Cambiar a contenido. | Saltar a navegación

Herramientas Personales
Entrar

Navegación

Soluciones nodales para una ecuación cuasilineal crítica

Ponente: Luis Lopez Rios
Institución: IMUNAM
Tipo de Evento: Investigación
Cuándo 12/10/2017
de 11:00 a 12:00
Dónde Sala 2 del auditorio
Agregar evento al calendario vCal
iCal

En esta charla mostraremos la existencia y multiplicidad de
soluciones nodales para el problema cuasilineal crítico
\[-\Delta_p u = |u|^{p*-2}u,\ u\in D^{1,p}(R^N),\] donde \(N >=
4\), \(\Delta_p u := \operatorname{div}(| \nabla u|^{p-2} \nabla u)\) es el
\(p\)-laplaciano, \(1<p<N\), y \(p^*=Np/(N-p)\) es el exponente
crítico de Sobolev.

Las soluciones obtenidas surgen como un perfil asintótico de
soluciones de un problema subcrítico asociado, donde la acción de
cierto grupo de simetrías juega un papel fundamental.  En el caso
\(p\) distinto de \(2\), las soluciones obtenidas mediante este
procedimiento son, hasta donde sabemos, las primeras encontradas
con cambio de signo.

Este es un trabajo conjunto con Mónica Clapp.