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Abstract

We give a proof of the Bott periodicity theorem, along the lines proposed by McDuff, based on
the construction of a quasifibration over U with contractible total space andZ×BU as fiber. 1999
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1. Introduction

The periodicity theorem of Raoul Bott is one of the most important results in algebraic
topology. This theorem is used to defineK-theory, which is a generalized cohomology
theory that has enormous impact in topology, geometry and analysis. Bott’s original proof
[5] used Morse theory (see also [11]). The proofs of Toda [21], Cartan and Moore [8] and
Dyer and Lashof [10] were based on homological calculations with spectral sequences.
Atiyah and Bott [3] (see also [14,22]) obtained the result from a study of bundles over
the product spaceX × S2, in terms of bundles overX. In [2] Atiyah gave a proof
using the index of a family of linear elliptic differential operators (cf. also [4]). More
recently, other proofs have appeared. Kono and Tokunaga [15] use cohomology and Chern
classes; Latour [16] works with the space of Lagrangians; Giffen [12] and Harris [13] use
classifying spaces of categories defined via simplicial spaces; and Bryan and Sanders [7]
and Tian [20] use moduli spaces of instantons. In this paper, we give a proof which uses
only quasifibrations and linear algebra (and some basic differential topology). It is based
on a very beautiful idea of McDuff [17], whose program we develop. This proof is both
simpler and more elementary than previous proofs.
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We shall construct a quasifibrationp : E→ U over the infinite-dimensional unitary
group, such that its total space E is contractible and hasZ × BU as fiber. This way, we
obtain a long exact sequence

· · ·→ πi(Z×BU)→ πi(E)→ πi(U)

(1.1)→ πi−1(Z×BU)→ πi−1(E)→ ·· · ,
whereπi(E)= 0= πi−1(E), so that, fori > 1,

πi(U)∼= πi−1(Z×BU)∼= πi−1(BU), (1.2)

and, fori = 1,

π1(U)∼= Z. (1.3)

For the time being, one has (locally trivial) fibrations Ek(C∞)→ BUk with fiber Uk ,
where the base spaces are the classifying spaces of the unitary groups given by the colimits
of Grassmann manifolds, and the total spaces are the corresponding colimits of Stiefel
manifolds, such that, by passing again to the colimit, they determine a (locally trivial)
fibration EU→ BU with EU a contractible space and U as fiber (see [19]).

On the other hand, consider thepath space

PBU= {ω : I → BU | ω(0)= x0
}

of BU, wherex0 ∈ BU is the base point. One knows that PBU is contractible and the map
q : PBU→ BU, such thatq(ω)= ω(1), is a Hurewicz fibration with fiberΩBU.

Clearly, if p :E→ B is a quasifibration with fiberF , andp′ :E′ → B is a Hurewicz
fibration with fiberF ′, such that their total spaces are contractible, then there is a weak
homotopy equivalenceF → F ′. Moreover, their homotopy groups satisfyπi−1(F ) ∼=
πi(B) ∼= πi−1(F

′), i > 1. Therefore, by [18] and the Whitehead theorem, one obtains
homotopy equivalencesΩBU'U andZ×BU'ΩU. So we have isomorphisms

πi−2(U)∼= πi−2(ΩBU)∼= πi−1(BU), i > 2.

Whence, we obtain the desired theorem, as stated below.

Theorem 1.4 (Bott periodicity).There is a homotopy equivalenceZ×BU'ΩU; hence,
for i > 2 there is an isomorphism

πi(U)∼= πi−2(U),

or, equivalently,

πi(BU)∼= πi−2(BU).

Or, in other terms, again by (1.2) one has that

πi(Z× BU)∼= πi+1(U)∼= πi+1(ΩBU)∼= πi(Ω2BU);
i.e., we obtain an isomorphism

πi(Z× BU)∼= πi(Ω2BU),
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which is another usual version of Bott periodicity. In particular, from (1.3) and Theo-
rem 1.4, we obtain that

πi(BU)=
{
Z if i is even,
0 if i is odd.

2. Preliminaries

Let−∞6 p6 q 6∞ (not three of them equal) and define

Cqp =
{
z :Z→C | zi = 0 for almost alli and if i 6 p or i > q

}
,

with the usual topology in the finite-dimensional case and the topology of the union
in the infinite-dimensional case. Therefore,Cq0 = Cq , C∞0 = C∞, C1

0 = C, C0
0 = {0},

etc. All spacesCqp are then subspaces ofC∞−∞. With these definitions, we have that if
−∞<p 6 q <∞, then dimCqp = q −p; moreover, ifp 6 q 6 r, thenCqp ⊕Crq =Crp .

We have the Grassmann manifold Gn(Cq0)= {W |W is a subspace ofCq0 of dimension
n} and BUn = Gn(C∞0 ) = colimq Gn(Cq0), where the colimit is taken with respect to the
maps

Gn(Cq0)→Gn(Cq+1
0 )

given by sendingW ⊂Cq0 toW =W ⊕ 0⊂Cq0 ⊕Cq+1
q =Cq+1

0 . Hence, BUn can be seen
as the set{W |W is a subspace ofC∞0 of dimensionn}.

If L is any linear operator, then we shall denote byE1(L) = ker(L − I) the space of
eigenvectors ofL with eigenvalue 1.

Definition 2.1. Givenk ∈ Z we define theshift operatorby k coordinates

tk :C∞−∞→C∞−∞
by tk(z)i = zi−k . These shift operators are continuous isomorphisms such thatt0 = I and
tk ◦ tl = tl ◦ tk = tk+l .

Definition 2.2. Given n, there is a mapjn+1
n : BUn → BUn+1 sendingW ⊂ C∞ to

C⊕ t1(W)⊂C∞. So, we define BU as

BU= colim
k

BUk.

In order to compare this definition with a different way of stabilizing, we have to prove
a lemma. But before that, we give a definition.

Definition 2.3. TakeW ⊂ Clk and letm be such thatCmk ⊂W . ThenW/Cmk will denote
the orthogonal complement ofCmk in W , i.e., if {ek+1, . . . , em} is the canonical basis for
Cmk , we complete it to an orthonormal basis{ek+1, . . . , em,w1, . . . ,wq } ofW ; thenW/Cmk
is spanned by{w1, . . . ,wq} and we have thatCmk ⊕ (W/Cmk )=W .
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Lemma 2.4. There is a homeomorphism

Φ : BU→ BU 0= {W ⊂C∞0 | dimW <∞ andCk0⊂W ⇔ k = 0
}
.

Proof. TakeW ∈ BUn and letk be the largest integer such thatCk0⊂W . DefineΦn(W)=
t−k(W/Ck0) ∈ BU 0. Obviously, the mapΦn : BUn→ BU 0 determines in the colimit the
desired mapΦ.
Φ is surjective, since, ifW ∈ BU 0 and dimW = n, thenW ∈ BUn andΦn(W) =W ,

because in this casek = 0. (In fact, the mapΨ : BU 0→ BU such thatW 7→ W is the
inverse.)

It is also injective, since, ifV ∈ BUm andW ∈ BUn are such thatΦm(V ) = Φn(W),
then, ifp andq are the largest integers such thatCp0 ⊂ V andCq0 ⊂W , one has

t−p(V/Cp0)= t−q(W/Cq0). (2.5)

Therefore, the dimensionsm− p andn− q coincide. Without losing generality, we may
assume thatp 6 q , so that, in particular,q − p = n−m> 0. Applying tq and addingCq0
on the left to both sides of (2.5), yields, on the left,

Cq0 ⊕ tq−p(V/Cp0)=Cq−p0 ⊕Cqq−p ⊕ tq−p(V/Cp0)
=Cq−p0 ⊕ tq−p(Cp0 ⊕ V/Cp0 )=Cq−p0 ⊕ tq−p(V ),

which is the image ofV in BUm+q−p = BUn; and, on the right,

Cq0 ⊕ t0(W/Cq0)=W ;
hencejnm(V )=W , wherejnm = jnn−1 ◦ · · · ◦ jm+1

m , and, thus,V andW represent the same
element in BU. 2
Definition 2.6. Define B̃U = {W | Cp−∞ ⊂ W ⊂ Cq−∞,−∞ < p 6 q <∞}, which is
covered by the subspaces̃BUp = {W ∈ B̃U |Cp−∞ ⊂W andp is maximal}, p ∈ Z.

Clearly, the mapW 7→ C0−∞ ⊕ W determines a homeomorphismBU 0 → B̃U 0;
similarly, W 7→ t−k(W) determines a homeomorphism̃BU k → B̃U 0, so that one has a
canonical homeomorphism

Z× B̃U 0→ B̃U

given by the composite(k,W) 7→ tk(W) ∈ B̃U k ↪→ B̃U. By Lemma 2.4, we have proved
the following.

Theorem 2.7. There is a homeomorphism

Z× BU→ B̃U.

We define an operatorU in C∞−∞ asunitary if 〈Uz,Uz′〉 = 〈z, z′〉 or, equivalently, if
UU∗ = I, the identical operator inC∞−∞, whereU∗ denotes the transposed conjugate
operator ofU . Let U= {U | U is unitary and of finite type}, where we understand by a
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unitary operator offinite typeone for which there existr < s such thatUei = ei if i 6 r or
i > s, where{ei} denotes the canonical basis inC∞−∞. In other words, a unitary operator
of finite type can be represented as a direct sum of the form

Ir−∞ ⊕ Ũ ⊕ I∞s ,

where Inm represents the identical operator or identity matrix onCnm and Ũ is a unitary
operator onCsr (or an(s − r)× (s − r) unitary matrix).

For convenience, we denote by Un theunitary groupof n× n matrices acting onCn/2−n/2
if n is even, and onC(n−1)/2

−(n+1)/2 if n is odd, and consider the inclusions

in+1
n : Un→Un+1

such that

U 7→ I−n/2−(n+2)/2⊕U
if n is even, and

U 7→ U ⊕ I(n+1)/2
(n−1)/2

if n is odd.
The inclusionsin : Un→ U such thatU 7→ I−n/2−∞ ⊕ U ⊕ I∞n/2 if n is even, andU 7→

I−(n+1)/2
−∞ ⊕U ⊕ I∞(n−1)/2 if n is odd, determine an isomorphism

colim
n

Un ∼=U.

Remark 2.8. Let S :C∞−∞→C∞0 be such that

Sei =
{
e2i if i > 0,
e2|i|+1 if i 6 0;

then the usual inclusionskn+1
n : Un→ Un+1 of the usual unitary groups acting onCn0 and

Cn+1
0 , respectively, such thatU 7→ U ⊕ In+1

n , and the induced inclusion in the colimit,
kn : Un→ U, up to a shuffling of the intermediate coordinates, inducein+1

n and in; that
is, essentially,in+1

n (U) = Skn+1
n (U)S−1, respectivelyin(U) = Skn(U)S−1. Therefore,

algebraically as well as topologically, the given definition of U coincides with the classical
one.

Before passing to the proof of the main result of this paper, let us state a criterion to
determine when a given map is a quasifibration, which is an easy consequence of theorem
[9, 2.15] (see also [1, A.1.19]).

Lemma 2.9. Let B =⋃n Bn, whereBn−1 ⊂ Bn is a closed subspace, with the topology
of the union and take a(surjective) mapp :E→ B. Assume that there are trivializations
p−1(Bn − Bn−1) ≈ (Bn − Bn−1) × F . Furthermore, assume that for everyn there is a
neighborhoodVn ofBn−1 in Bn and a strong deformation retractionrn :Vn→ Bn−1 in Bn
such that it has a lifting̃rn :p−1(Vn)→ p−1(Bn−1), inducing a homotopy equivalence on
the fibers. Thenp is a quasifibration.
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3. Proof of the main theorem

Before constructing the desired quasifibration mentioned in the introduction, we shall
study, more as a motivation, the finite-dimensional case; afterwards we shall show the
stabilization.

Recall that ann × n matrix C with complex entries isHermitian if C = C∗, where
C∗ denotes, as before, the transposed conjugate matrix ofC. If 〈−,−〉 denotes the
canonical Hermitian product inCn0, then for anyv,w ∈ Cn0, C satisfies the identity
〈Cv,w〉 = 〈v,Cw〉. This implies, in particular, that the eigenvalues of the matrixC are
real.

The set Hn(C) of all Hermitiann× n matrices has the structure of a real vector space.
Let En be the topological subspace of Hn(C) consisting of matrices whose eigenvalues lie
in the intervalI . The space En is contractible through the homotopyh : En× I → En such
that h(C, τ) = (1− τ )C, which starts with the identity and ends with the constant map
with value the matrix 0.

LetMn×n(C) be the complex vector space of complexn×nmatrices and let GLn(C) be
the subgroup of the invertible ones (general linear group). One has a (differentiable) map

exp :Mn×n(C)→GLn(C)

given by

exp(B)≡ eB =
∞∑
i=0

Bi

i! = In +B + B
2

2! + · · · ,

which fulfills the exponential laws, whenever the matrices taken as exponents commute
among themselves. One can easily check the following properties:

eT BT
−1 = T eBT −1

for any invertible operatorT , and

eD =
eλ1

. . .

eλn

 if D =
λ1

. . .

λn

 .
LetMa

n×n(C)⊂Mn×n(C) be the real subspace ofskew-Hermitianmatrices, that is, of
matricesA such thatA∗ = −A. If A is skew-Hermitian, then(eA)∗ = eA

∗ = e−A, so that

(eA)∗eA = e−AeA = e0= In.

Therefore, the map exp defined above restricts to

exp :Ma
n×n(C)→Un.
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One has an isomorphism Hn(C)→Ma
n×n(C), given byC 7→ 2π iC. We define a map

pn : En→Un, bypn(C)= exp(2π iC); then the diagram

Ma
n×n(C)

exp
Un

Hn(C)

∼=

En

pn

commutes.

Proposition 3.1. The mappn is surjective.

Proof. TakeU ∈ Un; we diagonalize this matrix taking another matrixT ∈ Un and the
productT −1UT . Since the eigenvalues of a unitary matrix have norm 1, we have that

T −1UT =


e2π iλ1 0

e2π iλ2

. . .

0 e2π iλn

 ,
whereλi ∈ I , i = 1,2, . . . , n. Take

D =


λ1 0

λ2
. . .

0 λn


and consider the matrixTDT −1. SinceT ∈Un, thenT −1= T ∗ and, therefore,

(TDT −1)∗ = (T DT ∗)∗ = TD∗T ∗ = TDT −1,

that is,TDT −1 is Hermitian; thus,TDT −1 ∈ En. Whence, we have that

pn(TDT
−1)= e2π i(TDT −1) = eT (2π iD)T−1 = T e2π iDT −1

= T


e2π iλ1 0

e2π iλ2

. . .

0 e2π iλn

T −1=U. 2 (3.2)

Let us now analyze the fibers ofpn. For this, given a matrixC ∈ En, consider the
subspaces ker(C − I) and ker(pn(C)− I).

If v ∈ ker(C − I), thenCv = v and one has that

pn(C)v = (e2π iC)v =
(

I + 2π iC + (2π i)2

2! C2+ · · ·
)
v

= Iv + 2π iCv + (2π i)2

2! C2v + · · ·
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= v + 2π iv + (2π i)2

2! v + · · ·

= (1+ 2π i + (2π i)2

2! + · · ·
)
v = e2π iv = v.

Therefore, ker(C − I) ⊂ ker(pn(C) − I). Hence, if U ∈ Un, we may define a map
g :p−1

n (U) → G(ker(U − I)), the Grassmann spaceof all finite-dimensional vector
subspaces of ker(U − I), which mapsC ∈ p−1

n (U) to the subspace ker(C − I)= E1(v).

Lemma 3.3. The mapg :p−1
n (U)→G(ker(U − I)) is bijective.

Proof. g is surjective; indeed, letV ⊂ ker(U − I) be a subspace. We wish to construct a
matrixCV ∈ p−1

n (U)⊂ En such that ker(CV − I)= V . For this, we construct a matrixT
diagonalizingU adequately.

Let {v1, . . . , vr , vr+1, . . . , vr+s} be an orthonormal basis ofE1(U) such that{v1, . . . , vr }
is a basis ofV . SinceU is unitary, the orthogonal complement ofE1(U) in Cn, E1(U)

⊥,
is an invariant subspace underU ; indeed, ifw ∈ E1(U)

⊥ andv ∈ E1(U), then〈Uw,v〉 =
〈w,U∗v〉 = 〈w,U−1v〉 = 〈w,v〉 = 0. That is,U(E1(U)

⊥) ⊂ E1(U)
⊥ and, therefore, we

may find an orthonormal basis{vr+s+1, . . . , vn} of E1(U)
⊥ built up by eigenvectors ofU ,

with eigenvalues different from 1.
Let T ∈ Un be such thatT ei = vi , i = 1, . . . , n, where ei denotes the vectors of the

canonical basis ofCn. ThenT −1UT = D̂ is a diagonal matrix,

D̂ =



1 0
. . .

1
e2π iλr+s+1

. . .

0 e2π iλn


,

with r + s ones in the diagonal and all other eigenvalues different from 1.
Take now

D =



1 0
. . .

1
0

. . .

0
λr+s+1

. . .

0 λn


,

with r ones in the diagonal and zeros in the placesr + 1 throughr + s.
We shall see thatCV = TDT −1 is the desired matrix. Clearly e2π iD = D̂, so that

pn(CV )= e2π iCV = eT (2π iD)T−1 = T e2π iDT −1= T D̂T −1= U.
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On the other hand, it is immediate to verify thatE1(CV ) = T (E1(D)). But E1(D) = {z ∈
Cn | zj = 0 for r < j 6 n}; sinceT ei = vi for i = 1, . . . , n andV is the subspace generated
by v1, . . . , vr , thenT (E1(D))= V .

To check that the mapC 7→ E1(C) is bijective, one only has to show thatC = CE1(C).
For that, observe that ifC is Hermitian, thenλ is an eigenvalue ofC if and only if e2π iλ

is an eigenvalue of e2π iC . To see this, letR ∈ Un be such thatD = R−1CR is a diagonal
matrix, then

R−1e2π iCR = eR
−12π iCR = e2π iR−1CR = e2π iD,

which is a diagonal matrix with an entry e2π iλ for each entryλ of D. Let nowC1,C2 ∈ En
be such that e2π iC1 = e2π iC2 and thatE1(C1) = E1(C2), thenC1 = C2. To see this, let
λ1, . . . , λn be the eigenvalues ofC1 andµ1, . . . ,µn those ofC2. SinceE1(C1)= E1(C2),
we may assume thatλk = µk = 1 for 16 k 6 r = dimE1(C1) and, then,λk 6= 1 6= µk if
r < k 6 n. As we proved before, e2π iλk and e2π iµk , 16 k 6 n, are the eigenvalues of e2π iC1

and e2π iC2, respectively. Consequently, e2π iλk = e2π iµk for all k and, takingr < k 6 n, this
implies thatλk = µk. We have proved, therefore, thatλk = µk for all k, so thatC1= C2.

If, in particular, we apply what we did toC1 = C andC2 = CE1(C), then we have that
C = CE1(C). 2

We may summarize all in the following theorem.

Theorem 3.4. Let En be the space of Hermitiann× n matrices whose eigenvalues lie in
the unit interval and letpn : En→Un be such thatpn(C)= e2π iC . ThenEn is contractible,
pn is surjective and the fiber over each matrixU ∈Un is homeomorphic to the Grassmann
space ofG(E1(U)).

Let us now study two ways of stabilizing this result. The usual one is to take the
canonical embeddingsρnn+1 : En→ En+1 andτnn+1 : Un→Un+1, given by

ρn(C)=
 C 0

0 0

 ∈ En+1,

and by

τn(U)=
 U 0

0 I

 ∈Un+1,

or as it was described above. It is immediate to check that the diagram

En

pn

ρnn+1 En+1

pn+1

Un
τnn+1

Un+1
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commutes. This way, one obtains a mapp′ : colimnEn→ colimnUn such thatp′ ◦ ρn =
p′|En = pn.

