# Equal Area Polygons in Convex Bodies 

Toshinori Sakai ${ }^{1}$, Chie Nara ${ }^{1}$, and Jorge Urrutia ${ }^{2 \star}$<br>${ }^{1}$ Research Institute of Educational Development, Tokai University, 2-28-4 Tomigaya, Shibuya-ku, Tokyo 151-8677, Japan \{tsakai, cnara\}@ried.tokai.ac.jp<br>${ }^{2}$ Instituto de Matemáticas, Ciudad Universitaria, Universidad Nacional Autónoma de México, México D.F., México<br>urrutia@matem.unam.mx


#### Abstract

In this paper, we consider the problem of packing two or more equal area polygons with disjoint interiors into a convex body $K$ in $\boldsymbol{E}^{2}$ such that each of them has at most a given number of sides. We show that for a convex quadrilateral $K$ of area 1 , there exist $n$ internally disjoint triangles of equal area such that the sum of their areas is at least $\frac{4 n}{4 n+1}$. We also prove results for other types of convex polygons $K$. Furthermore we show that in any centrally symmetric convex body $K$ of area 1 , we can place two internally disjoint $n$-gons of equal area such that the sum of their areas is at least $\frac{n-1}{\pi} \sin \frac{\pi}{n-1}$. We conjecture that this result is true for any convex bodies.


## 1 Introduction

For a subset $S$ of $\boldsymbol{E}^{2}$ having a finite area, let $A(S)$ denote the area of $S$. A compact convex set with nonempty interior is called a convex body.

In [2], W. Blaschke showed the following theorem:
Theorem A. Let $K$ be a convex body in $\boldsymbol{E}^{2}$, and let $T$ be a triangle with maximum area among all triangles contained in $K$. Then $\frac{A(T)}{A(K)} \geq \frac{3 \sqrt{3}}{4 \pi}$ with equality if and only if $K$ is an ellipse.
E. Sás [13] generalized Blaschke's result as follows:

Theorem B. Let $K$ be a convex body in $\boldsymbol{E}^{2}$, and let $P$ be a polygon with maximum area among all polygons contained in $K$ and having at most $n$ sides. Then $\frac{A(P)}{A(K)} \geq \frac{n}{2 \pi} \sin \frac{2 \pi}{n}$ with equality if and only if $K$ is an ellipse.

For subsets $A_{1}, \cdots, A_{m}$ of $\boldsymbol{E}^{2}$, we say that the $A_{i}$ are internally disjoint if the interiors of any two $A_{i}$ and $A_{j}$ with $1 \leq i<j \leq m$ are mutually disjoint. In this paper, we consider the problem of packing two or more equal area internally

[^0]disjoint polygons in a convex body in $\boldsymbol{E}^{2}$ such that each of them has at most a given number of sides, and the sum of their areas is maximized.

Let $K$ be a convex body in $\boldsymbol{E}^{2}$ and let $\mathcal{P}_{m, n}(K)$ denote a family of $m$ internally disjoint equal area convex polygons $P_{1}, \cdots, P_{m} \subset K$ such that each $P_{i}, 1 \leq i \leq m$, has at most $n$ sides, and define

$$
s(K ; m, n)=\sup _{\left\{P_{1}, \cdots, P_{m}\right\} \in \mathcal{P}_{m, n}(K)} \frac{A\left(P_{1}\right)+\cdots+A\left(P_{m}\right)}{A(K)} .
$$

We simply write $t_{m}(K)$ for $s(K ; m, 3)$. Clearly $t_{m}(T)=1$ for any triangle $T$ and positive integer $m$, and hence $s(T ; m, n)=1$ for any triangle $T$ and integers $m \geq 1$ and $n \geq 3$. In general, for any integers $k, m, n$ with $n \geq k \geq 3, m \geq 1$ and for any convex polygon $K$ with at most $k$ sides, $s(K ; m, n)=1$ (Fig. 1).


Fig. 1.

Monsky [10] showed that a rectangle can be dissected into $m$ equal area triangles if and only if $m$ is even. Thus

Theorem C. Let $m$ be a positive integer and let $R$ be a rectangle. Then $t_{m}(R)=$ 1 for any even integer $m$ and $t_{m}(R)<1$ for any odd integer $m$.

Furthermore, Kasimatis showed that a regular $k$-gon, $k \geq 5$, can be dissected into $m$ equal area triangles if and only if $m$ is a multiple of $k$ [6]; and Kasimatis and Stein showed that almost all polygons cannot be dissected into equal area triangles [7]:

Theorem D. Let $k$ be an integer with $k \geq 5$ and let $K$ be a regular $k$-gon. Then $t_{m}(K)=1$ for any positive integer $m \equiv 0(\bmod k)$ and $t_{m}(K)<1$ for any positive integer $m \not \equiv 0(\bmod k)$.

Theorem E. For almost all polygons $K$ and for any integer $m \geq 1, t_{m}(K)<1$.

## 2 Preliminary Results

We now show some propositions that will be needed to prove our results. For a subset $S$ of $\boldsymbol{E}^{n}$, we denote the convex hull of $S$ by $\operatorname{conv}(S)$.

Proposition 1. Let $n$ be an integer with $n \geq 3, P$ a convex polygon with at least $n$ sides, and let $\alpha$ denote the value of the maximum area of a convex polygon contained in $P$ with at most $n$ sides. Then there exists an $n$-gon of area $\alpha$ each of whose vertices is a vertex of $P$.
Proof. Let $P=p_{1} p_{2} \cdots p_{k}, k \geq n$. Take a convex polygon $Q \subseteq P$ with at most $n$ sides such that $A(Q)=\alpha$ and the number of common vertices of $P$ and $Q$ is maximized. By way of contradiction, suppose that there is a vertex $a$ of $Q$ such that $a \notin\left\{p_{1}, \cdots, p_{k}\right\}$. By the maximality of $A(Q), a$ is on the boundary of $P$, and hence $a$ is an interior point of a side of $P$. We may assume $a \in p_{1} p_{2}-\left\{p_{1}, p_{2}\right\}$. Let $b$ and $c$ be distinct vertices of $Q$ adjacent to $a$. Then $A(a b c) \leq \max \left\{A\left(p_{1} b c\right), A\left(p_{2} b c\right)\right\}$. We may assume $A(a b c) \leq A\left(p_{1} b c\right)$. Let $Q^{\prime}=$ $\operatorname{conv}\left((Q-a b c) \cup p_{1} b c\right)$. Then $Q^{\prime} \subseteq P, Q^{\prime}$ has at most $n$ sides, $\alpha=A(Q) \leq A\left(Q^{\prime}\right)$ (so $\alpha=A\left(Q^{\prime}\right)$ by the maximality of $\alpha$ ), and the number of common vertices of $Q^{\prime}$ and $P$ is strictly greater than that of $Q$ and $P$, a contradiction. Thus any vertex of $Q$ is a vertex of $P$, and it follows from the maximality of $\alpha$ that $Q$ has $n$ sides.

Proposition 2. Let $K$ be a convex body in $\boldsymbol{E}^{2}$ and let $m$ and $n$ be integers with $m \geq 3$ and $n \geq 3$. Suppose that $K$ contains internally disjoint polygons $P=p_{1} \cdots p_{m}$ and $Q=q_{1} \cdots q_{n}$. Then $K$ contains internally disjoint polygons $P^{\prime}$ and $Q^{\prime}$ such that $\operatorname{conv}\left(P^{\prime} \cup Q^{\prime}\right)$ has at most $m+n-2$ sides, $P^{\prime}$ has at most $m$ sides, $Q^{\prime}$ has at most $n$ sides, and $A\left(P^{\prime}\right) \geq A(P)$, and $A\left(Q^{\prime}\right) \geq A(Q)$.

Remark 1. A simple proof for the case where $m=n=3$ is shown in [12].
Proof. Let $S=\operatorname{conv}(P \cup Q)$. If $S$ has at most $m+n-2$ sides, then we have only to let $P^{\prime}=P$ and $Q^{\prime}=Q$. Thus assume that $S$ has $m+n$ sides or $m+n-1$ sides.

Case 1. $S$ has $m+n$ sides:
We may assume that $S=p_{1} p_{2} \cdots p_{m} q_{1} q_{2} \cdots q_{n}$ and that the straight line $l$ passing through $p_{1}$ and parallel to $p_{2} q_{n-1}$ satisfies the condition that $(l \cap$ $\left.p_{1} p_{2} q_{n-1} q_{n}\right)-\left\{p_{1}\right\} \neq \emptyset$ (Fig. 2 (a)). Let $r$ be the intersection point of $p_{1} p_{m}$ and $p_{2} q_{n-1}$. Then $A\left(q_{n} p_{2} r\right) \geq A\left(p_{1} p_{2} r\right)$, and hence $P^{*}=q_{n} p_{2} p_{3} \cdots p_{m}$ is a convex polygon with $m$ sides such that $P^{*}$ is internally disjoint to $Q$ and $A\left(P^{*}\right) \geq A(P)$. Using the same arguments for $Q^{*}$ and $Q$, we obtain $P^{\prime}$ and $Q^{\prime}$ with the desired properties.

Case 2. $S$ has $m+n-1$ sides:
We may assume that $S=p_{1} p_{2} \cdots p_{m-1} q_{1} q_{2} \cdots q_{n}$ and that $A\left(p_{1} p_{m-1} q_{1}\right) \geq$ $A\left(p_{1} p_{m-1} q_{n}\right)$ (Fig. $2(\mathrm{~b})$ ). Then $A\left(p_{1} p_{m-1} q_{1}\right) \geq A\left(p_{1} p_{m-1} p_{m}\right)$, and hence $P^{*}=$ $p_{1} p_{2} \cdots p_{m-1} q_{1}$ is a convex polygon with $m$ sides such that $P^{*}$ is internally disjoint to $Q$ and $A\left(P^{*}\right) \geq A(P)$. Proceeding the same way for $Q^{*}$ we obtain $P^{\prime}$ and $Q^{\prime}$ with the desired properties.

Proposition 3. Let $P=p_{1} p_{2} p_{3} p_{4} p_{5}$ be a convex pentagon with $A(P)=1$ and let $\alpha=\frac{5-\sqrt{5}}{10}$. Then there exist indices $i$ and $j$ such that $A\left(p_{i-1} p_{i} p_{i+1}\right) \leq \alpha \leq$ $A\left(p_{j-1} p_{j} p_{j+1}\right)$ (indices are taken modulo 5).


Proof. We first show that there exists an index $i$ such that $A\left(p_{i-1} p_{i} p_{i+1}\right) \leq$ $\alpha$. By way of contradiction, suppose that $A\left(p_{i-1} p_{i} p_{i+1}\right)>\alpha$ for any $i$ with $1 \leq i \leq 5$. Then $A\left(p_{1} p_{2} p_{3}\right)>\alpha, A\left(p_{1} p_{2} p_{5}\right)>\alpha$ and $A\left(p_{1} p_{2} p_{4}\right)<1-2 \alpha$. Let $q$ be the intersection point of $p_{1} p_{4}$ and $p_{3} p_{5}$ (Fig. 3). Since $A\left(p_{1} p_{2} q\right) \geq$ $\min \left\{A\left(p_{1} p_{2} p_{3}\right), A\left(p_{1} p_{2} p_{5}\right)\right\}>\alpha, \frac{p_{1} q}{p_{1} p_{4}}=\frac{A\left(p_{1} p_{2} q\right)}{A\left(p_{1} p_{2} p_{4}\right)}>\frac{\alpha}{1-2 \alpha}$. Therefore $A\left(p_{3} p_{4} p_{5}\right)=$ $\left(1-A\left(p_{1} p_{2} p_{3}\right)\right) \times \frac{q p_{4}}{p_{1} p_{4}}<(1-\alpha) \times \frac{1-3 \alpha}{1-2 \alpha}$. On the other hand, we have $A\left(p_{3} p_{4} p_{5}\right)>$ $\alpha$ by assumption. Consequently, $\alpha<\frac{(1-\alpha)(1-3 \alpha)}{1-2 \alpha}$, and hence we must have $5 \alpha^{2}-$ $5 \alpha+1>0$. This contradicts $\alpha=\frac{5-\sqrt{5}}{10}$. Similarly we can verify that there exists an index $j$ such that $A\left(p_{j-1} p_{j} p_{j+1}\right) \geq \alpha$.

We conclude this section with two more propositions shown in [12]. Proposition 4 is obtained by using the Ham Sandwich Theorem (see, for example, [9, 14]) and a small adjustment, and Proposition 5 is obtained by using an extension of the Ham Sandwich Theorem shown in [1, 5, 11]:

Proposition 4. Let $n$ be an integer with $n \geq 3$ and let $K$ be a convex polygon with at most $n$ sides. Then $s\left(K, 2,\left\lfloor\frac{n}{2}\right\rfloor+2\right)=1$.

