Cambiar a contenido. | Saltar a navegación

Herramientas Personales
Entrar

Navegación

Usted está aquí: Inicio / Actividades / Coloquios / Coloquio de Ciudad Universitaria / Actividades del Coloquio / Multiplicity of solutions for coupled elliptic systems on Riemannian manifolds

Multiplicity of solutions for coupled elliptic systems on Riemannian manifolds

Anna Maria Micheletti (Università di Pisa) - martes 6 de noviembre, 12 horas
Ponente: Anna Maria Micheletti (Università di Pisa)
Cuándo 06/11/2012
de 12:00 a 13:00
Dónde Salón "Graciela Salicrup"
Agregar evento al calendario vCal
iCal

Abstract:

Let (M,g) be a smooth compact 3-dimensional Riemannian manifold. Given real numbers a>0, q>0, -\sqrt{a}<w<\sqrt{a}, we consider the following Klein Gordon Maxwell (KGM) system:

- eps^2 \Delta_g  u +au =u^{p-1} +w^2(qv-1)^2      on M
- \Delta_g  v+(1+q^2u^2)v=qu^2                           on M
u>0,v>0

Given real numbers q>0, w>0 we consider the following Schroedinger Maxwell (SM) systems

- eps^2 \Delta_g  u +u+wuv =u^{p-1}            on M
- \Delta_g  v+v=qu^2                                   on M
u>0,v>0

We show that the topology on the manifold (M,g) has an effect on the number of solutions of KGM and SM systems. In particular we consider the Lusternik Schnirelmann category cat(M) of M in itself. Also the geometry of the manifold (M,g) influences the number of solutions. We show that the scalar curvature S_g relative to the metric g is the geometric property which influences the number of solutions.

archivado en: