Cambiar a contenido. | Saltar a navegación

Herramientas Personales
Entrar

Navegación

Usted está aquí: Inicio / Actividades / Seminarios / Seminario de Becarios / Actividades del Seminario de Becarios / Espectros de categorías de módulos

Espectros de categorías de módulos

Angel Zaldívar (IMUNAM-CU) - Miércoles 25 de abril, 6:00pm, Sala de café IMUNAM
Ponente:
Cuándo 25/04/2012
de 18:00 a 19:00
Dónde Sala de café, Instituto de Matemáticas
Nombre
Agregar evento al calendario vCal
iCal

En un principio, si tenemos una categoría de Grothendieck diremos que esta es espectral si toda sucesión exacta se escinde. Siguiendo a Gabriel y Oberst, dada una categoría de Grothendieck C, a esta se le puede asociar una categoría espectral, Spec(C), esta se define como: Objetos de Spec(C) son los mismos que en C y los morfismos de dos objetos A y B, se define como el colimite del conjuntos de morfismos de E en B donde E es un subobjeto esencial de A, y se demuestra que esta categoría es espectral, ahora si consideramos categorías de Grothendieck con un generador finitamente generado proyectivo, estas son equivalentes a una categoría de módulos sobre un anillo entonces pensamos en R-Mod y su categoría espectral asociada Spec(R-Mod) y se tiene que existe una correspondencia biyectiva entre los objetos simples de esta y las clases de isomorfismo de módulos inyectivos inescindibles en sobre R.

El resultado que da pie al interés en esta construcción es, si R es conmutativo neteriano entonces las clases de isomorfismo de módulos inyectivos inescindibles es biyectable con el espectro primo del anillo R, Spec (R). En esta platica veremos generalizaciones al caso neteriano no conmutativo y algunas aproximaciones  al caso general no conmutativo y veremos que estudiando el espectro de la categoría R-Mod se pueden obtener caracterizaciones del anillo vía las relaciones entre Spec (R-Mod) y Spec(R).

archivado en: