Cambiar a contenido. | Saltar a navegación

Herramientas Personales
Entrar

Navegación

Rogers-Shephard inequality for log-concave functions

Ponente: Hugo Jiménez Gómez
Institución: Universidade Federal de Minas Gerais
Tipo de Evento: Investigación
Cuándo 29/09/2015
de 15:00 a 16:00
Dónde Salón Graciela Salicrup
Agregar evento al calendario vCal
iCal

We prove different functional inequalities extending the classical Rogers-Shephard inequalities for convex bodies. The original inequalities provide an optimal relation between the volume of a convex body and the volume of several symmetrizations of the body, such as, its difference body. We characterize the equality cases in all these inequalities. Our method is based on the extension of the notion of a convolution body of two convex sets to any pair of log-concave functions and the study of some geometrical properties of these new sets.

Trabajo conjunto con: D. Alonso-Gutierrez, B. Gonzalez and R. Villa