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EQUIVARIANT FIXED POINT INDEX AND
FIXED POINT TRANSFER IN NONZERO DIMENSIONS

CARLOS PRIETO AND HANNO ULRICH

ABSTRACT. Dold’s fixed point index and fixed point transfer are generalized for
certain coincidence situations, namely maps which change the “equivariant di-
mension.” Those invariants change the dimension correspondingly. A formula
for the index of a situation over a space with trivial group action is exhibited.
For the transfer, a generalization of Dold’s Lefschetz-Hopf trace formula is
proved.

0. INTRODUCTION
0.0. For fixed point situations

E->Vv—_ LE
\B/

where E — B isan ENR,, V' isopen and f is compactly fixed, i.e. Fix(f) =
{v € V|f(v) = v} — B is proper, Dold defined in [Do,] a fixed point index
I(f) which lives in the zeroth group hO(B) for a generalized cohomology theory
h. In [Do,] he defined a fixed point transfer 1 : h* (Fix(f)) — h*(B), which

is related to the index by the formula %f(l) =I(f), 1€ ho(Fix(f)) , where A

means “Cechification” of /. In this paper we consider more general situations,
namely if G is a compact Lie group we take

NxE:)V—i—vaE

\/

B

where E — B isa G-ENR,, M, N are real G-modules, V' is open and G-
invariant and f is equivariant and compactly fixed, i.e. Fix(f) = {(y,e) €
V|f(y,e)=(0,e)} — B is proper.

In §1 we construct a transfer t’fY: hi(X) — h™*’(B) for hy, any RO(G)-
graded (multiplicative) cohomology theory and p = [M]—[N] € RO(G), where
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X is any ( G-invariant) neighborhood of Fix(f). If as Dold does, we define
7 (Fix(f)) = lim, A;(X) we have also 1 hy(Fix(f)) — hg ™" (B) .

In §2 we study the index I(f) € hg(B) , which relates to the transfer through
the formula I(f) = % )= ‘c’fY(l) for 1 € hg(X ), and measures the existence
of fixed points, namely of elements of Fix(f). From the properties of the
transfer, we see that the index has the expected properties. There we exhibit a
formula which in the case of a trivial G-action on B describes I(f) in terms
of the indices of the restrictions of f to the (finitely many) parts of ¥ of only
one orbit type.

In §3 we prove a Lefschetz-Hopf theorem which generalizes the trace for-
mula of [Do,]. There the transfer for certain fixed point situations evaluated in
suitable elements is computed as a trace of an adequate endomorphism, which
changes dimensions. To that end we resume all theoretical background which
Dold already formulated in [Do,, 6]. In fact, after stating the theorem conve-
niently, most of Dold’s proof goes through in this case. As a matter of fact, a
special case of this proof can be found in the second edition of Dold’s book
[Do,].

To finish the paper we state in a very succinct form the relationship of these
ideas to Becker-Gottlieb’s duality-transfer [BG]. They generalize work therein
made by Waner [Wa].

Literature on RO(G)-graded equivariant cohomology would be [Ko, LMM,
LMS or Pr,], for instance.

As a last comment I would like to mention that Ize, Massabd and Vignoli
have developed in [IMV], a degree for equivariant maps, which, in their finite
dimensional case, can easily be obtained from our index, thus, inheriting also the
corresponding properties from those of the index. They succeed in computing
it in certain cases, when the group acting is the circle s'.

1. THE EQUIVARIANT TRANSFER

In this section we shall give the definition and properties of the transfer.

1.0. Let G be a compact Lie group and B a metric space with a continuous
action of G—a metric G-space, for short—(alternatively, we may assume as
in [U]] that B instead of metric is paracompact, and its topology is compactly
generated).

1.1. Definition. Let E be a G-space and p: E — B a continuous G-map.
p: E — B iscalled a G-euclidean neighborhood retract over B, a G-ENRg, if
there exist a G-module L, i.e. a finite dimensional real representation of G, a
G-invariant open set U C L x B and G-maps i: E - U,r: U — E over B,
such that projzoi=p, por =proj, and roi =id;. (For general properties
of G-ENRs see [Ul].)
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We shall be interested in the following coincidence situations:

NxE-V L MxE

(1.2) poprojy \,  poproj,
B

where p: E — B isa G-ENR,, M and N are G-modules, V' is an invariant
open subset of N x E and f is compactly fixed, i.e. if we consider the set (of
coincidences) Fix(f) = {(y, e) € V|f(y, e) = (0, e)}, then the restriction map
Fix(f) — B is proper, that is, it is closed and its fibers are compact. Let h;
be an RO(G)-graded G-equivariant cohomology theory; e.g. K, = equivariant
K-theory, G-FIX" = equivariant stable cohomotopy [Pr,], H(*; = ordinary
RO(G)-graded cohomology [LMM], etc. In order to define the transfer, we
shall first consider a special case, namely, we assume E =L x B.

Since F = Fix(f) ¢ ¥V ¢ N x L x B is proper, then it has a tubular neigh-
borhood (see [Pr;]), namely there exists a G-invariant function

p:B-R" =(0, +0)

such that F C B, = {(y,b) € Nx Lx B||ly|ll| < p(b)}, where we may assume
without loss of generality that N x L is provided with an invariant metric.

Let, moreover, X be any G-invariant open neighborhood of F = Fix(f) in
V' and consider the following sequence of G-maps (of pairs):

(MxL,MxL-0)xX
I
X, X-F) L9 o xE, MXE-0)x, X
L
(1.3) (NXxE,NxE~-B,) = (NxE,NxE~F)

1@
(NXE,NxXE-0)
I
(NxL,NxL-0)xB

After applying hg , the vertical arrows (1) and (2) become isomorphisms, since
(1) is an excision and (2) a homotopy equivalence (on the second space). Thus
we obtain the following homomorphism:

(1.4) he(M x L, M x L—0) x X) = hg((N x L, N x L —0) x B).
Since hy(M x L, M x L —0) x X) = he D (x) | and correspondingly,

ho((N x L, N x L —0) x B) = b WD (B) (see e.g. [Pr,]), 1.4 determines
(after reindexing) homomorphisms

X * *+[M]—[N
(1.5) T hg(X) — by MM B)
called transfers of f. In particular, we have in one extreme the fransfer

(1.6) T,: W5(E) = hy(N x E) — hg 1 (B)
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obtained by composing (any) r;’ with the restriction Ag(E) = h (N x E) —
h;(X ), as well as, after passing to the limit with respect to X (cf. [Do,]) the
minimal transfer

(1.7) £, b (Fix(f)) — by 1M ()
through which all other transfers factor, that is, rf =1 sores, where res: hg(X )
— iz;(Fix( f)) is the map into the limit. This shows in particular that

(1.8) Fix(f)=¢ =1, =0 forevery X c N x E.

(This follows also directly from (1.3).)
There is also a relative transfer for any invariant 4 C B, such that Fix(f)
does not meet any of the fibers over 4, ie. (N x E,)NFix(f) =¢ if E, =

p MA)CE.Itis
(1.9) o hg(X) — hg (B 4)
for every X and (1.5) factors through it

hi(X) —L—— p M gy

TSN g A)
g b

The transfer has the following properties:

1.10. Units. If s: B — E is a section of p and k: E — M x E s defined by
k(e) = (0, sp(e)), then 1, = s": h;(sB) = hg(B) if M =0 and 7, =0 if
M#0. O

1.11. Pullbacks. Let B’ be metric and B: B' — B be a continuous G-map. If
1 is compactly fixed over B, then its pullback over B, f: V' — M x E', has a
transfer ., which makes the diagram

B*

he(Fix(f)) —2— h(Fix(f"))
(1.12) o| |+
prB) L BB

commutative, where B: Fix(f') — Fix(f) is induced by B and p = [M]-[N] €
RO(G). O

As a special case of 1.11, we obtain

1.13. Homotopy. If g: W — N x E, W C M x E, is compactly fixed over
B x I, where E — B x1I isa G-ENR,, , and if g: W, — N x E, is the part
of g over B x {t} ~ B, then the following diagram commutes:

% (Fix(g)) —— hg(Fix(g,))

. I+

WP(BxI) —— KW (B)
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where p = [M]—[N] € RO(G) and the isomorphism at the bottom is induced
by the obvious homotopy equivalence between B and B x 1. 0O

1.14. Stability. If P is a G-module and e: P — P is a constant map (e.g.
e=0), then ex f: PxV — Px M x E is compactly fixed and, after identifying
Fix(e x f) = {0} x Fix(f) with Fix(f), we have Toxs = Tf° h;(Fix(f)) -
h;?(B). O