Proposition 5. Let $n$ be an integer with $n \geq 3$ and let $K$ be a convex polygon with at most $n$ sides. Then $s\left(K, 3,\left\lceil\frac{n}{3}\right\rceil+4\right)=1$.
Remark 2. Combining Propositions 4 and 5 , we obtain several results. For example, for a convex polygon $K$ with at most $k=2^{l}+3$ sides, we have $s\left(K ; 1,2^{l}+3\right)=$ $s\left(K ; 2,2^{l-1}+3\right)=s\left(K ; 2^{2}, 2^{l-2}+3\right)=\cdots=s\left(K ; 2^{l}, 4\right)=s\left(K ; 2^{l+1}, 4\right)=$ $s\left(K ; 2^{l+2}, 4\right)=\cdots=1$ (and $s\left(K ; 2^{l+1}, 3\right) \geq \frac{8}{9}$ by the equality $s\left(K ; 2^{l}, 4\right)=1$ and Theorem 2 to be shown in Section 3); for a polygon $K$ with at most $k=3^{l}+r$ sides, $r \in\{6,7\}$, we have $s\left(K ; 1,3^{l}+r\right)=s\left(K ; 3,3^{l-1}+r\right)=s\left(K ; 3^{2}, 3^{l-2}+r\right)=$ $\cdots=s\left(K ; 3^{l}, 1+r\right)=s\left(K ; 3^{l+1}, 7\right)=s\left(K ; 3^{l+2}, 7\right)=\cdots=1$; for a polygon with at most 30 sides, $s(K ; 3,14)=s(K ; 6,9)=s(K ; 12,6)=1$; and so on.

## 3 Equal Area Polygons in a Convex Polygon

Theorem 1. Let $K$ be a convex body in $\boldsymbol{E}^{2}$ and let $\boldsymbol{u}$ be a non-zero vector in $\boldsymbol{E}^{2}$. Then there exist internally disjoint equal area triangles $T_{1}$ and $T_{2}$ in $K$ such that $T_{1} \cap T_{2}$ is a segment parallel to $\boldsymbol{u}$ and $A\left(T_{1}\right)+A\left(T_{2}\right) \geq \frac{1}{2} A(K)$.

Proof. Let $l_{1}$ and $l_{2}$ be distinct straight lines, each of which is parallel to $\boldsymbol{u}$ and tangent to $K$ (Fig. 4). Let $a$ be a contact point of $l_{1}$ and $K$ and let $b$ be a contact point of $l_{2}$ and $K$. Let $m$ be the midpoint of the segment $a b$, and let $c$ and $d$ be intersection points of the perimeter of $K$ and the straight line passing through $m$ and parallel to $\boldsymbol{u}$. Let $e$ and $g$ be the intersection points of the straight line tangent to $K$ at $c$ and straight lines $l_{1}$ and $l_{2}$, respectively, and let $f$ and $h$ be the intersection points of the straight line tangent to $K$ at $d$ and straight lines $l_{1}$ and $l_{2}$, respectively. Let $l_{3}, l_{4}$ be straight lines perpendicular to $\boldsymbol{u}$ and passing through $c, d$, respectively, and label the vertices of the rectangle surrounded by $l_{1}, l_{2}, l_{3}$ and $l_{4}$, as shown in Fig. 4. Then for triangles $T_{1}=a c d$ and $T_{2}=b c d, T_{1} \cap T_{2}$ is a segment parallel to $\boldsymbol{u}, A\left(T_{1}\right)=A\left(T_{2}\right)$, and it follows from the convexity of $K$ that

$$
A\left(T_{1}\right)+A\left(T_{2}\right)=\frac{1}{2} A\left(e^{\prime} g^{\prime} h^{\prime} f^{\prime}\right)=\frac{1}{2} A(e g h f) \geq \frac{1}{2} A(K)
$$

as desired.


Fig. 4.

(a)

(c)
(b)


Fig. 5.

Theorem 2. Let $K$ be a convex quadrilateral. Then the following hold:
(i) $t_{2}(K) \geq \frac{8}{9}$ with equality if and only if $K$ is affinely congruent to the quadrilateral $Q^{*}$ shown in Fig. 5 (a); and
(ii) $t_{n}(K) \geq \frac{4 n}{4 n+1}$ for any integer $n \geq 2$.

Proof. (i) Let $K=p_{1} p_{2} p_{3} p_{4}$. We may assume

$$
\begin{equation*}
A\left(p_{1} p_{2} p_{4}\right) \geq A\left(p_{1} p_{2} p_{3}\right) \text { and } A\left(p_{1} p_{2} p_{4}\right) \geq A\left(p_{1} p_{3} p_{4}\right) \tag{1}
\end{equation*}
$$

By considering a suitable affine transformation $f$, we may assume further that $f\left(p_{1}\right)=O(0,0), f\left(p_{2}\right)=a(1,0), f\left(p_{4}\right)=c(0,1)($ Fig. $6(\mathrm{a}))$. Write $f\left(p_{3}\right)=b$, let $e=(1,1)$ and let $m$ be the midpoint of $a c$. By (1) and the convexity of $K, b \in$ ace. By symmetry, we may assume that $b \in a m e$. Let $d$ be the intersection point of
the straight lines $O m$ and $b c$. Then $d$ is on the side $b c$ and $A(O a d)=A(O c d)$. We show that $A(O a d)+A(O c d) \geq \frac{8}{9} A(K)$. For this purpose, we let $b^{\prime}$ be the intersection point of the straight lines $b c$ and $x=1$ (Fig. 6 (b)), and we show that $2 A(O a d) \geq \frac{8}{9} A\left(O a b^{\prime} c\right)$.


Fig. 6.

Write $b^{\prime}=(1, y)$. We have $0<y \leq 1, A\left(O a b^{\prime} c\right)=\frac{y+1}{2}$. Furthermore, since $d=\left(\frac{1}{2-y}, \frac{1}{2-y}\right), 2 A(O a d)=\frac{1}{2-y}$. Hence,

$$
\frac{2 A(O a d)}{A\left(O a b^{\prime} c\right)}=\frac{2}{(2-y)(y+1)}=\frac{2}{-\left(y-\frac{1}{2}\right)^{2}+\frac{9}{4}} \geq \frac{8}{9}
$$

as desired.

Next we show that for a convex quadrilateral $K, t_{2}(K)=\frac{8}{9}$ holds if and only if $K$ is affinely congruent to $Q^{*}$. If $t_{2}(K)=\frac{8}{9}$, then, in the argument above, we must have $b=b^{\prime}$ and $y=\frac{1}{2}$. Hence $t_{2}(K)=\frac{8}{9}$ implies that $K$ is affinely congruent to the quadrilateral shown in Fig. $5(\mathrm{~b})$, and hence to $Q^{*}$. Now we show that for a convex quadrilateral $K$ affinely congruent to $Q^{*}$ and for any choice of two internally disjoint equal area triangles $T_{1}$ and $T_{2}$ in $K, \frac{A\left(T_{1}\right)+A\left(T_{2}\right)}{A(K)} \leq \frac{8}{9}$. It suffices to show this for the case where $K=Q^{*}$, whose vertices are labeled as shown in Fig. 5 (a). Let $T_{1}$ and $T_{2}$ be internally disjoint equal area triangles in $K$, and let $l$ be a straight line such that each of the half-planes $H_{1}$ and $H_{2}$ with $H_{1} \cap H_{2}=l$ contains one of $T_{1}$ or $T_{2}$. Let $p$ and $q$ be the intersection points of $l$ and the perimeter of $K$. Four cases arise:
(a) $\{p, q\} \in a b \cup b c$ or $\{p, q\} \in a b \cup d a$;
(b) $\{p, q\} \in a b \cup c d$;
(c) $\{p, q\} \in b c \cup c d$ or $\{p, q\} \in c d \cup d a$;
(d) $\{p, q\} \in b c \cup d a$.

First consider case (b). We may assume $p \in a b, q \in c d$ and $T_{1} \subseteq a p q d$. Write $S=A(a p q)=A(a p d)$ and $S^{\prime}=A(a q d)=A(p q d)$. By Proposition $1, A\left(T_{1}\right) \leq S$ or $A\left(T_{1}\right) \leq S^{\prime}$. If $A\left(T_{1}\right) \leq S$, then we can retake $T_{1}$ in $a p d$, and this case is reduced to Case (a). If $A\left(T_{1}\right) \leq S^{\prime}$, then we can retake $T_{1}$ in $a q d$, and this case is reduced to Case (c). Next consider Case (c). By symmetry, we consider only the case when $\{p, q\} \in b c \cup c d$. We may assume $p \in b c, q \in c d$ and $T_{1} \subseteq c p q$. Then $A\left(T_{1}\right) \leq A(b c d) \leq \frac{1}{3} A(K)$. Hence $A\left(T_{1}\right)+A\left(T_{2}\right) \leq \frac{2}{3} A(K)<\frac{8}{9} A(K)$ in this case. Next consider Case (d). We may assume $p \in b c, q \in d a$ and $T_{1} \subseteq a b p q$. By symmetry, we may assume further that $b p \geq a q$. Then since $A\left(T_{1}\right) \leq A(a b p)$, we can retake $T_{1}$ in $a b p$, and hence this case is reduced to Case (a).

Finally, we consider Case (a). By symmetry, we consider only the case where $\{p, q\} \in a b \cup b c$. Furthermore, by considering a suitable affine transformation, we may assume that $K=a b c d$ is the trapezoid shown in Fig. 5 (c) with $b c=1$, $p \in a b, q \in b c$ and $T_{1} \subseteq b p q$. We show that $A\left(T_{1}\right)+A\left(T_{2}\right) \leq \frac{8}{9} A(K)=\frac{4}{3}$. For this purpose, we suppose that $A\left(T_{1}\right) \geq \frac{2}{3}$ and show that $A\left(T_{2}\right) \leq \frac{2}{3}$. In view of Proposition 1, it suffices to show that any triangle whose vertices are in $\{a, p, q, c, d\}$ has area at most $\frac{2}{3}$. Let $x=b p$ and let $y=b q$. Since $\frac{2}{3} \leq$ $A\left(T_{1}\right) \leq A(b p q)$ by assumption, $x \geq \frac{4}{3}$ and $y \geq \frac{2}{3}$. Hence $A(c d q) \leq A(c d p) \leq$ $A(q d p) \leq A(q d a)=A(a b c d)-(A(a b q)+A(c d q))=1-\frac{y}{2} \leq \frac{2}{3}, A(a c d)=\frac{1}{2}$, $A(a p q) \leq A(a p c)=A(a p d)=\frac{2-x}{2} \leq \frac{1}{3}$ and $A(c p q) \leq A(c a q)=1-y \leq \frac{1}{3}$. Thus we have $A\left(T_{2}\right) \leq \frac{2}{3}$, as desired.
(ii) Let $K=p_{1} p_{2} p_{3} p_{4}$. We may assume that $A(K)=1$ and $A\left(p_{1} p_{2} p_{3}\right) \geq \frac{1}{2}$. We show (ii) by induction on $n$. Suppose that $t_{n}(K) \geq \frac{4 n}{4 n+1}$ for some $n \geq 2$. Take point $q$ on $p_{2} p_{3}$ such that $A\left(p_{1} p_{2} q\right)=\frac{4}{4(n+1)+1}\left(<\frac{1}{2}\right)$. By induction, there exist $n$ internally disjoint triangles $T_{1}, \cdots, T_{n}$ in $p_{1} q p_{3} p_{4}$ such that $A\left(T_{1}\right)=\cdots=$ $A\left(T_{n}\right)=\frac{4}{4 n+1} \times A\left(p_{1} q p_{3} p_{4}\right)=\frac{4}{4(n+1)+1}=A\left(p_{1} p_{2} q\right)$. Thus $t_{n+1}(K) \geq \frac{4(n+1)}{4(n+1)+1}$, as desired.

Theorem 3. Let $K$ be a convex pentagon. Then the following hold:
(i) $t_{2}(K) \geq \frac{2}{3}$;
(ii) $t_{3}(K) \geq \frac{3}{4}$; and
(iii) $t_{n}(K) \geq \frac{2 n}{2 n+1}$ for any integer $n \geq 4$.

Proof. Let $K=p_{1} p_{2} p_{3} p_{4} p_{5}$. We may assume that

$$
\begin{equation*}
A\left(p_{1} p_{2} p_{5}\right) \geq A\left(p_{i} p_{i+1} p_{i+2}\right) \quad \text { for } \quad 1 \leq i \leq 4 \tag{2}
\end{equation*}
$$

where $p_{6}=p_{1}$.
(i) By considering a suitable affine transformation $f$, we may assume that $f\left(p_{1}\right)=O(0,0), f\left(p_{2}\right)=a(1,0), f\left(p_{5}\right)=d(0,1)$. Write $f\left(p_{3}\right)=b\left(x_{1}, y_{1}\right)$, $f\left(p_{4}\right)=c\left(x_{2}, y_{2}\right)$ (Fig. 7). We have

$$
\left.\begin{array}{l}
2 A(O a d)=1, \quad 2 A(O a b)=y_{1}, \quad 2 A(O c d)=x_{2} \\
2 A(a b c)=|\overrightarrow{a b} \times \overrightarrow{a c}|=\left(x_{1} y_{2}-y_{1} x_{2}\right)+\left(y_{1}-y_{2}\right) \text { and } \\
2 A(b c d)=|\overrightarrow{d b} \times \overrightarrow{d c}|=\left(x_{1} y_{2}-y_{1} x_{2}\right)+\left(x_{2}-x_{1}\right) \tag{4}
\end{array}\right\}
$$



Fig. 7.

Since $A(O a b) \leq A(O a d)$ and $A(O c d) \leq A(O a d)$ by (2), it follows from (3) that

$$
\begin{equation*}
0<y_{1} \leq 1 \quad \text { and } \quad 0<x_{2} \leq 1 \tag{5}
\end{equation*}
$$

Furthermore, if there exists a triangle $T \in\{O a b, a b c, b c d, O c d\}$ having area at most $\frac{1}{4} A(K)$, then applying Theorem 2 to the quadrilateral $K-T$, we obtain $t_{2}(K) \geq \frac{8}{9} \cdot \frac{3}{4}=\frac{2}{3}$, as desired. Therefore we may, in particular, assume that

$$
\begin{align*}
A(O a b)+A(O c d) & >\frac{1}{2} A(K) \text { and }  \tag{6}\\
A(a b c)+A(b c d) & >\frac{1}{2} A(K) \tag{7}
\end{align*}
$$

Since (6) implies $A(O b c)<\frac{1}{2} A(K)$, it follows from (7) that $2[A(a b c)+A(b c d)]>$ $2 A(O b c)=|\overrightarrow{O b} \times \overrightarrow{O c}|=x_{1} y_{2}-y_{1} x_{2}$, and hence

$$
\begin{equation*}
\left(x_{1} y_{2}-y_{1} x_{2}\right)+\left(x_{2}-x_{1}\right)+\left(y_{1}-y_{2}\right)>0 \tag{8}
\end{equation*}
$$

by (4). Let $m$ be the midpoint of $a d$ and let $e\left(x_{3}, x_{3}\right)$ be the intersection point of the straight lines $O m$ and $b c$. Then $x_{3}=\frac{x_{1} y_{2}-y_{1} x_{2}}{x_{1}-x_{2}+y_{2}-y_{1}}$, and hence

$$
\begin{equation*}
x_{3}>1 \tag{9}
\end{equation*}
$$

by (8). Thus $e$ is on the side $b c$, and $O a e$ and $O d e$ are equal area triangles in $K$. We show $A(O a e)+A(O d e)>\frac{2}{3} A(K)$. Write $A(O a d)=S_{1}, A(e a d)=$ $S_{2}$. Then $S_{2}=\frac{e m}{O m} S_{1}>S_{1}$ by (9). Furthermore, since $A(a b e)+A(c d e) \leq$ $\max \{A(a b c), A(b c d)\}$, it follows from (2) that $\left(S_{2}>\right) S_{1} \geq A(a b e)+A(c d e)$. Consequently, $\frac{A(a b e)+A(c d e)}{A(K)}<\frac{1}{3}$, and hence $\frac{A(O a e)+A(O d e)}{A(K)}>\frac{2}{3}$, as desired.
(ii) Let $\mathcal{P}$ be the set of convex pentagons, and let $\tau=\inf _{P \in \mathcal{P}} t_{2}(P)$. We first show that $\frac{\tau}{\tau+2}<\frac{5-\sqrt{5}}{10}$. Let $P=r_{1} r_{2} r_{3} r_{4} r_{5}$ be a regular pentagon. In view of Propositions 2 and 1 it follows that $\tau \leq t_{2}(P) \leq \frac{A\left(r_{1} r_{2} r_{3} r_{4}\right)}{A(P)}=\frac{5+\sqrt{5}}{10}$. Thus $\frac{\tau}{\tau+2}=1-\frac{2}{\tau+2} \leq \frac{5+\sqrt{5}}{25+\sqrt{5}}<\frac{5-\sqrt{5}}{10}$.

Now consider any convex pentagon $K=p_{1} p_{2} p_{3} p_{4} p_{5}$ of area 1 . In view of Proposition 3, we may assume $A\left(p_{1} p_{2} p_{3}\right) \geq \frac{5-\sqrt{5}}{10}$. Then we can take point $q$ on $p_{2} p_{3}$ such that $A\left(p_{1} p_{2} q\right)=\frac{\tau}{\tau+2}$. By induction, the pentagon $p_{1} q p_{3} p_{4} p_{5}$ contains internally disjoint triangles $T_{1}$ and $T_{2}$ such that $A\left(T_{1}\right)=A\left(T_{2}\right)=$ $\frac{\tau}{2} \times A\left(p_{1} q p_{3} p_{4} p_{5}\right)=\frac{\tau}{\tau+2}=A\left(p_{1} p_{2} q\right)$. Thus $t_{3}(K) \geq \frac{3 \tau}{\tau+2}$. Since $\tau \geq \frac{2}{3}$ by (i), $t_{3}(K) \geq 3\left(1-\frac{2}{\tau+2}\right) \geq \frac{3}{4}$, as desired.
(iii) We may assume that $A(K)=1$ and $A\left(p_{1} p_{2} p_{3}\right) \geq \frac{5-\sqrt{5}}{10}$ (recall Proposition $3)$. The proof is by induction on $n$. We first show that $t_{4}(K) \geq \frac{8}{9}$. By Proposition 4, we can divide $K$ into two convex polygons $Q_{1}$ and $Q_{2}$ each with at most four sides and $A\left(Q_{1}\right)=A\left(Q_{2}\right)=\frac{1}{2}$. Hence by Theorem 2, we can take internally disjoint triangles $T_{1}, T_{2} \subset Q_{1}$ and $T_{3}, T_{4} \subset Q_{2}$ such that $A\left(T_{1}\right)=$ $\cdots=A\left(T_{4}\right)=\frac{4}{9} \times \frac{1}{2}=\frac{2}{9}$. Thus $t_{4}(K) \geq \frac{8}{9}$. Next suppose that $t_{n}(K) \geq \frac{2 n}{2 n+1}$ for some $n \geq 4$. Take point $q$ on $p_{2} p_{3}$ such that $A\left(p_{1} p_{2} q\right)=\frac{2}{2(n+1)+1}\left(<\frac{5-\sqrt{5}}{10}\right)$. By our induction hypothesis, the pentagon $p_{1} q p_{3} p_{4} p_{5}$ contains $n$ internally disjoint triangles $T_{1}, \cdots, T_{n}$ such that $A\left(T_{1}\right)=\cdots=A\left(T_{n}\right)=\frac{2}{2 n+1} \times A\left(p_{1} q p_{3} p_{4} p_{5}\right)=$ $\frac{2}{2(n+1)+1}=A\left(p_{1} p_{2} q\right)$. Consequently, $t_{n+1}(K) \geq \frac{2(n+1)}{2(n+1)+1}$, as desired.

For a positive integer $n$ and a regular hexagon $K$, we have by Theorem D that $t_{6 n}(K)=1$. We show here that:

Theorem 4. Let $n \geq 2$ be an integer and let $K$ be a convex polygon with at most six sides. Then $t_{3 n}(K) \geq \frac{4 n}{4 n+1}$.

