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Abstract. In this paper, we consider the problem of packing two or
more equal area polygons with disjoint interiors into a convex body K
in E? such that each of them has at most a given number of sides. We
show that for a convex quadrilateral K of area 1, there exist n internally
disjoint triangles of equal area such that the sum of their areas is at
least ﬁ. We also prove results for other types of convex polygons K.
Furthermore we show that in any centrally symmetric convex body K
of area 1, we can place two internally disjoint n-gons of equal area such
that the sum of their areas is at least ”Tfl sin —%. We conjecture that
this result is true for any convex bodies.

1 Introduction

For a subset S of E? having a finite area, let A(S) denote the area of S. A
compact convex set with nonempty interior is called a convex body.
In [2], W. Blaschke showed the following theorem:

Theorem A. Let K be a convex body in E*, and let T be a triangle with

mazimum area among all triangles contained in K. Then % > %g with

equality if and only if K is an ellipse.
E. Sés [13] generalized Blaschke’s result as follows:

Theorem B. Let K be a conver body in E*, and let P be a polygon with
mazimum area among all polygons contained in K and having at most n sides.

Then % > 5= sin 27“ with equality if and only if K is an ellipse.

For subsets Ay, --, A,, of E*, we say that the A; are internally disjoint if
the interiors of any two A; and A; with 1 <47 < j < m are mutually disjoint. In
this paper, we consider the problem of packing two or more equal area internally
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disjoint polygons in a convex body in E? such that each of them has at most a
given number of sides, and the sum of their areas is maximized.

Let K be a convex body in E? and let P, ,(K) denote a family of m in-
ternally disjoint equal area convex polygons P, ---, P,, C K such that each
P;, 1 < i <m, has at most n sides, and define

s(K;m,n) = sup A(P1)+"'+A(Pm).
(Pr, - P} P n(K) A(K)

We simply write ¢,,(K) for s(K;m,3). Clearly t,,(T) = 1 for any triangle T
and positive integer m, and hence s(T;m,n) = 1 for any triangle T and integers
m > 1 and n > 3. In general, for any integers k,m,n with n > k>3, m > 1
and for any convex polygon K with at most & sides, s(K;m,n) =1 (Fig.1).

Fig. 1.

Monsky [10] showed that a rectangle can be dissected into m equal area triangles
if and only if m is even. Thus

Theorem C. Let m be a positive integer and let R be a rectangle. Then t,,(R) =
1 for any even integer m and t,,(R) < 1 for any odd integer m.

Furthermore, Kasimatis showed that a regular k-gon, k£ > 5, can be dissected
into m equal area triangles if and only if m is a multiple of k [6]; and Kasimatis
and Stein showed that almost all polygons cannot be dissected into equal area
triangles [7]:

Theorem D. Let k be an integer with k > 5 and let K be a regular k-gon.
Then t,,(K) =1 for any positive integer m = 0 (mod k) and t,,,(K) < 1 for any
positive integer m £ 0 (mod k).

Theorem E. For almost all polygons K and for any integer m > 1, t,,(K) < 1.

2 Preliminary Results

We now show some propositions that will be needed to prove our results . For a
subset S of E", we denote the convex hull of S by conv(S).



Proposition 1. Letn be an integer with n > 3, P a convex polygon with at least
n sides, and let o denote the value of the maximum area of a convex polygon
contained in P with at most n sides. Then there exists an n-gon of area o each
of whose vertices is a vertex of P.

Proof. Let P = p1p2---pg, k > n. Take a convex polygon Q C P with at
most n sides such that A(Q) = « and the number of common vertices of P
and @ is maximized. By way of contradiction, suppose that there is a vertex
a of @ such that a & {p1,---,pr}. By the maximality of A(Q), a is on the
boundary of P, and hence a is an interior point of a side of P. We may assume
a € p1p2 — {p1,p2}- Let b and ¢ be distinct vertices of @ adjacent to a. Then
A(abe) < max{A(p1bc), A(p2bc)}. We may assume A(abe) < A(pibe). Let Q' =
conv((Q —abc)Upibe). Then Q' C P, @' has at most n sides, a = A(Q) < A(Q")
(so a = A(Q’') by the maximality of «), and the number of common vertices of
Q' and P is strictly greater than that of @ and P, a contradiction. Thus any
vertex of @ is a vertex of P, and it follows from the maximality of o that @ has
n sides. ad

Proposition 2. Let K be a convex body in E* and let m and n be integers
with m > 3 and n > 3. Suppose that K contains internally disjoint polygons
P=pi- pm and Q = q1---qn. Then K contains internally disjoint polygons
P’ and Q' such that conv(P’ U Q') has at most m +n — 2 sides, P’ has at most
m sides, Q' has at most n sides, and A(P') > A(P), and A(Q") > A(Q).

Remark 1. A simple proof for the case where m = n = 3 is shown in [12].

Proof. Let S = conv(PUQ). If S has at most m +n — 2 sides, then we have only
to let P/ = P and Q' = Q. Thus assume that S has m + n sides or m +n — 1
sides.

Case 1. S has m + n sides:

We may assume that S = p1p2 - pmqi1ge - - - ¢n and that the straight line
! passing through p; and parallel to pag,—1 satisfies the condition that (I N
P1P2qn—1qn) — {p1} # 0 (Fig.2 (a)). Let r be the intersection point of p1p,, and
p2qn—1. Then A(g,par) > A(pipar), and hence P* = ¢,pops - - pm Is a convex
polygon with m sides such that P* is internally disjoint to @ and A(P*) > A(P).
Using the same arguments for Q* and ), we obtain P’ and @’ with the desired
properties.

Case 2. S has m +n — 1 sides:

We may assume that S = pip2 - Pm—1¢192 - - - ¢ and that A(pipm_1q1) >
A(p1pm-1qn) (Fig. 2 (b)). Then A(p1pm-191) > A(P1Pm—1Pm), and hence P* =
P1P2 - Pm—1q1 1S a convex polygon with m sides such that P* is internally
disjoint to @ and A(P*) > A(P). Proceeding the same way for Q* we obtain P’
and Q' with the desired properties.

O

Proposition 3. Let P = p1papspaps be a convexr pentagon with A(P) =1 and
let a = 5*15/5. Then there exist indices i and j such that A(p;—1pipit1) < a <

A(pj—1p;jpj+1) (indices are taken modulo 5).
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Fig. 2. Fig. 3.

Proof. We first show that there exists an index i such that A(p;—1pipi+1) <
a. By way of contradiction, suppose that A(p;—1pipi+1) > « for any i with
1 < i < 5. Then A(pipaps) > «a, A(pip2ps) > a and A(pipaps) < 1 — 2a.
Let ¢ be the intersection point of pips and psps (Fig. 3). Since A(pi1p2q) >
min{ A(p1p2p3), A(p1p2ps)} > a, ppl1pq4 = % > %—. Therefore A(pspaps) =
(1 = A(p1paps)) x 2= < (1—a) X 1=5¢_On the other hand, we have A(pspaps) >
a by assumption. Consequently, a < W, and hence we must have 5o —

5a+1 > 0. This contradicts a = 5_16/5 . Similarly we can verify that there exists
an index j such that A(p;—1p;pj+1) > o

We conclude this section with two more propositions shown in [12]. Proposi-
tion 4 is obtained by using the Ham Sandwich Theorem (see, for example, [9, 14])
and a small adjustment, and Proposition 5 is obtained by using an extension of
the Ham Sandwich Theorem shown in [1,5,11]:

Proposition 4. Let n be an integer with n > 3 and let K be a convex polygon
with at most n sides. Then s(K,2, | %] +2) =1.

Proposition 5. Let n be an integer with n > 3 and let K be a convex polygon
with at most n sides. Then s(K,3,[5] +4) = 1.

Remark 2. Combining Propositions 4 and 5, we obtain several results. For exam-
ple, for a convex polygon K with at most k = 2!+3 sides, we have s(K; 1,2!4+3) =
s(K;2,2070 4+ 3) = s(K;22,2072 4 3) = ... = s(K;2L4) = s(K;2M4) =
s(K;272.4) = ... =1 (and s(K;271,3) > 8 by the equality s(K;2,4) =1
and Theorem 2 to be shown in Section 3); for a polygon K with at most k = 3!+~
sides, r € {6, 7}, we have s(K;1,3' +7) = s(K;3,3' "1 +7) = s(K;32, 3172 4+7r) =
o= s(K;3L 14 r) = s(K; 371, 7) = s(K;3%2,7) = - .. = 1; for a polygon with
at most 30 sides, s(K;3,14) = s(K;6,9) = s(K;12,6) = 1; and so on.

3 Equal Area Polygons in a Convex Polygon

Theorem 1. Let K be a convex body in E* and let w be a non-zero vector in
E?. Then there exist internally disjoint equal area triangles Ty and Ty in K such
that Ty N Ty is a segment parallel to w and A(Ty) + A(Tz) > LA(K).



Proof. Let 11 and [y be distinct straight lines, each of which is parallel to u
and tangent to K (Fig. 4). Let a be a contact point of I; and K and let b be
a contact point of Iy and K. Let m be the midpoint of the segment ab, and
let ¢ and d be intersection points of the perimeter of K and the straight line
passing through m and parallel to u. Let e and g be the intersection points of
the straight line tangent to K at ¢ and straight lines I; and lo, respectively, and
let f and h be the intersection points of the straight line tangent to K at d and
straight lines [y and lo, respectively. Let I3, l4 be straight lines perpendicular to
u and passing through ¢, d, respectively, and label the vertices of the rectangle
surrounded by I, 12,13 and l4, as shown in Fig. 4. Then for triangles 77 = acd
and Ty = bed, Ty N'T» is a segment parallel to uw, A(Ty) = A(T:), and it follows
from the convexity of K that

ATY) + A(Ty) = SAWC W) = 5 Aleghf) > SA(K),

as desired. O
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Fig. 4. Fig. 5.

Theorem 2. Let K be a convex quadrilateral. Then the following hold:

(i) t2(K) > 3 with equality if and only if K is affinely congruent to the
quadrilateral Q* shown in Fig. 5 (a); and

(i) t,(K) > 4;1% for any integer n > 2.

Proof. (i) Let K = p1papsps. We may assume

A(p1p2pa) > A(pipaps) and A(p1p2ps) > A(p1pspa)- (1)

By considering a suitable affine transformation f, we may assume further that
f(pl) = O(Oa 0)7 f(pQ) = a(la 0)7 f(p4) = C(O7 1) (Flg 6 (a‘)) Write f(p3) = b7 let
e = (1,1) and let m be the midpoint of ac. By (1) and the convexity of K, b € ace.
By symmetry, we may assume that b € ame. Let d be the intersection point of



the straight lines Om and be. Then d is on the side be and A(Oad) = A(Ocd).
We show that A(Oad) + A(Ocd) > 3 A(K). For this purpose, we let b’ be the
intersection point of the straight lines bc and = = 1 (Fig.6 (b)), and we show
that 2A(Oad) > 3 A(Oab'c).
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Fig. 6.

Write b = (1,y). We have 0 < y < 1, A(Oab'c) = ”TH Furthermore, since
d= ( L1 ) 2A(Oad) = 5. Hence,

22—y’ 2—y

2A(Oad) 2

A~ B+ D (g4l
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as desired.

Next we show that for a convex quadrilateral K, to(K) = % holds if and only

if K is affinely congruent to Q*. If t2(K) = %, then, in the argument above,
we must have b = b' and y = 5. Hence t3(K) = £ implies that K is affinely
congruent to the quadrilateral shown in Fig. 5 (b), and hence to Q*. Now we show
that for a convex quadrilateral K affinely congruent to @* and for any choice of
two internally disjoint equal area triangles 77 and 75 in K, % < %. It
suffices to show this for the case where K = Q*, whose vertices are labeled as
shown in Fig.5 (a). Let 77 and T3 be internally disjoint equal area triangles in
K, and let [ be a straight line such that each of the half-planes H; and Hy with
Hy, N Hy; =1 contains one of T1 or T5. Let p and ¢ be the intersection points of [

and the perimeter of K. Four cases arise:

a) {p, ¢} € abUbc or {p, ¢} € abU da;
b) {p, ¢} € abU cd;
¢) {p, q} €becUcd or {p, q} € cdU da;
d) {p, ¢} € beU da.