There is also a commutativity property for the transfer, which allows us to
pass to general G-ENRgs. It is as follows:

1.15. Commutativity. Let E = Lx B — B and E' = L' x B — B and let
Uc NxE, and U c E' be open and invariant. If f: U — M x E' and
g: U — E are G-maps over B such that

(IMXg)f

NxE>f'(MxU MxE

is compactly fixed, then also

f(1yxg)
_—

NxE >(1,xg)  (U) MxE

is compactly fixed, and if p = [M 1-[N]1€ RO(G), the transfer
Exgr Ro(Fix((1x 8)f)) — hg " (B)

coincides with the composition

R (Fix(1 x g))) = (Fix(f(1 x g))) ~222 hi(B),

where the isomorphism is given by a homeomorphism.
Proof. There is a homeomorphism

N x E>Fix((1 x g)f) ~ Fix(f(1 x g)) C N x E'

givenby (v, e)— (v, fz(y e)) if f(y e)=(fiy,e), /,(n,e) e MxE". Its
inverse is given by (v, €') — (¥, g(e')), as one may easily check.

Let

NXxExz,EdUx,U L MxEx,E

be given by y(u, ) = (f,(u), §), f,(w)), where f(u) = (f,(), /o) €
M x E'. We use the homotopy invariance to show that ‘L' = ‘L'(lx o and that
'c 1f(lx

We use ﬁrst the deformation

v, u) = (f,(u), tg fy(w) + (1= )g(u'), fo(w)).

A fixed point (u, «') of 7, satisfies y,(u, u') = (0, u,, u') (u = (4, u,) €
NxE),ie f(u)=0,u = fy(u) and u, = tgfy(u) + (1 — 1)g(«’), hence
=gu)= g/f,(u) . Therefore

Fix(y,) = {(u, u')|u € Fix((1 x g)f), v = fo(u)} = Fix((1 x g)f),
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thus it lies properly over B. Consequently %y = %yo = "t},l . But

nGu, )= (fi(w), g, fw)=((1xg)f(u), f,u),

thus y, is the restriction of

NxEx,E 2Ux,E L NxEx,E,
S(u, €)= ((1y x &) (W), fu)).
But 6 may be deformed by
S, u') = (1, x &)f(w), (1= 1) fy(w)).
A fixed point of J, satisfies f,(u) =0, gf,(u) = u, (1 —t)f,(u) = u’, so that
U, Fix(d,) is the image of
Fix((1 x g)f) x [0, 11— U x, E',
(u, 1) = (u, (1 -1)f,(u))
whence it lies properly over B. Hence %(IMX of = T 5= T 5 = ‘i:y .
By the symmetry of y, we also have 1,=1 f(,xg O
We are now in position to state the

1.16. Proposition and Definition. If p: E — B isany G-ENR,, M and N are
G-modules and V C N x E is open and invariant, then every continuous map
f:V — M x E admits a decomposition

lNXa

vyt M E

over B, where U isopenin NxLxB forsome G-module L. If f is compactly
fixed, then so also is

g=0,xa)p: U > MxLxB
M

where U’ is the open subset of U such that (1 u X @)B is defined there. So,
1, he(Fix(f)) — hi"™™™N(B) s defined. Moreover, ¢ depends only on f
and not on the decomposition f = (1, x a). Hence we define % 7 by

g

(O) hy,(Fix(f)) = by, (Fix(g)) —% hg,’(B).

Again, this transfer has the properties 1.10 through 1.15, as well as the fol-
lowing additional properties:

1.17. Additivity. If V =V, UV, is a union of open sets such that f,, = f|V,NV,
(and f) is compactly fixed, then f, = f|V| as well as f, = f|V, are compactly
fixed and

Tp=1p0 + 100 =1, iy hg(Fix(f)) - hg'(B),

where I Fix(fj) — Fix(f) and i,: Fix(f},) — Fix(f) are the inclusions. O
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1.18. Multiplicativity. If f:V — M xE and f:V' — M xE',V c N x
E,V' c N' x E', are both compactly fixed over B, then [ x, f:V x, V' —
(M xE)xyz (M xE)=(Me&M')x(E x,E') is also compactly fixed. Also
Fix(f % f') = Fix(f) x 5 Fix(f") and
T (2 Z)=1,(2) < 1(2),
where z € by (Fix(f)), z' € hy,(Fix(f')). O
1.19. hg(B) as a ground ring. ‘c’fY: hi,(X) — hi."’(B), as well as T h7(Fix(f))
— h7"”(B) are both homomorphisms of hg,(B)-modules, i.e.
Ty (x < p (b)) =Ty (x) = b

if p: X — B is the restriction of N x E — B, and analogously for t Iz

This follows from the fact that all maps inducing ‘cjf are maps over B. O

As a particular case of 1.19 (by taking x =1 € hg(X )), we obtain that the
composition