Proof. We may assume that $A(K)=6$. We first show that $K$ can be divided into two polygons $K_{1}$ and $K_{2}$ such that $K_{1}$ has at most four sides, $A\left(K_{1}\right)=2$, $K_{2}$ has at most five sides and $A\left(K_{2}\right)=4$. Let $K=p_{1} p_{2} \cdots p_{6}$. In the case where $K$ has $k<6$ sides, take $6-k$ points on one of its edges, and think of them as $6-k$ artificial vertices of $K$ which can now be considered as a convex hexagon. Write $T_{1}=p_{1} p_{2} p_{3}, T_{2}=p_{3} p_{4} p_{5}, T_{3}=p_{5} p_{6} p_{1}$. We may assume that $A\left(T_{1}\right)<2$. First consider the case where $A\left(T_{3}\right)<2$. In this case, we may assume further that $A\left(p_{1} p_{2} p_{3} p_{4}\right) \geq 3$ by symmetry. Then there exists a point $q \in p_{3} p_{4}$ such that $A\left(p_{1} p_{2} p_{3} q\right)=2$ and $A\left(p_{1} q p_{4} p_{5} p_{6}\right)=4$, as desired. Thus consider the case where $A\left(T_{3}\right) \geq 2$. Since $A\left(T_{1}\right)<2$ and $A\left(p_{1} p_{2} p_{3} p_{5} p_{6}\right)>$ $A\left(T_{3}\right) \geq 2$, either there exists a point $q \in p_{6} p_{1}$ such that $A\left(p_{1} p_{2} p_{3} q\right)=2$, or there exists a point $q \in p_{5} p_{6}$ such that $A\left(p_{1} p_{2} p_{3} q p_{6}\right)=2$. In the former case, $K_{1}=p_{1} p_{2} p_{3} q$ and $K_{2}=p_{3} p_{4} p_{5} p_{6} q$ have the desired properties. In the latter case, since $A\left(p_{1} p_{2} q p_{6}\right)<A\left(p_{1} p_{2} p_{3} q p_{6}\right)=2$ and $A\left(p_{1} p_{2} p_{5} p_{6}\right)>A\left(T_{3}\right) \geq 2$, there exists a point $r \in q p_{5}$ such that $A\left(p_{1} p_{2} r p_{6}\right)=2$ and $A\left(p_{2} p_{3} p_{4} p_{5} r\right)=4$, as desired.

Now since $t_{n}\left(K_{1}\right) \geq \frac{4 n}{4 n+1}$ by Theorem 2 (ii) and $t_{2 n}\left(K_{2}\right) \geq \frac{4 n}{4 n+1}$ by Theorem 3 (iii), we obtain $t_{3 n}(K) \geq \frac{4 n}{4 n+1}$, as desired.

## 4 Equal Area Polygons in a Convex Body

Let $K$ be a convex body in $\boldsymbol{E}^{2}$. Combining Theorem B and Proposition 4, we obtain several results. For example, for any integer $n \geq 3$,

$$
\begin{equation*}
\frac{2 n-3}{2 \pi} \sin \frac{2 \pi}{2 n-3} \leq s(K ; 1,2 n-3) \leq s(K ; 2, n) \tag{10}
\end{equation*}
$$

Similarly, for $m=2^{l}, l=0,1,2, \cdots$, we have $s(K ; m, 4) \geq s\left(K ; \frac{m}{2}, 5\right) \geq \cdots \geq$ $s(K ; 1, m+3) \geq \frac{m+3}{2 \pi} \sin \frac{2 \pi}{m+3}$, and hence

$$
\begin{equation*}
s(K ; 2 m, 3) \geq \frac{8}{9} s(K ; m, 4) \geq \frac{4(m+3)}{9 \pi} \sin \frac{2 \pi}{m+3} \tag{11}
\end{equation*}
$$

by Theorem 2. On the other hand, it follows from Proposition 2 that

$$
\begin{equation*}
s(K ; 2, n) \leq s(K ; 1,2 n-2) \tag{12}
\end{equation*}
$$

We henceforth focus on $s(K ; 2, n)$. By (10) and (12),

$$
\begin{equation*}
s(K ; 1,2 n-3) \leq s(K ; 2, n) \leq s(K ; 1,2 n-2) \text { for } n \geq 3 \tag{13}
\end{equation*}
$$

and by (11) and (12),

$$
\begin{equation*}
\frac{8}{9} s(K ; 1,4) \leq s(K ; 2,3) \leq s(K ; 1,4) \tag{14}
\end{equation*}
$$

We believe that the following is true:
Conjecture 1. Let $K$ be a convex body in $\boldsymbol{E}^{2}$. Then $s(K ; 2, n) \geq \frac{n-1}{\pi} \sin \frac{\pi}{n-1}$ with equality if and only if $K$ is an ellipse.

Remark 3. We can verify that the equality of this conjecture holds if $K$ is an ellipse in the following way: Let $E$ be an ellipse. Since a circular disk $D$ contains a regular $2(n-1)$-gon $R$ with $A(R)=\frac{n-1}{\pi} \sin \frac{\pi}{n-1} A(D), E$ contains a centrally symmetric $2(n-1)$-gon $P$ with $A(P)=\frac{n-1}{\pi} \sin \frac{\pi}{n-1} A(E)$, which can be divided into two internally disjoint equal area $n$-gons. Thus $s(E ; 2, n) \geq \frac{n-1}{\pi} \sin \frac{\pi}{n-1}$. Furthermore, we have $s(E ; 2, n) \leq s(E ; 1,2 n-2)=\frac{n-1}{\pi} \sin \frac{\pi}{n-1}$ by (12) and Theorem B. Consequently, $s(E ; 2, n)=\frac{n-1}{\pi} \sin \frac{\pi}{n-1}$ holds for any ellipse $E$.

In this section, we settle Conjecture 1 affirmatively for some special cases.
Theorem 5. Let $K$ be a centrally symmetric convex body in $\boldsymbol{E}^{2}$. Then $s(K ; 2, n) \geq$ $\frac{n-1}{\pi} \sin \frac{\pi}{n-1}$.

To prove Theorem 5, it suffices to show the following:
Let $K$ be a centrally symmetric convex body in $\boldsymbol{E}^{2}$. Then there exists a polygon $P \subseteq K$ with $\frac{A(P)}{A(K)} \geq \frac{n-1}{\pi} \sin \frac{\pi}{n-1}$ such that $P$ has at most $2 n-2$ sides and $P$ is centrally symmetric with respect to the center of $K$.

Observe that $P$ can then be divided into two internally disjoint equal area polygons with at most $n$ sides. We show (15) in a generalized form stated in the following Theorem 6.

Let $n$ be a positive integer. For a subset $S$ of $\boldsymbol{E}^{n}$ having a finite volume, let $V(S)$ denote the volume of $S$. For a centrally symmetric convex body $K$ in $\boldsymbol{E}^{n}$, denote by $\mathcal{Q}_{m}(K)$ the set of polytopes $P$ contained in $K$ such that $P$ is centrally symmetric with respect to the center of $K$ and $P$ has at most $2 m$ vertices. Let

$$
\sigma(K ; m)=\sup _{P \in \mathcal{Q}_{m}(K)} \frac{V(P)}{V(K)}
$$

Theorem 6. Let $m$ and $n$ be integers with $m \geq n \geq 2$. Let $K$ be a centrally symmetric convex body in $\boldsymbol{E}^{n}$ and let $S$ be a hyper-sphere in $\boldsymbol{E}^{n}$. Then $\sigma(K ; m) \geq \sigma(S ; m)$.

Proof. Our proof is a modification of the proof of the $n$-dimensional theorem of Theorem B by Macbeath [8], where Steiner symmetrization is applied. We give only a sketch of our proof.

We may assume that $K$ is centrally symmetric with respect to the origin $O$ of $\boldsymbol{E}^{n}$. Let $\pi$ be a hyper-plane in $\boldsymbol{E}^{n}$ containing the origin $O$. Denote each point $a$ in $\boldsymbol{E}^{n}$ by $(x, t)$, where $x=x(a)$ is the foot of the perpendicular from $a$ to $\pi$ and $t=t(a)$ is the oriented perpendicular distance from $x$ to $a$. For a convex body $B$, let $B^{\prime}$ be the projection of $B$ on $\pi$. For $x \in B^{\prime}$, define the two functions $B^{+}(x)$ and $B^{-}(x)$ by $B^{+}(x)=\sup _{(x, t) \in B} t$ and $B^{-}(x)=\inf _{(x, t) \in B} t$. Then $B=\left\{(x, t) \mid x \in B^{\prime}, B^{-}(x) \leq t \leq B^{+}(x)\right\}$.

Let $K^{*}=\left\{(x, t)\left|x \in K^{\prime},|t| \leq \frac{1}{2}\left(K^{+}(x)-K^{-}(x)\right)\right\}\right.$. Then $K^{*}$ is symmetric with respect to $\pi$, centrally symmetric with respect to $O$, and $V\left(K^{*}\right)=$ $\int_{K^{\prime}}\left(K^{+}(x)-K^{-}(x)\right) d x=V(K)$. By the central symmetry of $K$ with respect to $O$,

$$
\begin{equation*}
-x \in K^{\prime}, K^{+}(-x)=-K^{-}(x) \text { and } K^{-}(-x)=-K^{+}(x) \text { for any } x \in K^{\prime} \tag{16}
\end{equation*}
$$

Lemma 1. $\sigma\left(K^{*} ; m\right) \leq \sigma(K ; m)$
Proof. Let $P$ be a polytope in $\mathcal{Q}_{m}\left(K^{*}\right)$. It suffices to show that there is a polytope $P_{0} \in \mathcal{Q}_{m}(K)$ such that $V\left(P_{0}\right) \geq V(P)$. Let $2 k(\leq 2 m)$ be the number of vertices of $P$ and let $\left(x_{i}, t_{i}\right), 1 \leq i \leq 2 k$, be the vertices of $P$. We label the indices so that for each $1 \leq i \leq k,\left(x_{i}, t_{i}\right)$ and $\left(x_{k+i}, t_{k+i}\right)$ are symmetric with respect to $O$ (so $\left(x_{k+i}, t_{k+i}\right)=\left(-x_{i},-t_{i}\right)$ ). Let $Q$ be the convex hull of the points $\left(x_{i}, t_{i}+\frac{1}{2}\left(K^{+}\left(x_{i}\right)+K^{-}\left(x_{i}\right)\right)\right), 1 \leq i \leq 2 k$, and let $R$ be the convex hull of the points $\left(x_{i},-t_{i}+\frac{1}{2}\left(K^{+}\left(x_{i}\right)+K^{-}\left(x_{i}\right)\right)\right), 1 \leq i \leq 2 k$. Since $\left|t_{i}\right| \leq \frac{1}{2}\left(K^{+}\left(x_{i}\right)-K^{-}\left(x_{i}\right)\right)$, each vertex of $Q$ and $R$ is contained in $K$, and hence $Q, R \subseteq K$. Also, since for each $1 \leq i \leq k$,

$$
\begin{aligned}
& \frac{1}{2}\left(x_{i}+x_{k+i}\right)=\frac{1}{2}\left(x_{i}+\left(-x_{i}\right)\right)=0 \quad \text { and } \\
& \frac{1}{2}\left[t_{i}+\frac{1}{2}\left(K^{+}\left(x_{i}\right)+K^{-}\left(x_{i}\right)\right)+t_{k+i}+\frac{1}{2}\left(K^{+}\left(x_{k+i}\right)+K^{-}\left(x_{k+i}\right)\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[t_{i}+\frac{1}{2}\left(K^{+}\left(x_{i}\right)+K^{-}\left(x_{i}\right)\right)+\left(-t_{i}\right)+\frac{1}{2}\left(K^{+}\left(-x_{i}\right)+K^{-}\left(-x_{i}\right)\right)\right] \\
& =\frac{1}{2}\left[\frac{1}{2}\left(K^{+}\left(x_{i}\right)+K^{-}\left(-x_{i}\right)\right)+\frac{1}{2}\left(K^{+}\left(-x_{i}\right)+K^{-}\left(x_{i}\right)\right)\right] \\
& =0
\end{aligned}
$$

by (16), $Q$ is centrally symmetric with respect to $O$. Similarly, we see that $R$ is centrally symmetric with respect to $O$. Furthermore, since

$$
\begin{aligned}
& Q^{-}\left(x_{i}\right) \leq t_{i}+\frac{1}{2}\left(K^{+}\left(x_{i}\right)+K^{-}\left(x_{i}\right)\right) \leq Q^{+}\left(x_{i}\right) \quad \text { and } \\
& R^{-}\left(x_{i}\right) \leq-t_{i}+\frac{1}{2}\left(K^{+}\left(x_{i}\right)+K^{-}\left(x_{i}\right)\right) \leq R^{+}\left(x_{i}\right)
\end{aligned}
$$

we have that $\frac{1}{2}\left(Q^{-}\left(x_{i}\right)-R^{+}\left(x_{i}\right)\right) \leq t_{i} \leq \frac{1}{2}\left(Q^{+}\left(x_{i}\right)-R^{-}\left(x_{i}\right)\right)$, and hence each point $\left(x_{i}, t_{i}\right), 1 \leq i \leq 2 k$, lies in the convex set

$$
T=\left\{(x, t) \mid x \in P^{\prime}, \frac{1}{2}\left(Q^{-}(x)-R^{+}(x)\right) \leq t \leq \frac{1}{2}\left(Q^{+}(x)-R^{-}(x)\right)\right\}
$$

Since $P$ is the convex hull of the points $\left(x_{i}, t_{i}\right), 1 \leq i \leq 2 k$,

$$
\begin{aligned}
V(P) \leq V(T) & =\frac{1}{2} \int_{P^{\prime}}\left(Q^{+}(x)-Q^{-}(x)+R^{+}(x)-R^{-}(x)\right) d x \\
& =\frac{1}{2}(V(Q)+V(R))
\end{aligned}
$$

Thus at least one of $V(Q) \geq V(P)$ or $V(R) \geq V(P)$ holds. Consequently, $Q$ or $R$ is a polytope with desired properties.

Now we return to the proof of Theorem 6. The rest of our argument follows exactly as the proof in [8]: we can verify that $\sigma(K ; m)$ is a continuous function of $K$. Let $\pi_{1}, \pi_{2}, \cdots, \pi_{n}$ be $n$ hyper-planes such that for each pair $i \neq j \pi_{i}$ and $\pi_{j}$ form an angle which is an irrational multiple of $\pi$. Consider the sequence of bodies $K=K_{1}, K_{2}, \cdots, K_{n}, \cdots$, where $K_{i+1}$ arises from $K_{i}$ by symmetrizing it with respect to $\pi_{\nu}$ where $\nu$ is the least positive residue of $i(\bmod n)$. This sequence converges to a hyper-sphere $S$ (see [3]), and hence $\sigma(K ; m) \geq \sigma(S ; m)$.

Let $K$ be a convex body in $\boldsymbol{E}^{2}$ and let $l$ denote the perimeter of $K$. Then

$$
\begin{equation*}
\text { The Isoperimetric Inequality: } \quad l^{2} \geq 4 \pi A(K) \tag{17}
\end{equation*}
$$

with equality if and only if $K$ is a circular disk; and, if $K$ is a figure with constant width $w$, we also have

$$
\begin{equation*}
\text { Barbier's Theorem: } \quad l=\pi w \tag{18}
\end{equation*}
$$

(see, for example, [4]). Finally we show that Conjecture 1 is true for $n=3$ when $K$ is a figure with constant width:
Theorem 7. Let $K$ be a figure with constant width in $\boldsymbol{E}^{2}$. Then $t_{2}(K) \geq \frac{2}{\pi}$ with equality if and only if $K$ is a circular disk.

Proof. Let $w$ and $l$ denote the width and perimeter of $K$, respectively. For each $\theta \in[0,2 \pi)$, let $\boldsymbol{u}_{\theta}$ denote the vector $(\cos \theta, \sin \theta)$, let $a=a_{\theta}$ and $b=b_{\theta}$ denote the contact points of $K$ and each of two straight lines parallel to $\boldsymbol{u}_{\theta}$, and let
$m=m_{\theta}$ denote the midpoint of the segment $a b$ (Fig. 8 (a)). Let $c=c_{\theta}$ and $d=d_{\theta}$ be the intersection points of the perimeter of $K$ and the straight line passing through $m$ and parallel to $\boldsymbol{u}_{\theta}$. Then we have $A(a c d)=A(b c d)$. Take $c^{\prime}$ on the line tangent to the perimeter of $K$ at $c$ such that $\operatorname{det}\left[\overrightarrow{c c^{\prime}} \boldsymbol{u}_{\theta}\right]>0$, where $\left[\overrightarrow{c c^{\prime}} \boldsymbol{u}_{\theta}\right]$ stands for a matrix having $\overrightarrow{c c^{\prime}}$ and $\boldsymbol{u}_{\theta}$ as their column vectors. We further take $d^{\prime}$ on the tangent line of the perimeter of $K$ at $d$ such that $\operatorname{det}\left[\overrightarrow{d d^{\prime}} \boldsymbol{u}_{\theta}\right]<0$. Write $\alpha_{1}=\alpha_{1}(\theta)=\angle m c c^{\prime}$ and $\alpha_{2}=\alpha_{2}(\theta)=\angle m d d^{\prime}$.


Fig. 8.

Since $\alpha_{1}(\theta+\pi)-\alpha_{2}(\theta+\pi)=-\left(\alpha_{1}(\theta)-\alpha_{2}(\theta)\right)$ (Fig. 8 (a), (b)), it follows from the Intermediate Value Theorem that there exists $\theta \in[0, \pi]$ such that $\alpha_{1}(\theta)-\alpha_{2}(\theta)=0$ i.e. $c c^{\prime} \| d d^{\prime}$. For this $\theta$, we have $c d \geq w$, and hence

$$
A(a c d)+A(b c d)=\frac{1}{2} c d \cdot w \geq \frac{1}{2} w^{2}=\frac{1}{2}\left(\frac{l}{\pi}\right)^{2} \geq \frac{2}{\pi} \cdot A(K)
$$

by (17) and (18). Furthermore, if $t_{2}(K)=\frac{\pi}{2}$ holds, then we must have $l^{2}=$ $4 \pi A(K)$, i.e., $K$ is a circular disk; and for a circular disk $K$, we have $t_{2}(K)=\frac{\pi}{2}$ (recall Remark 3).

## References

1. Bespamyatnikh, S., Kirkpatrick, D., Snoeyink, J.: Generalizing ham sandwich cuts to equitable subdivision. Proc. 15th Annu. Symp. Comput. Geometry (SoCG'99), 49-58, 1999
2. Blaschke, W.: Über affine Geometrie III: Eine Minimumeigenschaft der Ellipse, in: Berichte über die Verhandlungen der königl. sächs. Gesellschaft der Wissenschaften zu Leipzig, 1917, 3-12
3. Bonnesen, T. and Fenchel, W.: Theorie der konvexen Körper (Ergebnisse der Math.)(Berlin, 1934)
4. Groemer, H.: Stability of geometric inequalities, in: Handbook of Convex Geometry, Vol. A (Gruber, P.M. and Wills, J.M., eds.), North-Holland, 1993, 125-150
5. Ito, H., Uehara, H. Yokoyama, M.: 2-dimension ham sandwich theorem for partitioning into three convex pieces. In: J. Akiyama et al.: Discrete and Computational Geometry (Lect. Notes Comput. Sci. vol. 1763, 129-157) Springer 2000
6. Kasimatis, E.A.: Dissection of regular polygons into triangles of equal areas, Discrete Comput. Geom. 4 (1989), 375-381
7. Kasimatis, E.A. and Stein S.K.: Equidissections of polygons, Discrete Math. 85 (1990), 281-294
8. Macbeath, A.M.: An extremal property of the hypersphere, in: Proc. Cambridge Phil. Soc. 47 (1951), 245-247
9. Matoušek, J.: Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry, Springer-Verlag, 2003
10. Monsky, P.: On dividing a square into triangles, Amer. Math. Monthly 77 (1970), 161-164
11. Sakai, T.: Balanced convex partition of measures in $\mathbf{R}^{2}$, Graphs Combin. 18 (2002), 169-192
12. Sakai, T.: Packing Equal Area Polygons in Convex Polygons, Tech. Rep. RIED, Toaki Univ. 2002, 1-5 (in Japanese)
13. Sás, E.: Über ein Extremumeigenschaft der Ellipsen. Compositio Math. 6 (1939), 468-470
14. Živaljević, R.T.: Topological methods, in: Handbook of Discrete and Computational Geometry (Goodman, J.E. and O'Rourke, J., eds.), CRC Press, 1997, 209224

[^0]:    * Supported by CONACYT of Mexico, Proyecto 37540-A.