First consider case (b). We may assume p € ab, q € c¢d and Ty C apgd. Write
S = A(apq) = A(apd) and S’ = A(agqd) = A(pqd). By Proposition 1, A(Ty) < S
or A(Th) < S'. If A(Ty) < S, then we can retake T} in apd, and this case is
reduced to Case (a). If A(Ty) < S, then we can retake T in agd, and this case
is reduced to Case (c). Next consider Case (c). By symmetry, we consider only
the case when {p, ¢} € bcU cd. We may assume p € be,q € c¢d and T1 C ¢pg.
Then A(Ty) < A(bed) < 2 A(K). Hence A(Ty) + A(Tz) < 2A(K) < $A(K) in
this case. Next consider Case (d). We may assume p € be, ¢ € da and Ty C abpg.
By symmetry, we may assume further that bp > aq. Then since A(Ty) < A(abp),
we can retake T in abp, and hence this case is reduced to Case (a).

Finally, we consider Case (a). By symmetry, we consider only the case where
{p, q} € abU bec. Furthermore, by considering a suitable affine transformation,
we may assume that K = abed is the trapezoid shown in Fig. 5( ) with be =1,
p € ab,q € bc and Ty C bpg. We show that A(Tl) + A(Ty) < BA(K)
For this purpose, we suppose that A(T}) > % and show that A(Tg) < 2. In
view of Proposition 1, it suffices to show that any triangle whose Vertlces are
in {a,p,q,c,d} has area at most 2 Let T = bp and let y = bq. Since %
A(Th) < A(bpq) by assumption, > 3 and y > 2. Hence A(cdg) < A(cdp)
A(qdp) < A(qda) = A(abed) — (A(abq) —|—A(cdq)) =1-4<
A(apq) < A(a;DC) A(apd) = 352 < g and A(cpg) < A(caq) =
we have A(Ty) < £, as deswed
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(ii) Let K = p1papsps. We may assume that A(K) = 1 and A(p1paps) > % We
show (ii) by induction on n. Suppose that ¢, (K) > 44+1 for some n > 2. Take

point ¢ on pops such that A(p1p2q) = m (< %) By induction, there exist

n internally disjoint triangles T4, - -+, T}, in p1gpsps such that A(Ty) = --- =
4(n+1

A(T,) = 47::-1 X A(prpspa) = 4(n+41)+1 = A(p1p2q)- Thus tn11(K) > 4(75+T)4)r1=

as desired. a

Theorem 3. Let K be a convex pentagon. Then the following hold:

(i) ta(K) > 3;
(i) t3(K) > % nd
>

(iii) tn(K)

Proof. Let K = p1papspaps. We may assume that

A(p1paps) > A(pipit1pive) for 1 <i<A4, (2)

where pg = p1.
(i) By considering a suitable affine transformation f, we may assume that

f(pl) = O(O O) f( ) = a(l,O),f(p5) = d(071) Write f(p3) = b(xlvyl)a

f(pa) = c(x2,y2) (Fig.7). We have
2A(Oad) =1, 2A(Oab) = y1, 2A(Ocd) = x2, (3)
2A

abe) = [ab x | = (z1y2 — y122) + (11 — 1) and} n

(
2A(bed) = \? X dc| (r1y2 — y122) + (22 — 21).
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Since A(Oab) < A(Oad) and A(Ocd) < A(Oad) by (2), it follows from (3) that
0<y1 <1 and 0<uzp <1. (5)

Furthermore, if there exists a triangle T € {Oab, abe, bed, Ocd} having area at
most iA(K ), then applying Theorem 2 to the quadrilateral K — T', we obtain

ta(K) > % . % = %, as desired. Therefore we may, in particular, assume that
A(Oab) + A(Ocd) > FA(K) and (6)
A(abe) + A(bed) > FA(K). (7)

Since (6) implies A(Obc) < 2 A(K), it follows from (7) that 2[A(abc) + A(bed)] >
2A(0Obe) = |(‘)% X (7>c| = x1y2 — Y172, and hence

(z1y2 — y122) + (22 —21) + (11 —y2) > 0 (8)
by (4). Let m be the midpoint of ad and let e(z3, z3) be the intersection point
of the straight lines Om and bc. Then x3 = —Z¥2—91L2_ 554 hence

r1—T2+Y2—Y1
z3 > 1 (9)

by (8). Thus e is on the side be, and Oae and Ode are equal area triangles
in K. We show A(Oae) + A(Ode) > 2A(K). Write A(Oad) = Si, A(ead) =
Sy. Then Sy = §+S1 > S1 by (9). Furthermore, since A(abe) + A(cde) <

max{A(abc), A(bed)}, it follows from (2) that (Sz >)S1 > A(abe) + A(cde).