. X
(1.20) hi(B) 2 hi(X) - ™(B)

is multiplication by 1:}"(1) € hé(B) , as is also the composition
(1.21) hi(B) 2= he(Fix(f)) —5 hg,’(B)
multiplication by % (1) € h(B).

2. THE EQUIVARIANT INDEX

In this section, we define the index and show some of its properties. For a
situation such as (1.2) we have

2.1. Definition. For any G-invariant neighborhood X of Fix(f), the homo-
morphism

A * T}{ *+p
(2.2) It hg(B) — hg(X) —— hg "(B),
where the first arrow is induced by the projection X — B, does not depend
on X and is called the index homomorphism of f . If we assume that A, is a
multiplicative theory, then hg(B) is a commutative ring with 1 and 7 ; is a ho-
momorphism of modules over hg(B ). Therefore, I ; is completely determined
by the element

M]—[N

(2.3) 1) =1,(1) e B ™(B)

which we call the index of f. 2.2 and 2.3 are generalizations of the correspond-
ing concepts in [Do, and Pr,] and as in those cases, we have corresponding
properties of [ f and I(f), which follow from those of the transfer. We list
some of them.
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2.4. Localization in E. If W is open in V and Fix(f) C W, then f|W s
compactly fixed and Iy =1,,as well as I(fIW)=1(f). O

2.5. Localization in B. The index homomorphism factors as follows:

for any closed invariant subspace A of B such that Fix(f) C N x L x (B —4).
Hence the index 1(f) lives, in fact, in h;/ ™" ™8, 4). o

2.6. We have also the properties Additivity, Units, Pullbacks, Homotopy Invari-
ance and Commautativity, which follow directly from 1.17., 1.10., 1.11., 1.13.
and 1.15., respectively, as one easily checks. The reader should figure out the
corresponding statements.

2.7. Remark. An equivariant cohomology theory which qualifies for defining
the index is equivariant stable cohomotopy (see e.g. [Ko]) or its fixed point
theoretical version G-FIX". There, the index is a complete invariant up to
homotopy and every element in the theory is realizable as the index of a suitable
situation. In fact, for G-FIX® we have I(f) = [f] € G- FIX[M]_[N](B) (see
[Ul or Pr,]).

2.8. Remark. Let B = {x} and E = R" (with the trivial action of G). Given
an equivariant map

NxR'oV -4 MxR"

such that g_l(O) is compact (i.e. if g can be extended to the closure V', then
it has no zeroes on the boundary of V'), define the degree of g by

deg(g) = I(i — g) € G-FIXM M) > stab SV, 8Y),

where StabG(SN , sM ) denotes the group of equivariant stable homotopy classes
of G-maps from the one-point compactification of the G-module N into the
one-point compactification of the G-module M . (It is a fact easy to prove that
this degree coincides with the stabilization of the one defined in [IMV].)

2.9. Before concluding this section, let us write some formulas which allow
us to compute the index in some cases. Compare [Ul] for details (which are
essentially the same as for the case of degree zero). In what follows we shall
assume that B has trivial G-action. We recall the following

2.10. Theorem (cf. [Ul, I1.6.8]). Let p: E — B be a G-ENR, over G-trivial
base space B. Then there exists a finite filtration ¢ = Ey,C E, C---CE,_ | C
E, = E by closed G-ENR g-subspaces (or, equivalently, by G-cofibrations over
B) such that E;, — E,_, is the union of all orbits of E of a fixed type. O

The following lemma will also be of interest in the sequel.
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2.11. Lemma (cf. [Ul, 1I1.5.2])). Let f:V — M x E be a compactly fixed
G-map over a G-trivial space B,V C N x E, and let D c E be a closed
G- ENR g-subspace such that f(V 0 (N x D)) ¢ M x D. Then, the G-map
fD: V2 o MxD,vP = VN (N x D),fD = flVD, is compactly fixed and
the difference I1(f)—I(f b ) is the index of a compactly fixed map f,,, partially
defined on N x (E — D) over B.

