ONE-POINT EXTENSIONS AND DERIVED EQUIVALENCE

MICHAEL BAROT AND HELMUT Lenzing

Abstract. Work of the first author with de la Peña [1], concerned with the class of algebras derived equivalent to a tubular algebra, raised the question whether a derived equivalence between two algebras can be extended to one-point extensions. The present paper yields a positive answer.

Let \(A \) be a finite-dimensional algebra (associative with 1) over a field \(k \). Modules, for most of this paper, will be finite dimensional right modules, and \(\text{mod} A \) denotes the category of such modules over \(A \). Each \(A \)-module \(M \) we may view as a \((k; A)\)-bimodule \(kM A \), and form the matrix algebra

\[
\begin{bmatrix}
k & M \\
0 & A
\end{bmatrix} = \left\{ \begin{bmatrix}
\alpha & m \\
0 & a
\end{bmatrix} \mid \alpha \in k, m \in M, a \in A \right\}
\]

which is called the one-point extension of \(A \) by \(M \). We denote this algebra by \(\hat{A} \) if \(M \) is clear from the context; moreover \(\hat{M} \) will denote the indecomposable projective \(A \)-module formed by the first row \([k; M] \) of \(\hat{A} \). Note that \(\hat{M} \) has trivial endomorphism ring. Forming the module category (resp. the derived category) over the one-point extension algebra is in a sense inverse to forming the perpendicular category with respect to an exceptional object in a module category [4] (resp. in the derived category of a module category [2]). Both processes are important for induction arguments on the number of isomorphism classes of simple modules. Note that we view modules as stalk complexes concentrated in degree zero. A preprint version of the article has been used by a number of authors [3, 13, 8, 9].

Theorem 1. Let \(A \) and \(B \) be two finite dimensional \(k \)-algebras, \(M \in \text{mod} A \), \(N \in \text{mod} B \) and denote by \(\hat{A} \), \(\hat{B} \) the respective one-point extensions. For any triangulated equivalence \(\Phi : D^b(\text{mod} A) \to D^b(\text{mod} B) \) which maps the module \(M \) to the module \(N \), there exists a triangulated equivalence \(\Phi : D^b(\text{mod} A) \to D^b(\text{mod} B) \) which maps \(\hat{M} \to \hat{N} \) and restricts to a triangulated equivalence from \(D^b(\text{mod} A) \) to \(D^b(\text{mod} B) \).

For an abelian category \(\mathcal{A} \) we denote by \(K^b(\mathcal{A}) \) the homotopy category and by \(D^b(\mathcal{A}) \) the derived category of bounded differential complexes in \(\mathcal{A} \), see [12] for definitions and basic facts. Further, we denote by \(\mathcal{P}_A \) the full subcategory of \text{mod} \(A \) given by the finitely generated projective \(A \)-modules. We identify \(D^b(\text{mod} A) \) with the full subcategory \(M^k = \{ X \mid \text{Hom}(M, X[i]) = 0 \text{ for all } i \} \) of \(D^b(\text{mod} A) \).

Before entering the proof, we recall results from Rickard [10]. Any triangulated equivalence \(\Phi : D^b(\text{mod} A) \to D^b(\text{mod} B) \) induces a triangulated equivalence \(\varphi : K^b(\mathcal{P}_A) \to K^b(\mathcal{P}_B) \), where \(K^b(\mathcal{P}_A) \) refers to the homotopy category of bounded complexes in \(\mathcal{P}_A \). In particular, \(T = \varphi^{-1}(B[0]) \) is a tilting complex, that is, for all \(n \neq 0 \) we have \(\text{Hom}_{K^b(\mathcal{P}_A)}(T, T[n]) = 0 \), and moreover \(\text{add}(T) \), the full subcategory of direct summands of finite direct sums of copies of \(T \), generates \(K^b(\mathcal{P}_A) \).
as a triangulated category. Conversely, a given tilting complex T in $K^b(\mathcal{P}_A)$ with endomorphism algebra B, gives rise to a triangulated equivalence from $D^b(\text{mod } A)$ to $D^b(\text{mod } B)$, sending T to $B[0]$.