A(abe)+A( A(Oae)+A(Ode)

Consequently, A cde) o %, and hence A > 2, as desired.

(ii) Let P be the set of convex pentagons, and let 7 = inf pep t2(P). We first

show that TTﬁ < 5_1(‘)/5. Let P = rirersrars be a regular pentagon. In view

of Propositions 2 and 1 it follows that 7 < t3(P) < Alrirarara) 5+1(‘J/5. Thus

A(P)
T 1__2 545 _ 5=V5
=l S s <o




Now consider any convex pentagon K = pipsapspaps of area 1. In view of
Proposition 3, we may assume A(plpgpg) > 5_15/5 Then we can take point
q on pop3 such that A(pip2q) = r+2 By induction, the pentagon piqpspaps
contains internally disjoint triangles 77 and T, such that A(Ty) = A(Tg) =
T X A(p1gpspaps) = 75 = A(pip2q)- Thus t3(K) > 25, Since 7 > 2 by (i),

ts(K) >3 (1 - —) > 3 as desired.

T+2

(iii) We may assume that A(K) =1 and A(p1p2ps) > 5*15/5 (recall Proposition
3). The proof is by induction on n. We first show that t4(K) > 5. By Propo-
sition 4, we can divide K into two convex polygons ()1 and ()2 each with at
most four sides and A(Q1) = A(Q2) = 3. Hence by Theorem 2, we can take
internally disjoint triangles T,,T5 C Q1 and T3,T4 C @2 such that A(Tl) =

=ATy)=5x3 . Thus t4(K) > §. Next suppose that ¢, (K) > for

some n > 4. Take pomt q on paps such that A(p1p2q) = 2(n+1)+1 (< \/_) By

2n+1

our induction hypothesis, the pentagon p;gpsp4ps contains n internally disjoint

triangles Ty, - -+, T,, such that A(Ty) = --- = A(T,) = Qfﬁ x A(p1gp3paps) =
W = A(p1p2q). Consequently, t,,11(K) > %, as desired. a

For a positive integer n and a regular hexagon K, we have by Theorem D
that t, (K) = 1. We show here that:

Theorem 4. Let n > 2 be an integer and let K be a convex polygon with at

most siz sides. Then t3n(K) > 5.

Proof. We may assume that A(K) = 6. We first show that K can be divided
into two polygons K7 and K5 such that K7 has at most four sides, A(K7) = 2,
K5 has at most five sides and A(K3) = 4. Let K = pip2---ps. In the case
where K has k < 6 sides, take 6 — k points on one of its edges, and think of
them as 6 — k artificial vertices of K which can now be considered as a convex
hexagon. Write T1 = pipaps, To = p3paps, T3 = pspep1- We may assume that
A(T1) < 2. First consider the case where A(T3) < 2. In this case, we may
assume further that A(pi1papsps) > 3 by symmetry. Then there exists a point
q € psps such that A(pi1papsq) = 2 and A(p1gpapsps) = 4, as desired. Thus
consider the case where A(T3) > 2. Since A(Ty) < 2 and A(p1p2pspsps) >
A(T3) > 2, either there exists a point g € pgp1 such that A(pipapsq) = 2, or
there exists a point ¢ € pspg such that A(p1papsgps) = 2. In the former case,
K1 = pipapsq and Ko = p3papspsq have the desired properties. In the latter
case, since A(p1p2qps) < A(p1p2psqpe) = 2 and A(p1papsps) > A(T5) > 2, there
exists a point r € gps such that A(p1parps) = 2 and A(papspapsr) = 4, as
desired.

Now since ¢, (K7) > 4n+1 by Theorem 2 (ii) and ta, (K3) > 4n+1 by Theorem

3 (iii), we obtain tz, (K) > 4;111, as desired. O
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4 Equal Area Polygons in a Convex Body
Let K be a convex body in E?. Combining Theorem B and Proposition 4, we
obtain several results. For example, for any integer n > 3,

2n—3
27

<s(K;1,2n —3) < s(K;2,n). (10)

Similarly, for m = 2,1 = 0,1,2,---, we have s(K;m,4) > s(K; B,5) > >
s(K;1,m+3) > m+3 sin 7313, and hence
s(K;2m,3) > Ss(Kym, 4) > 22t gin 21 (11)
by Theorem 2. On the other hand, it follows from Proposition 2 that
s(K;2,n) < s(K;1,2n—2). (12)
We henceforth focus on s(K;2,n). By (10) and (12),
s(K;1,2n—3) < s(K;2,n) < s(K;1,2n — 2) for n > 3, (13)
and by (11) and (12),
8s(K;1,4) < 5(K;2,3) < s(K;1,4). (14)

We believe that the following is true:

Congjecture 1. Let K be a convex body in E?. Then s(K;2,n) > "7_1 sin "
with equality if and only if K is an ellipse.

Remark 3. We can verify that the equality of this conjecture holds if K is an
ellipse in the following way: Let E be an ellipse. Since a circular disk D contains
a regular 2(n — 1)-gon R with A(R) = “=Lsin -Z- A(D), E contains a centrally

symmetric 2(n — 1)-gon P with A(P) = —1 sin 27 A(E), which can be divided

. . C -1 .
into two internally disjoint equal area n-gons. Thus s(E;2,n) > “— sin —I.

Furthermore, we have s(F;2,n) < s(E;1,2n — 2) 2-lgin - by (12) and

n—1 1

Theorem B. Consequently, s(E;2,n) = sin " holds for any ellipse E.

In this section, we settle Conjecture 1 affirmatively for some special cases.

Theorem 5. Let K be a centrally symmetric convez body in E*. Then s(K;2,n) >

77’__1 Sin L.
il n—1

To prove Theorem 5, it suffices to show the following;:

Let K be a centrally symmetric convex body in E2. Then there exists

a polygon P C K with ((P)) >n== 1 sin " such that P has at most (15)

2n — 2 sides and P is centrally symmetrlc with respect to the center
of K.
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Observe that P can then be divided into two internally disjoint equal area poly-
gons with at most n sides. We show (15) in a generalized form stated in the
following Theorem 6.

Let n be a positive integer. For a subset S of E™ having a finite volume, let
V(S) denote the volume of S. For a centrally symmetric convex body K in E",
denote by Q,,(K) the set of polytopes P contained in K such that P is centrally
symmetric with respect to the center of K and P has at most 2m vertices. Let

<

m su (P)
o(Kim) = Pean)(K) V(K)

Theorem 6. Let m and n be integers with m > n > 2. Let K be a cen-
trally symmetric convex body in E™ and let S be a hyper-sphere in E™. Then
o(K;m) > o(S;m).

Proof. Our proof is a modification of the proof of the n-dimensional theorem of
Theorem B by Macbeath [8], where Steiner symmetrization is applied. We give
only a sketch of our proof.

We may assume that K is centrally symmetric with respect to the origin
O of E". Let 7 be a hyper-plane in E" containing the origin O. Denote each
point a in E™ by (z,t), where x = z(a) is the foot of the perpendicular from
a to m and t = t(a) is the oriented perpendicular distance from z to a. For a
convex body B, let B’ be the projection of B on 7. For z € B’, define the two
functions B*(z) and B~ (z) by B¥(z) = sup tand B™(x) = inf ¢. Then

(z,t)eB (z,t)EB
B={(z,t)|z € B, B (z) <t<Bf(z)}.

Let K* = {(z,t)|z € K', |t| < 3(K"(z) — K~ (2))}. Then K* is sym-
metric with respect to 7, centrally symmetric with respect to O, and V(K*) =
Sy (Kt (2) = K~ (2))dz = V(K). By the central symmetry of K with respect
to O,

—z€K', Kt (—2)=—-K (z) and K~ (—z) = —K*(z) for any z € K’. (16)
Lemma 1. o(K*;m) < o(K;m)

Proof. Let P be a polytope in Q,,(K™*).
tope Py € Qn(K) such that V(Fp)
of vertices of P and let (z;, t;),1