Proof. Because of the localization in E, 2.4, we may restrict f to an open
G-invariant V such that its closure ¥V in N x E lies properly over B. V and
VP are G- ENR ,-spaces, thus the inclusion VP c v isa G-cofibration. Hence
there is a G-deformation d, of V' over B, relative to VP, such that d; l(VD )
is a G-neighborhood of P, we may also assume that d, remains stationary
outside of a neighborhood of yP , by modulating it via an equivariant sepa-
rating function for the closure U of a neighborhood U and the complement
V —W of alarger neighborhood W of V? in V. fo d,:V — MxE is hence
a G-homotopy of f over B, relative to Py (V — W). Its fixed point set is
a closed subset of W x I UFix(f) x I in V x I, and since W lies properly
over B, then it is compactly fixed. Consequently, I(fd,) = I(f). On the other
hand, using the additivity of the index,

1(fd,) = I(fd,|U) + I(fd,|(V - V")),

since the fixed points of fd, are either in V® or outside of U .

Finally, since the restriction of fd, to U lands into the G-ENR, D, an
easy application of the commutativity shows that its index coincides with the
index of the restriction fdllUD: UP - M xD,UP =Un (N x D), but this
last is equal to f P oo

2.12. If X is any G-space, H C G is a closed subgroup and (H) is its conju-
gation class, we shall use the following notation:

X" ={xex|G,oH}, X" ={xeXx|G)>H)},
Xt ={xex|G, 2 H}, X¥={xex|G,)2H)},
Xy ={xeX|G,=H}, Xy ={xeX|G,)=(H)},

where (H) C (K) means H is contained in some conjugate of K. Hence
Xy =Xx"-x" and X = X" - x@.

The difference sets of 2.10 consist of orbits of the same type, say H, C G.
So, E,-E,_| = E(H,)’ where (H|) < (H,) < --- < (H,) are the different
orbit types. The spaces E™) and E®Y) are closed G- ENR ;-subspaces. If
f:V>MxE,V openin N x E , is a compactly fixed G-map over a G-trivial
base space B,and M, N are trivial G-modules (say M =R”, N =R"), then
it induces the following G-equivariant situations:
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f.
\% ! -— ;
1 M X E; V.eNXE,
oy A
Vi | = MXxE, V. \SNXE,
(H)
V(H’) f - MXE(HI) V(H‘)CNXE(H')
/ f(H,)
V(ﬂ,) . MXE(H') V(Hf)CNXE (H,)

By Lemma 2.11, I(f,)—1(f,_,) is the index of a map which we shall call f(H) ,
defined on Ey = E-E,_, = EW) _gW)  The deformation d, of V; relative

to V,_, gives, when restricted to yH) , a G-deformation of y#H) relative to
v &) So, the difference I (f (H')) - I(f (E')) is the index of the restriction of
(f dl)(H') to V( H) and the shrinking of this map to M x Eqy, is precisely our
f( Hy- Therefore
I(f) = I(f;y) = 1) = 1(f*)

and since I(f) =), 1(f;)—I(f,_,) we have

2.13. Theorem (cf. [Ul, II1.5.4]). Let f: V — R" x E, be a compactly fixed
G-map over a G-trivial base space B. Then

1) = > - 179y e g " (B),

the sum taken over the finitely many orbit types around Fix(f). O

3. A LEFSCHETZ-HOPF THEOREM

3.0. In this section we shall prove a theorem which permits us to compute the
transfer in some cases as a trace of a suitable homomorphism. This theorem is
a generalization of the corresponding theorem (6.18) in [Do,] and as well, §6
and especially Lemmas (6.7), (6.10), (6.12) and (6.13) shall be used. We shall
use also all notation of the preceding sections.

3.1. Theorem (cf. [Dos, (6.18)]). Let f: N x V' — M xE andlet V' C E
open und invariant, be a compactly fixed G-map over B such that its image
f(N x V') is contained in M x K for some invariant subset K C V' which is

proper and hg-flat over B. If f is such that f_l(O x KYN(NxK)CBxK for
a ball B C N, then the composite homomorphism

he(K) = ho(B x K) < ho(Fix(f)) =% hg(B),
where j: Fix(f) Cc B x K, is given by the following trace formula
tj(a) = trace[x = a — (f1K)" (x)] € b, M (B),

where we denote by (f|K)" the following homomorphism of degree [M]—[N] €
RO(G) definedby f: Nx K - M x K

ho(K) 2 ho(M, M —0)x K) = hg((N, N —B) x K) = h(K)
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(since f~HOxK)N(NxK) C BxK, f maps (N-B)x K into (M —-0)xK).
In other words, the image of a € h;(K) under © 7J is the trace of the composite
hg(B)-endomorphism

. Y v - ¥

ho(K) L0 b (K) 2= b (K).
In particular, the index I(f) equals the trace of (f|K)": ilG(K) — kG(K).

Proof. We assume E = L x B. Since Bx K C N x E is proper there exists a
tube B, C N x E around B x K. Let X be a small open neighborhood of K
in V' and consider the diagram

(NXE,NxE-B,)—
(NXxE,NxE-BxK)

|
(N,N-B)x (E,E—-K)

U
(N,N-B)x (X, X - K) L (pr M 0)x (E,E-0)x, X
1 (projy, ) T (-id)x(d, iq)

(X, X—K)xy(M,M-0)x K~ (M, M—-0)x (X, X -K)xyK

where X is so small that / maps (N — B) x X into (M — 0) x K (cf. the
assumptions), and d(x, k)=x-k,q(x,k)=k,i: KCX.

The square is as in [Do;, (6.18)] not commutative, but by op. cit. (6.12) it
becomes commutative after application of ilG. Let £ € h;(X) and chase the
element s, x5, x& € WP (M M —0) x (E, E—0) %, X) from the right
to the left, where s,, € h[GM](M ,M-0),s, € h[L](L, L —-0) are the generators.
Along the upper part we get 17 X (p"¢) where p: Nx X — X is the projection;
following the bottom of the square we get

(—id x (d, i9))"(5y; x 5, x &) = (=id)"(5,4) x Y _(a, ® (B, < i&))

v

€ hg”]-i-[lz]((M’ M_O) X (X’ X—K)) ®hG(B) illG(K)a

where «, and B, are as in the proof of op. cit. (6.10). Hence, by op. cit. (6.7),
the image of this element in hg”]’L[L]“(N xE,NxE-B,)) = h’G+[M]_[N](B)
coincides with the trace of the following endomorphism of izG(K ):

x =Y (=18, ~1&))r(a, ~ f(s) x X))

=€) < [ D=1 ya, < f(s), % D)
where y: (N x E, N x E-Bx K) = h;7™M(E, E - K) — b7 ™M) is
(up to the isomorphism) so defined as in the proof of op. cit. (6.10). As in op.
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cit. (6.17), the bracket [---] = (f]K)"(x) for (f|K)" as defined in (3.2). Thus
77" (p"¢) = trace(x + (i(&) U (f1K)" (x)))

since t} ¥ (p*¢) = %j(i(¢)) and every a € H,(K) is of the form a = i(¢) (for

some small X and ¢ € h;(X)), the theorem follows. O

3.3. Remark. The last part of the statement of the theorem, concerning the
index of a self-map of a proper ki -flat G-ENR, follows in a very neat way
from [DP, 4.4]. All details are given in [Pr,], where a thorough description of
the monoidal stable homotopy category of G-ENR,s following [DP] is also
given.

3.4. Remark. [Do,, (6.17)] looks as follows

Sy XX = Z(—l)""”Llﬂ”| |'flﬂyy[ozu — (85, x X)], X € hg(K).
v
3.5. Remark. If N =0 and M # 0, then one easily proves that f, as in 3.1,
can be deformed to a fixed point free map, hence I(f) =0 (cf. [Pr,, 4.24(c)]).
On the other hand, the homomorphism (f|K)" as in (3.2) is also zero, since
the deformed map restricted to K factors then through (M —0)x K ¢ M xK .

3.6. Example. Let X be a compact ENR and F: I x X — X a homotopy
such that the maps fj, fi: X — X; fy(x) = F(0, x), f/(x) = F(1, x) are
fixed point free. The question whether F can be deformed without altering
Jo» f; to a fixed point free homotopy can be answered as follows. F obvi-
ously determines a compactly fixed map F: R x X — X . The obstruction to
deform F as wanted is I(F) € h_l(*) for each cohomology theory 4" . By the
Lefschetz-Hopf Theorem 3.1,

I(F) = trace (F": h™(X) £ h™((1, 81) x X) = "~ (X)).