Proof. Note that the canonical projection $\tilde{A} \to A$ induces an embedding $\iota_A : \text{mod } A \to \text{mod } \tilde{A}$ such that (\ast) the two functors $\text{Hom}_{\tilde{A}}(\iota_A \cdot, \tilde{M})$ and $\text{Hom}_A(\cdot, M)$ from $\text{mod } A$ to $\text{mod } k$ are isomorphic and $(\ast\ast)$ $\text{Hom}_{\tilde{A}}(\tilde{M}, \iota_A \cdot)$ is the zero functor.

Let $\varphi : K^b(\mathcal{P}_A) \to K^b(\mathcal{P}_B)$ be the triangulated equivalence induced by Φ and set $T := \varphi^{-1}(B[0])$ and $\tilde{T} := T \oplus \tilde{M}[0]$. We are going to show that \tilde{T} is a tilting complex in $K^b(\mathcal{P}_A)$. Further, we show that the endomorphism algebra of \tilde{T} is isomorphic to B. It then follows from [10], as summarized before, that there is a triangulated equivalence $\tilde{\Phi} : D^b(\text{mod } \tilde{A}) \to D^b(\text{mod } B)$ sending T to $B[0]$ and $\tilde{M}[0]$ to $\tilde{N}[0]$, moreover, in view of $(\ast\ast)$, Φ extends $\tilde{\Phi}$.

We get a sequence of isomorphisms

$$\text{Hom}_{K^b(\mathcal{P}_A)}(T, \tilde{M}[0]) \cong \text{Hom}_{D^b(\text{mod } A)}(T, M[0])$$

$$\cong \text{Hom}_{D^b(\text{mod } B)}(B[0], N[0])$$

$$\cong \text{Hom}_B(B, N) = N$$

where the first one is due to (\ast) and the second to $\tilde{\Phi}$. By construction we have an isomorphism $\text{End}_{K^b(\mathcal{P}_A)}(T) \cong B$ and, passing to the homotopy categories, we derive from $(\ast\ast)$ that $\text{Hom}_{K^b(\mathcal{P}_A)}(\tilde{M}[0], T) = 0$. Since moreover $\text{End}_{\tilde{A}}(\tilde{M}) = k$ this shows that $\text{End}_{K^b(\mathcal{P}_A)}(\tilde{T})$ is in fact isomorphic to \tilde{B}.

Because of $(\ast\ast)$, we have $\text{Hom}_{K^b(\mathcal{P}_A)}(\tilde{M}[0], T[n]) = 0$ for all n, and in view of (\ast), we get an isomorphism $\text{Hom}_{K^b(\mathcal{P}_A)}(T, M[n]) \to \text{Hom}_{D^b(\text{mod } A)}(T, M[n])$. The latter term is isomorphic to $\text{Hom}_{D^b(\text{mod } B)}(B[0], N[n])$ and thus is zero for all $n \neq 0$. Similarly, $\text{Hom}_{K^b(\mathcal{P}_A)}(T, T[n]) = 0$ for all $n \neq 0$. Finally, $\text{Hom}_{K^b(\mathcal{P}_A)}(\tilde{M}[0], M[n]) = \text{Ext}_{\tilde{A}}^n(\tilde{M}, M) = 0$ for all $n \neq 0$. Since, obviously, \tilde{T} generates $K^b(\mathcal{P}_A)$ this proves that \tilde{T} is a tilting complex in $K^b(\mathcal{P}_A)$.