It suffices to show that there is a poly-
V(P). Let 2k (< 2m) be the number
< 2k, be the vertices of P. We label
the indices so that for each 1 < 3 , (zi, ;) and (@g4q, thys) are symmet-
ric with respect to O (so (Xg4i, tkti) = (—xi, —t;)). Let Q be the convex hull
of the points (x4, t; + &(K T (z;) + K (), 1 <4 < 2k, and let R be the
convex hull of the points (z;, —t; + (KT (x;) + K~ (;))), 1 < i < 2k. Since
|ti| < (K" (2;)— K~ (2;)), each vertex of @ and R is contained in K, and hence
Q, R Q K. Also, since for each 1 < i <k,

x> =V

<
<

(—2;)) =0 and

(i + ryi) = 3 (2 +
+ K (x;)) + trti + %(K*(Ikﬂ)—l—[(’(xkﬂ))}

1
2 2
3 [t + 3 (K (i) +
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ti+ 5 (K () + K~ (4)) + (=t:) + 5 (K (—2) + K~ (=2))]
= 3 3K (2) + K~ (=m:)) + (KT (—2) + K~ ()]

by (16), @ is centrally symmetric with respect to O. Similarly, we see that R is
centrally symmetric with respect to O. Furthermore, since

Q (zi) < ti+ (KT (z)+K (z;)) < QF(x;) and
R™(2;) < —ti + (K (2i) + K (25)) < R (),

we have that $(Q~ ( i) — R (2;)) < t; < $(Q"(x;) — R™(w;)), and hence each
point (z;, t;), 1 <14 < 2k, lies in the convex set

T={(z,t)|z e P, (Q (z) - R"(2)) <t < 5(Q"(x) - R (x)) }.
Since P is the convex hull of the points (x;, ¢;), 1 <1 < 2k,

V(P) < V(T) =3 [p(QF(x) = Q (2) + R* () = R (x)) dx
=3(V(Q)+ V(R))-

Thus at least one of V(Q) > V(P) or V(R) > V(P) holds. Consequently, @ or
R is a polytope with desired properties. O

Now we return to the proof of Theorem 6. The rest of our argument follows
exactly as the proof in [8]: we can verify that o(K;m) is a continuous function
of K. Let 71, ma, -+, m, be n hyper-planes such that for each pair i # j 7; and
m; form an angle which is an irrational multiple of 7. Consider the sequence of
bodies K = Ky, Ko,---,K,,---, where K, 1 arises from K; by symmetrizing it
with respect to 7, where v is the least positive residue of ¢ (mod n). This sequence
converges to a hyper-sphere S (see [3]), and hence o(K;m) > o(S;m). O

Let K be a convex body in E? and let [ denote the perimeter of K. Then
The Isoperimetric Inequality: 1> > 4rA(K) (17)

with equality if and only if K is a circular disk; and, if K is a figure with constant
width w, we also have
Barbier’s Theorem: | = mw (18)

(see, for example, [4]). Finally we show that Conjecture 1 is true for n = 3 when
K is a figure with constant width:

Theorem 7. Let K be a figure with constant width in E*. Then ty(K) >
with equality if and only if K is a circular disk.

AL

Proof. Let w and | denote the width and perimeter of K, respectively. For each
6 € [0,27), let ug denote the vector (cosé,sinf), let a = ag and b = by denote
the contact points of K and each of two straight lines parallel to ug, and let
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m = my denote the midpoint of the segment ab (Fig.8(a)). Let ¢ = c¢¢ and
d = dg be the intersection points of the perimeter of K and the straight line
passing through m and parallel to up. Then we have A(acd) = A(bed). Take

—
¢’ on the line tangent to the perimeter of K at ¢ such that det [cc’ ug] > 0,

where c—c> ug| stands for a matrix having c_c> and ug as their column vectors.

We further take d’ on the tangent line of the perimeter of K at d such that
—

det [dd’ U9:| < 0. Write a3 = a1(0) = Zmec and ag = az(0) = /mdd’.

Fig. 8.

Since a1 (0 + 7) — az(f + 1) = —(a1(0) — a2(0)) (Fig.8(a),(b)), it follows
from the Intermediate Value Theorem that there exists 6 € [0,7] such that
a1(0) — az(0) =0 1i.e. e || dd'. For this 6, we have c¢d > w, and hence

A(acd) + A(bed) = 2ed-w > fw? =1 (%)2 > 2. A(K)
by (17) and (18). Furthermore, if t3(K) = % holds, then we must have
A A(K), i.e., K is a circular disk; and for a circular disk K, we have t2(K) =
(recall Remark 3).

mISEN
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