In particular, if we takeA™ = =, , stable cohomotopy, the obstruction can be
computed as a trace lying in Z, . (This answers a question posed by Geoghegan.)

4. COMMENTS

4.0. We shall shortly sketch what the corresponding ideas should be if we use
Becker. and Gottlieb’s treatment, instead of Dold’s approach to the transfer.

We shall be interested in G-fibrations p: E — B such that B is a finite
dimensional G-complex and each fiber is H-homotopy equivalent to a finite
H-complex, for G a compact Lie-group, H a suitable subgroup (see [Wa]) of
G . The situations we are interested in are commutative triangles

SYAE—L_SYAE

(4.1) ~_. —

B

where SM , SY are the one-point compactifications of the real representations
M, N and E = EUB. Here S¥ AE is short for (S™ x B)AgE , where Ay is
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smash product of ex-spaces of B and SY x B is seen as an equivariant ex-space
with the natural section at oo . For simplicity we only write A instead of A,.

In order not to make the section too long, we shall consider the nonequivari-
ant case, although with the due care it carries over to the general case as already
done by Waner [Wa] or by Lewis et al. [LMM] in the case M = N = 0. We
shall here use freely all duality results of [BG].

Hence, for M = R™, N = R" we denote S and SV simply by S” and
S" . Let us thus consider commutative triangles

S"AE—L-S"AE
(4.2) ~. _—
B

such that f preserves the section.
Let u: S°’xB — EAE be a duality map (coevaluation) and i: EAE — S*xB
its dual (evaluation). Consider the sequence of maps of ex-spaces

(S"AS)x B LU S"ANENE LD EAS"AEAE
B EAS"AS = (S"AS)AE
where the second arrow sends tAeAé—eA f(tAhe)ANé.
If A C B is asubcomplex, then the composite (4.3) maps S"AS’ x AU{oo} x B

into S"AS' x E,U{o0} x B, E, = p~'4, since all maps are ex-maps of B.
Thus 4.3 induces a map

(4.3)

(4.4) 1,: 8" A(B/4) - S"" N(E/E,)
which in cohomology defines a homomorphism

(4.5) 1, (E,E,)—h"" (B, A).
In particular, if 4 = ¢,

(4.6) 0 h(E) — k™" (B).

4.7. Remark. In light of the paper of Dold and Puppe on duality, trace and
transfer [DP], one sees that (4.6) is the same homomorphism as rf, of §2, if
p: E— B isan ENR, and

R'xEcV—L R"xE

T~

B
. . —1 m m m, n n,r
is the restrictionof fto V=f (R"xE),R"xECS"AE,R " xE CS"AE.

4.8. Remark. As done in [Pr,;] one can give an alternative construction of
the equivariant stable category by defining suspensions as products with
(M, M —0). In this category, the maps (1) and (2) in (1.3) are invertible;
therefore, the transfer is given by a stable map

T/,:B—»X
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of degree p = [M]—[N] € RO(G), which, as it is the case in 4.0, is represented
by a map of pairs

(NxS,NxS-0)xB->(MxS,MxS-0)xX

for a large enough G-module S. Analogously, the index homomorphism is
induced by the stable map

I E B— B
of degree p, which is the result of composing 7 7 with the projection X — B.

4.9. Remark. The equivariant transfer defined in §1 generates the equivari-
ant stable homotopy category of G-ENRs. One may prove a generalization
of Schifer’s results [Sch, Kap 5], showing that every stable map of degree
[M]—-[N] € RO(G), as in [Pr,], factors through a transfer and a map in the non-
stable equivariant homotopy category. Details about these results will appear
elsewhere.

4.10. Example. Let p: E = S — S? be the identity, where S* = C U {oo}
is the Riemann sphere, and let f: C — C x S? be such that f(z) = (", 2).
Then, if A" is ordinary cohomology with Z-coefficients, the only relevant part
of the transfer is

v, H(SY) — H'(S))

and (1) = I(f) = n € Z= H*(S) (cf. [Pr,, 4.27]).

4.11. For the case of an infinite dimensional base space B the correct set up
is duality in the category of spectra, as done by Clapp in [C]] or its equivariant
analogue (see e.g. [DP or LMS]).
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