Thus we obtain a triangulated equivalence $\varphi : K^b(\mathcal{P}_A) \to K^b(\mathcal{P}_B)$, which maps the tilting complex \tilde{T} to $\tilde{B}[0]$ and its summand \tilde{M} to \tilde{N}, and a corresponding triangulated equivalence $\Phi : D^b(\text{mod } A) \to D^b(\text{mod } B)$. Since $\Phi(M) = N$, the functor Φ further sends $\tilde{M}[\cdot] = D^b(\text{mod } A)$ to $\tilde{N}[\cdot] = D^b(\text{mod } B)$. \hfill \square

Corollary 1. Let A and H be two finite dimensional k-algebras such that there exists a triangulated equivalence $\Phi : D^b(\text{mod } A) \to D^b(\text{mod } H)$. We assume that H is hereditary. Then for every indecomposable A-module M, there exists an indecomposable H-module N such that there is a triangulated equivalence $\tilde{\Phi} : D^b(\text{mod } \tilde{A}) \to D^b(\text{mod } \tilde{H})$, where \tilde{A} and \tilde{H} denote the respective one-point extensions of A and H, which restricts to a triangulated equivalence from $D^b(\text{mod } A)$ to $D^b(\text{mod } H)$.

Proof. Since H is hereditary, every indecomposable object of $D^b(\text{mod } H)$ is given by a stalk complex $X[i]$ for some indecomposable H-module X. Modifying Φ by a suitable shift $[i]$, we may thus assume the existence of an H-module N with $\Phi(M) = N$. The assertion now follows from Theorem 1, observing that derived equivalences commute with the shift functors. \hfill \square
We mention two further applications. Let A be a derived canonical algebra, that is, A is an algebra which is derived equivalent to a canonical algebra [11]. Note that this includes the case of an algebra derived equivalent to a tame hereditary or a tubular algebra. We call an A-module M derived regular if M belongs to a tube T in the derived category $D^b(mod\ A)$. If M has quasi-length n in T, we say that M has derived regular length n. If moreover $n = 1$ we say that M is derived regular simple.

Corollary 2. Let A be a derived canonical algebra, and let M be an A-module which is derived regular simple. Then the one-point extension of A by M is again derived canonical.

Proof. The assertion holds for a canonical algebra [6], hence by Theorem 1 extends to the derived canonical situation. \hfill \square

We recall that any tame hereditary algebra of type \tilde{D}_n is in the same derived class as the canonical algebra of weight type $(2, 2, n - 1)$.

Corollary 3. Assume that A_1 and A_2 are derived canonical of type $(2, 2, n)$ and let M_i be an indecomposable A_i-module of derived regular length two taken from a rank n tube of $D^b(mod\ A_i)$, $i = 1, 2$. Then the resulting one-point extensions \tilde{A}_1 and \tilde{A}_2 are derived equivalent. \hfill \square

This implies, in particular, that the (strongly simply connected) polynomial growth critical algebras introduced by Nörenberg and Skowroński [7] with a fixed number of simple modules are in the same derived class, a result formerly requiring a case by case analysis.

Comments. (a) Assume that A (and hence also the one-point extension \tilde{A} with respect to the A-module M) has finite global dimension. Then the category $D^b(mod\ \tilde{A})$ has Auslander-Reiten triangles [5]. We claim that the A-module M is isomorphic to the “middle term” E of the Auslander-Reiten triangle in $D^b(mod\ \tilde{A})$

$$\tau\tilde{M} \to E \to \tilde{M} \to \tau\tilde{M}[1].$$

Moreover, if $r : D^b(mod\ \tilde{A}) \to D^b(mod\ A)$ denotes the right adjoint functor to the inclusion $i : D^b(mod\ A) \hookrightarrow D^b(mod\ A)$ (cf. [2] for the existence of r), then $M = r\tilde{M}$. Indeed, application of $\text{Hom}(M, -)$ to (1) yields a long exact homology sequence. Invoking Auslander-Reiten duality $\text{Hom}(X, \tau Y[n]) = \text{Hom}_k(\text{Hom}(Y[n - 1], X), k)$ and the exceptionality of \tilde{M}, it follows that $\text{Hom}(\tilde{M}, E[n]) = 0$ holds for each $n \in \mathbb{Z}$, thus $E \in D^b(mod\ A)$. Moreover, for each $X \in D^b(mod\ A)$ the segment

$$\text{Hom}(X, \tau\tilde{M}) \to \text{Hom}(X, E) \to \text{Hom}(X, \tilde{M}) \to \text{Hom}(X, \tau\tilde{M}[1])$$

of the long exact homology sequence has vanishing end terms showing that the functors $\text{Hom}(-, E)$ and $\text{Hom}(-, M)$ agree on $D^b(mod\ A)$, hence implying $E \cong r\tilde{M} \cong M$.

(b) The converse of Theorem 1 does not hold. Let A and B be the path algebras of the quivers Q_A and Q_B, respectively.
Let $M \in \text{mod}
olimits A$ be given by $M(1) = M(2) = k$, $M(\alpha) = M(\beta) = 1_k$ and $N \in \text{mod}
olimits B$ be given by $N(1) = k$, $N(2) = k^2$, $N(\alpha)$ the diagonal embedding. There does not exist a triangulated equivalence between $\text{D}^b(\text{mod}
olimits A)$ and $\text{D}^b(\text{mod}
olimits B)$, but $\text{D}^b(\text{mod}
olimits A)$ and $\text{D}^b(\text{mod}
olimits B)$ are equivalent as derived categories, since they are both tilted of the hereditary algebra C with quiver Q_C: let $T_A = P_1 \oplus P_3 \oplus S$ and $T_B = S \oplus I_1 \oplus I_3$, where P_x, respectively I_x denotes the projective cover, resp. injective hull of the simple in x and S is the indecomposable with $S(1) = S(3) = k$ and $S(2) = 0$. Then $\text{End}(T_A) \cong \tilde{A}$ and $\text{End}(T_B) \cong \tilde{B}$.

(c) We finally formulate an infinite variant of Theorem 1. For any ring A, denote by $\text{Mod}
olimits A$ the category of all right A-modules.

Theorem 2. Let A and B be two algebras over a commutative ring R with unit, $M \in \text{Mod}
olimits A$, $N \in \text{Mod}
olimits B$ and denote by \tilde{A}, \tilde{B} the respective one-point extensions. For any triangulated equivalence $\Phi : \text{D}^b(\text{Mod}
olimits A) \to \text{D}^b(\text{Mod}
olimits B)$ which maps the module M to the module N, there exists a triangulated equivalence $\hat{\Phi} : \text{D}^b(\text{Mod}
olimits A) \to \text{D}^b(\text{Mod}
olimits B)$ which maps \hat{M} to \hat{N} and restricts to a triangulated equivalence from $\text{D}^b(\text{Mod}
olimits A)$ to $\text{D}^b(\text{Mod}
olimits B)$.

By Rickard [10], any triangulated equivalence from $\text{D}^b(\text{Mod}
olimits A)$ to $\text{D}^b(\text{Mod}
olimits B)$ induces a triangulated equivalence from $\text{K}^b(\text{P}
olimits A)$ to $\text{K}^b(\text{P}
olimits B)$. Thus, the proof of Theorem 1 extends to the present setting, replacing each occurrence of $\text{mod}
olimits A$ ($\text{mod}
olimits B$ respectively).

Acknowledgements. The authors thank Bernhard Keller for his suggestion to remove the original restriction to the setting of finite global dimension. The first author gratefully acknowledges support of CONACyT, UNAM.

References

Michael Barot, Instituto de Matemáticas, UNAM, Mexico, 04510 D.F., Mexico

E-mail address: barot@matem.unam.mx

Helmut Lenzing, Fachbereich Mathematik-Informatik, Universität Paderborn, D-33095 Paderborn, Germany

E-mail address: helmut@math.uni-paderborn.de