly, in this case, the weight of
the tree is ρ (see Figure 3).

The result follows.
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u

Figure 2: In a loop system at u, the weight of the spanning tree rooted at r = u is 1.

u
ρ

r

Figure 3: In a loop system at u, the weight of the spanning tree rooted at r 6= u is ρ.

Observation 2.2. If Q(u) results from P by removing the row and column cor-
responding to u, then

f (u) = Puut+
∑
i,j 6=u

∞∑
k=2

Pui(Q(u))k−2
ij Pjut

k

and thus

τ(f (u)) = 1 +
∑
i,j 6=u

∞∑
k=2

(k − 1)Pui(Q(u))k−2
ij Pju.

Now, if λQ(u) is the Perron value of Q(u), then λQ(u) < 1 because Q(u) < P .
It follows that there exists c > 0 such that (Q(u))kij < cλk

Q(u) (see e.g. [13]).
Hence τ(f (u)) < ∞ (more generally, it can be shown that if an infinite matrix
is strongly positive recurrent [5, 9], then its spanning tree invariant is finite).

Theorem 2.3. Let P be an irreducible stochastic (2 × 2)-matrix and let
f (1), f (2) ∈ R+ be the loop systems at 1 and 2. Then τ(f (1)) = τ(f (2)) if
and only if P is doubly stochastic and in this case τ(f (1)) = τ(f (2)) = 2.
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Figure 4: A 2× 2 Markov chain.
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Figure 5: The spanning trees of a 2× 2 Markov chain.

Proof. Let P =
(
a b
c d

)
be an irreducible (so b > 0 and c > 0) stochastic

matrix. It determines a 2× 2 Markov chain (see Figure 4). The local spanning
tree invariants of P are as follows (see Figure 5):

τ1(P ) = c and τ2(P ) = b.

We will show that the spanning tree invariants of the loop systems coincide if
and only if (1.5) holds, that is, if and only if

τ2(P )
τ1(P )

=
τ1(P )
τ2(P )

, (2.4)

and that this is equivalent to P being doubly stochastic.
We let Q(1) = (d) and Q(2) = (a) to write the power series that describe the

loop systems

f (1)(t) = [a]t+
∞∑
n=0

(
b(Q(1))nc

)
tn+2

and

f (2)(t) = [d]t+
∞∑
n=0

(
c(Q(1))nb

)
tn+2.

Since
(
Q(1)

)n
= (dn) and

(
Q(2)

)n
= (an), Lemma 2.1 implies

τ(f (1)) = 1 +
∞∑
n=0

(n+ 1)bdnc = 1 + bc

∞∑
n=0

(n+ 1)dn = 1 +
bc

(1− d)2
= 1 +

b

c

and

τ(f (2)) = 1 +
∞∑
n=0

(n+ 1)canb = 1 + bc

∞∑
n=0

(n+ 1)an = 1 +
bc

(1− a)2
= 1 +

c

b

so that τ(f (1)) = τ(f (2)) if and only if b/c = c/b, that is, if and only if (2.4)
holds. In this case, b2 = c2 and hence b = c and a = d and hence P is doubly
stochastic. Clearly τ(f (1)) = τ(f (2)) = 2.
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Figure 6: A 3× 3 Markov chain.
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Figure 7: The spanning trees rooted at 1 that define the local spanning tree invariant τ1(P ).

Theorem 2.5. Let P be an irreducible stochastic (3× 3)-matrix and let f (k) ∈
R+ be the loop systems at k = 1, 2, 3. Then τ(f (1)) = τ(f (2)) = τ(f (3)) if and
only if P is doubly stochastic and in this case τ(f (1)) = τ(f (2)) = τ(f (3)) = 3.

Proof. Let

P =

 a b c
d e f
g h i


be an irreducible stochastic matrix (see Figure 6). The local spanning tree
invariants of P are as follows (see Figure 7):

τ1(P ) = dg + dh+ fg

τ2(P ) = bg + bh+ ch

τ3(P ) = bf + cd+ cf.

We will show that the spanning tree invariants of the loop systems coincide if
and only if (1.5) holds, that is, if

τ2(P ) + τ3(P )
τ1(P )

=
τ1(P ) + τ3(P )

τ2(P )
=
τ1(P ) + τ2(P )

τ3(P )
, (2.6)
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and that this is equivalent to P being doubly stochastic.
For each k = 1, 2, 3, let Q(k) be the matrix that results from P by removing

the kth row and column of P . Their eigenvalues are

x1 =
1
2
(
e+ i−

√
α
)

and y1 =
1
2
(
e+ i+

√
α
)

with α = e2 − 2ei+ i2 + 4fh ≥ 0,

x2 =
1
2

(
a+ i−

√
β
)

and y2 =
1
2

(
a+ i+

√
β
)

with β = a2 − 2ai+ i2 + 4cg ≥ 0 and

x3 =
1
2

(a+ e−√γ) and y3 =
1
2

(a+ e+
√
γ)

with γ = a2 − 2ae+ e2 + 4bd ≥ 0. Diagonalizing we obtain

(Q(1))n =

(
− e−i−

√
α

2
√
α

xn1 + e−i+
√
α

2
√
α

yn1 − f√
α
xn1 + f√

α
yn1

− h√
α
xn1 + h√

α
yn1

e−i+
√
α

2
√
α

xn1 −
e−i−

√
α

2
√
α

yn1

)

(Q(2))n =

(
−a−i−

√
β

2
√
β

xn2 + a−i+
√
β

2
√
β

yn2 − c√
β
xn2 + c√

β
yn2

− g√
β
xn2 + g√

β
yn2

a−i+
√
β

2
√
β

xn2 −
a−i−

√
β

2
√
β

yn2

)

(Q(3))n =

(
−a−e−

√
γ

2
√
γ xn3 + a−e+√γ

2
√
γ yn3 − b√

γx
n
3 + b√

γ y
n
3

− d√
γx

n
3 + d√

γ y
n
3

a−e+√γ
2
√
γ xn3 −

a−e−√γ
2
√
γ yn3

)
and then the loop systems are described by

f (1)(t) = at+
∞∑
n=0

(
b(Q(1))n11d+ b(Q(1))n12g + c(Q(1))n21d+ c(Q(1))n22g

)
tn+2

f (2)(t) = et+
∞∑
n=0

(
d(Q(2))n11b+ d(Q(2))n12h+ f(Q(2))n21b+ f(Q(2))n22h

)
tn+2

f (3)(t) = it+
∞∑
n=0

(
g(Q(3))n11c+ g(Q(3))n12f + h(Q(3))n21c+ h(Q(3))n22f

)
tn+2

Let

A1 = −bd
(
e− i−

√
α

2
√
α

)
− bg f√

α
− cd h√

α
+ cg

(
e− i+

√
α

2
√
α

)
B1 = bd

(
e− i+

√
α

2
√
α

)
+ bg

f√
α

+ cd
h√
α
− cg

(
e− i−

√
α

2
√
α

)
A2 = −db

(
a− i−

√
β

2
√
β

)
− dh c√

β
− fb g√

β
+ fh

(
a− i+

√
β

2
√
β

)
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B2 = db

(
a− i+

√
β

2
√
β

)
+ dh

c√
β

+ fb
g√
β
− fh

(
a− i−

√
β

2
√
β

)
A3 = −gc

(
a− e−√γ

2
√
γ

)
− gf b

√
γ
− hc d

√
γ

+ hf

(
a− e+

√
γ

2
√
γ

)
B3 = gc

(
a− e+

√
γ

2
√
γ

)
+ gf

b
√
γ

+ hc
d
√
γ
− hf

(
a− e−√γ

2
√
γ

)
(observe that A1 +B1 = bd+ cg, A2 +B2 = db+ fh and A3 +B3 = gc+ hf).
Using Lemma 2.1, the spanning tree invariants of the loop systems are

τ(f (1)) = 1 +
A1

(1− x1)2
+

B1

(1− y1)2
(2.7)

τ(f (2)) = 1 +
A2

(1− x2)2
+

B2

(1− y2)2
(2.8)

τ(f (3)) = 1 +
A3

(1− x3)2
+

B3

(1− y3)2
(2.9)

Since a = 1− b− c, e = 1− d− f and i = 1− g − h, simplification yields

A1

(1− x1)2
+

B1

(1− y1)2
=
τ2(P ) + τ3(P )

τ1(P )
(2.10)

A2

(1− x2)2
+

B2

(1− y2)2
=
τ1(P ) + τ3(P )

τ2(P )
(2.11)

A3

(1− x3)2
+

B3

(1− y3)2
=
τ1(P ) + τ2(P )

τ3(P )
(2.12)

Hence the spanning tree invariants of the loop systems coincide if and only
if (2.6) holds. We will show that this happens precisely when P is doubly
stochastic. We have that

0 =
τ2(P ) + τ3(P )

τ1(P )
− τ1(P ) + τ3(P )

τ2(P )
=
τ2(P )− τ1(P )
τ1(P )τ2(P )

τ(P )

0 =
τ2(P ) + τ3(P )

τ1(P )
− τ1(P ) + τ2(P )

τ3(P )
=
τ3(P )− τ1(P )
τ1(P )τ3(P )

τ(P )

0 =
τ1(P ) + τ3(P )

τ2(P )
− τ1(P ) + τ2(P )

τ3(P )
=
τ3(P )− τ2(P )
τ2(P )τ3(P )

τ(P )

This yields the following system of equations

bg + bh+ ch− dg − dh− fg = 0 (2.13)

bf + cd+ cf − dg − dh− fg = 0 (2.14)

bf + cd+ cf − bg − bh− ch = 0 (2.15)
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From (2.13) and (2.14) we get the following system of equations on g and h,

(b− d− f)g + (b+ c− d)h = 0
(d+ f)g + dh = cd+ bf + cf

Its solution is g = b + c − d and h = −b + d + f and therefore g + h = c + f .
Similarly, (2.14) and (2.15) yield the system of equations on d and f ,

(c− g − h)d + (b+ c− g)f = 0
cd + (b+ c)f = bg + bh+ ch

Its solution is d = b + c − g and f = −c + g + h and therefore d + f = b + h.
Finally, (2.15) and (2.13) yield the following system of equations on b and c,

(f − g − h)b + (d+ f − h)c = 0
(g + h)b + hc = dg + dh+ fg

Its solution is b = d + f − h and c = −f + g + h and therefore b + c = d + g.
Then

P =

 1− b− c b c
d 1− d− f f
g h 1− g − h


is doubly stochastic because g+h = c+ f , d+ f = b+h and b+ c = d+ g. The
spanning tree invariants of the loop systems are given by (2.7), (2.8) and (2.9).
We show that equations (2.10), (2.11) and (2.12) are all equal to 2. Starting
with (2.10), we have

b(f + g + h) + c(d+ f + h)
dg + dh+ fg

=
b(2f + c) + c(2d+ 2f − b)

cd+ df + fg

= 2
bf + cd+ cf

cd+ df + fg
= 2

cd+ df + fg

cd+ df + fg
= 2.

For (2.11), we have

f(b+ c+ g) + d(c+ g + h)
bg + bh+ ch

=
f(d+ 2g) + d(2g + 2h− f)

bg + dh+ gh

= 2
dg + dh+ fg

bg + dh+ gh
= 2

bg + dh+ gh

bg + dh+ gh
= 2.

Finally (2.12) is

g(b+ d+ f) + h(b+ c+ d)
bf + cd+ cf

=
g(2b+ h) + h(2b+ 2c− g)

bc+ bf + ch

= 2
bg + bh+ ch

bc+ bf + ch
= 2

bc+ bf + ch

bc+ bf + ch
= 2.
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