

Nonlinear Analysis, Theory, Methods & Applications, Vol. 30, No. 6, pp. 3475–3480, 1997 Proc. 2nd World Congress of Nonlinear Analysis © 1997 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0362-546X/97 \$17.00 + 0.00

PII: S0362-546X(96)00258-1

# A SUM FORMULA FOR STABLE EQUIVARIANT MAPS

# CARLOS PRIETO

Instituto de Matemáticas, UNAM

04510 México, D.F. MEXICO

Key words and phrases. Stable equivariant homotopy, generalized fixed point situations, fixed point transfer, Lie-group actions, metric spaces, categories.

# 1. INTRODUCTION

The purpose of this report is to show a formula to decompose equivariant stable maps as a sum of its restrictions to certain fixed point sets under the action.

More precisely, H. Ulrich [3] showed a decomposition formula for the equivariant fixed point index which expresses it as a sum of indices of restrictions to certain fixed point classes under subgroups of the compact Lie group acting. In this paper, we show a similar formula, but instead of for the equivariant index, it is proved for any equivariant stable map  $\alpha: X \to Y$ .

#### 2. PRESENTATION OF THE MAIN RESULT

Throughout the paper, G will represent a compact Lie group and all spaces will be G-metric spaces.

**Definition 2.1.** Let X and Y be metric G-spaces and let M, N and K be G-modules, that is real, finite dimensional vector spaces provided with a linear G-action. Consider equivariant maps of pairs

$$f: (N \oplus K, N \oplus K - 0) \times X \rightarrow (M \oplus K, M \oplus K - 0) \times Y$$

and let K vary in a cofinal set of G-modules closed under direct sum, leaving M and N fixed. If

$$f': (N \oplus K', N \oplus K' - 0) \times X \to (M \oplus K', M \oplus K' - 0) \times Y$$

is another such map, we declare them as stably equivalent if there exist G-modules L and L' in the cofinal set such that

$$K \oplus L \cong K' \oplus L'$$

and the suspensions

$$f \oplus 1_L : (N \oplus K \oplus L, N \oplus K \oplus L - 0) \times X \to (M \oplus K \oplus L, M \oplus K \oplus L - 0) \times Y$$

and

$$f' \oplus 1_{L'} : (N \oplus K' \oplus L', N \oplus K' \oplus L' - 0) \times X \to (M \oplus K' \oplus L', M \oplus K' \oplus L' - 0) \times Y$$

are G-homotopic, up to the canonical homeomorphism. We denote the class of f by  $\{f\}$ .

The main theorem of this report now reads as follows.

THEOREM 2.2. Let X be a G-trivial space and let  $\alpha : X \to Y$  be k-stable G-map. Then

$$\{\alpha\} = \sum \{\alpha^{(H)}\} - \{\alpha^{(\underline{H})}\},\$$

where  $\{\alpha^{(H)}\}: X \to Y^{(H)} \subset Y, \{\alpha^{(\underline{H})}\}: X \to Y^{(\underline{H})} \subset Y$ , both stably.

In the next section, we shall settle the elements to understand (see 4.1) and prove the main theorem, and in section 4 we sketch the proof of the result.

# 3. The RO(G)-graded categories

In this section we shall sketch the definition of the RO(G)-graded equivariant stable homotopy category and the RO(G)-graded equivariant fixed point category, as defined in [2]. This category is equivalent to the more usual equivariant stable homotopy category defined in terms of regular suspensions defined by smashing pointed G-spaces with G-spheres, that is, with one-point compactifications of G-modules.

In the previous section we already defined the equivariant stable equivalence class of a map  $\{\alpha\}$  2.1. We show here how it fits into a category.

First of all, we shall understand under an RO(G)-graded category, a category whose morphism sets are graded by the elements of the real representation ring RO(G) of the compact Lie group G and the composite of a morphism of degree  $\rho \in RO(G)$  and a morphism of degree  $\sigma \in RO(G)$ , if defined, has degree  $\rho + \sigma \in RO(G)$ .

**Definition 3.1.** Two classes  $\{f\} : X \to Y$  of degree [N] - [M] and  $\{g\} : Y \to Z$  of degree [L] - [K] are composed as follows.

Let  $\{f\}$  be represented by

$$f: (M, M-0) \times X \to (N, N-0) \times Y$$

and  $\{g\}$  be represented by

$$g: (K, K-0) \times Y \rightarrow (L, L-0) \times Z$$

Then the composite  $\{g\} \circ \{f\} : X \to Z$  is constructed as follows. Let P and Q be G-modules such that  $P \oplus N$  and  $Q \oplus K$  are isomorphic. Then  $\{g\} \circ \{f\}$  is represented by

$$(1_Q \oplus g) \circ (1_P \oplus f) : (P \oplus M, P \oplus M - 0) \times X \to (Q \oplus L, Q \oplus L - 0) \times Z,$$

the composite taken up to the induced homeomorphism between  $(P \oplus N, P \oplus N - 0) \times Y$  and  $(Q \oplus K, Q \oplus K - 0) \times Y$ . This morphism has degree  $[Q \oplus L] - [P \oplus M] = ([N] - [M]) + ([L] - [K])$ . Then we have a category G-Stab<sup>\*</sup>, whose morphisms are stable G-homotopy classes of G-maps.

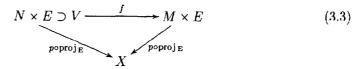
The other category relevant for this report is the RO(G)-graded equivariant fixed point category G- $\mathfrak{Fir}^*$  built up with fixed point situations.

3476

First recall the concept of a *G*-Euclidean neighborhood retract over X, a *G*-ENR<sub>X</sub>, for X a metric *G*-space. It is, namely, a continuous *G*-map  $p: E \to X$  such that there exists a (real) *G*-module *L*, a *G*-invariant open set  $U \subset L \times X$  and *G*-maps  $i: E \to U$  and  $r: U \to E$  commuting with the projections into X, that is,  $\operatorname{proj}_X \circ i = p$  and  $p \circ r = \operatorname{proj}_X$ , and are such that  $r \circ i = \operatorname{id}_E$ .

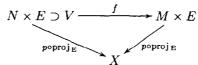
We shall be dealing with fixed point situations according to the following definition.

**Definition 3.2.** A fixed point situation over X is a commutative diagram

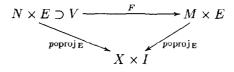


where  $p: E \to X$  is a G-ENR<sub>X</sub>, M and N are G-modules, V is an invariant open subset of  $N \times E$  and f is compactly fixed, that is, the coincidence set  $Fix(f) = \{(y, e) \in V \mid f(y, e) = (0, e)\}$  lies properly over X, that is, the preimage of every compact set in X is compact in Fix (f).

In order to define the category G-Fig\* we need a little more. Let  $\rho = [M] - [N] \in RO(G)$  be given and let



be a fixed point situation. On the other hand, take a (nonstable) map  $\varphi$ : Fix (f)  $\rightarrow$  Y and consider the pair  $(f, \varphi)$ . Two such given pairs  $(f_0, \varphi_0)$  and  $(f_1, \varphi_1)$  are said to be *homotopic* if there exists a fixed point situation over  $X \times I$ .



and a map  $\Phi$ : Fix (F)  $\rightarrow$  Y, such that the pair (F,  $\Phi$ ), when restricted to each bottom and top of the cylinder  $X \times I$ , yields the two given pairs. Denote the homotopy class of  $(f, \varphi)$  by  $\{f, \varphi\}$  and call it class of degree  $\rho$ .

**Definition 3.4.** The category G-fig\* is defined as follows:

Its objects are G-ENRs. If X and Y are two objects, then a morphism of degree  $\rho$  from X to Y is a class

$$\{f,\varphi\}: X \to Y$$

of degree  $\rho$ , as defined above. The identity morphism is simply the class of degree 0 {id<sub>X</sub>, id<sub>X</sub>}, but the composition operator is delicate to define and we refer the reader to [2].

The important fact is that both categories G-Stab<sup>\*</sup> and G-Fix<sup>\*</sup> are isomorphic (see [2] Theorem 3.2). In fact, we can give a functor

$$u:G\operatorname{-}\mathfrak{Fix}^* o G\operatorname{-}\mathfrak{Stab}^*$$

which is the identity on objects and on morphisms it sends a class  $\{f, \varphi\}$  to the composite

$$X \xrightarrow{\tau(f)} \operatorname{Fix}(f) \xrightarrow{\varphi} Y$$

where  $\tau(f)$  denotes the equivariant fixed point transfer of f, which is an equivariant stable map of degree  $\rho$ , as defined in [1], and  $\varphi$  can be considered as an equivariant stable map of degree 0. (To be more precise, since, in fact,  $\tau(f) : X \to W$ , for any neighborhood W of Fix (f), one has to extend, by the Tietze-Gleason Lemma,  $\varphi$  to an equivariant map defined over W, and then compose.)

In particular, this proves the following result.

PROPOSITION 3.5. For any stable map  $\{\alpha\} \in G$ -Stab<sup>[M]-[N]</sup>(X, Y) there exists a unique class  $\{f, \varphi\}$  of degree [M] - [N], where  $f: V \to M \times E$  is a fixed point situation over X and  $\varphi$ : Fix  $(f) \to Y$  is an equivariant nonstable map, such that  $\{\alpha\}$  factors as

$$\{\alpha\} = \varphi \circ \tau(f) \,.$$

This result has as a consequence that several properties of the transfer can be shown for more general stable maps. This is what we shall apply in the next section.

### 4. PROOF OF THE MAIN THEOREM

We shall prove the main theorem 2.2 in what follows. First of all, let us consider some definitions.

**Definition 4.1.** Let Y be any G-space,  $H \subset G$  a closed subgroup and (H) its conjugation class. We use the following notations.

where  $G_y$  is the isotropy group of the point y and  $(H) \subset (K)$  means H is contained in some conjugate of K. Therefore  $Y_H = Y^H - Y^{\underline{H}}$  and  $Y_{(H)} = Y^{(H)} - Y^{(\underline{H})}$ . For equivariant maps  $f : X \to Y$ , the maps  $f^H$ ,  $f^{\underline{H}}$ ,  $f^{(H)}$  and  $f^{(\underline{H})}$  are the corresponding restrictions.

Theorem 2.13 in [1] is the natural model for the important lemma to our proof. It reads as follows.

THEOREM 4.2. Let  $E \to X$  be a G-ENR<sub>X</sub> with X a G-space with trivial action and let  $V \subset \mathbb{R}^n \times E$  be open and invariant. Let, moreover,  $f: V \to \mathbb{R}^m \times E$  be compactly fixed. Then the equivariant fixed point index of f decomposes as follows.

$$I(f) = \sum (I(f^{(H)}) - I(f^{(\underline{H})})) \in h_G^{m-n}(X),$$
(4.3)

the sum taken over the finitely many orbit types around Fix(f), where  $h_G^*$  is an RO(G)-graded G-cohomology theory.

3478

Our lemma, which extends 4.2, is the following (cf. 4.2 in [2]).

LEMMA 4.4. Let  $E \to X$  be a G-ENR<sub>X</sub> with X a G-space with trivial action and let  $V \subset \mathbb{R}^n \times E$  be open and invariant. Let, moreover,  $f: V \to \mathbb{R}^m \times E$  be compactly fixed. Then the equivariant transfer of f decomposes as follows.

$$\tau(f) = \sum (\tau(f^{(H)}) - \tau(f^{(\underline{H})})) : h^*(W) \to h_G^{*+m-n}(X),$$
(4.5)

for W an invariant neighborhood of Fix (f) in  $\mathbb{R}^n \times E$ , the sum taken over the finitely many orbit types around Fix (f), where  $h_G^*$  is any RO(G)-graded G-cohomology theory. In particular, the decomposition formula holds for the transfer  $\tau(f)$  seen as a stable map  $X \to \text{Fix}(f)$ , and the sum is taken in G-Stab<sup>m-n</sup>(X, Fix(f)).

Now our proposition 3.5 can be applied to prove the desired result 2.2.

*Proof:* Decompose  $\{\alpha\}$  as  $\varphi \circ \tau(f)$ . By the last lemma,

$$\tau(f) = \sum (\tau(f^{(H)}) - \tau(f^{(\underline{H})})).$$

Therefore,

$$\varphi \circ \tau(f) = \sum (\varphi \circ \tau(f^{(H)}) - \varphi \circ \tau(f^{(H)}))$$

hence

$$\{\alpha\} = \sum \{\alpha^{(H)}\} - \{\alpha^{(\underline{H})}\},\$$

where  $\{\alpha^{(H)}\}: X \to Y^{(H)} \subset Y, \{\alpha^{(\underline{H})}\}: X \to Y^{(\underline{H})} \subset Y$ , since  $\tau(f^{(H)}): X \to \text{Fix}(f)$  factors through  $\text{Fix}(f^{(H)}) \subset \text{Fix}(f)$  and  $\tau(f^{(\underline{H})}): X \to \text{Fix}(f)$  factors through  $\text{Fix}(f^{(\underline{H})}) \subset \text{Fix}(f)$ ;

$$\begin{array}{lll} \varphi \circ \tau(f^{(H)}) & = & \varphi^{(H)} \circ \tau(f^{(H)}), \\ \varphi \circ \tau(f^{(\underline{H})}) & = & \varphi^{(\underline{H})} \circ \tau(f^{(\underline{H})}); \end{array}$$

$$\begin{array}{lll} \{\alpha^{(H)}\} &=& \varphi^{(H)} \circ \tau(f^{(H)}) : X \to Y^{(H)} \subset Y, \\ \{\alpha^{(\underline{H})}\} &=& \varphi^{(\underline{H})} \circ \tau(f^{(\underline{H})}) : X \to Y^{(\underline{H})} \subset Y. \end{array}$$

Let  $X = *, Y = \mathbb{S}^{L}$ , where L is a G-module and let  $\{\alpha\}$  be as before. An interesting corollary of the main theorem is the next.

 $\text{Corollary 4.6. } \{\alpha\} = \sum (\{\alpha^{(H)}\} - \{\alpha^{(\underline{H})}\}) \in G \text{-}\mathfrak{Stab}^k(*, \mathbb{S}^L) = \pi^G_{-k}(\mathbb{S}^L).$ 

This shows a decomposition formula for elements in the G-equivariant stable homotopy groups of G-spheres.

# References

- 1. C. PRIETO & H. ULRICH, Equivariant fixed point index and fixed point transfer in nonzero dimensions, Transactions of the Amer. Math. Soc. 328, 731-745 (1991)
- 2. C. PRIETO, Transfers generate the equivariant stable homotopy category, Topology and its Appl. 58, 181-191 (1994)
- 3. H. ULRICH, "Fixed Point Theory of Parametrized Equivariant Maps", Lect. Notes in Math. 1343, Springer-Verlag Berlin Heidelberg 1988

e-mail: cprieto@math.unam.mx

3480