Let us now analyze the fibers ofp′. It is clear that ifU ∈ Un, then E1(τ (U)) =
E1(U)⊕C, and thatE1(ρ(C))= E1(C)⊕0; therefore, we have the following commutative
diagram:

p−1
n (U)

ρnn+1

∼=

p−1
n+1(τ (U))

∼=

G(E1(U)) δ
G(E1(U)⊕C)

whereδ(V )= V ⊕ 0. For instance, if we takeU = I, we haveδ : G(Cn0)→G(Cn+1
0 ). This

way, the fibers ofp′ are homeomorphic to
∐
r>0 Gr (C∞0 )=

∐
r>0 BUr .

Now we shall construct a new mapp : E→ U whose fiber will beZ × BU, which is,
in a certain way, a completion ofp′. We define an operatorC in C∞−∞ asHermitian if
〈Cz, z′〉 = 〈z,Cz′〉 or, equivalently, ifC = C∗. Let E= {C | C is Hermitian, of finite type
and with eigenvalues inI }, where we understand for a Hermitian operator offinite typeone
for which there existr < s such thatCei = 0 if i 6 r or i > s. In other words, a Hermitian
operator of finite type is a sum

0r−∞ ⊕ C̃ ⊕ 0∞s ,

where 0lk denotes the 0-operator onClk (the zero(l − k) × (l − k) matrix) andC̃ is a
Hermitian(s − r)× (s − r) matrix acting onCsr . Again, as En, E is contractible.

We can define a mapp : E→U by p(C)= exp(2π iC), that is

p(C)= Ir−∞ ⊕ e2π iC̃ ⊕ I∞s .

TakeU ∈U; the space of eigenvectors ofU with eigenvalue 1, ker(U − I), is obviously
Cr−∞ ⊕ ker(Ũ − Isr )⊕C∞s and, thus, isomorphic toC∞−∞. We define theGrassmannian

G∞
(
ker(U − I)

)= {W ⊂ ker(U − I) |Cr ′−∞ ⊂W and dim(W/Cr
′
−∞) <∞

}
.

We clearly have the following result.

Lemma 3.5. For eachU ∈U, there is a homeomorphism

ϕU : G∞(ker(U − I))≈ B̃U.

Analogously to Lemma 3.3, we have the following result.

Proposition 3.6. LetU ∈U. Thenp−1(U)≈ B̃U= Z×BU.

Proof. It is enough to show that there is a homeomorphism

gU :p−1(U)→G∞
(
ker(U − I)

)
.

Observe first that ifC ∈ E, thenVC = ker(C− I)= ker(C̃− Isr )⊂Csr . TakeC ∈ p−1(U),
then definegU(C)=Cr−∞ ⊕ VC ∈G∞(ker(U − I)).
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We shall now show thatgU is surjective. TakeW ∈ G∞(ker(U − I)); hence,W =
Cr ′−∞ ⊕ W̃ , with dimW̃ <∞.

Without loss of generality, we may assumer ′ = r. SinceW ⊂ ker(U − I) = Cr−∞ ⊕
ker(Ũ − Isr ) ⊕ C∞s , then, takings sufficiently large, one has that̃W ⊂ ker(Ũ − Isr ) =
E1(Ũ)⊂Csr .

As in Lemma 3.3, let{v1, . . . , vm} be an orthonormal basis of̃W , {vm+1, . . . , vm+n} an
orthonormal basis of the orthogonal complement ofW̃ in E1(Ũ) and{vm+n+1, . . . , vs−r }
an orthonormal basis of the orthogonal complement ofE1(Ũ) in Csr (which is invariant
underŨ ), this last built up by eigenvectors with eigenvalues different from 1.

If we defineT ∈U such that

T ei =
 e

i if i 6 r,
vi−r if r < i 6 s,
ei if i > s

we have thatT −1UT = D̂ is diagonal of the form

Ir+m+n−∞ ⊕
e2π iλm+n+1

. . .

e2π iλs−r

⊕ I∞s .

If we take now

D = 0r−∞ ⊕ Ir+mr ⊕ 0r+m+nr+m ⊕
λm+n+1

. . .

λs−r

⊕ 0∞s−r ,

we defineCW = TDT −1, which is such thatp(CW )= e2π iCW = T e2π iDT −1= T D̂T −1=
U . Moreover,gU(CW )=Cr−∞⊕ker(CW − I). The same argument as in Lemma 3.3 shows
that ker(CW − I)= W̃ , whencegU(CW )=W .

The mapgU is injective, since ifC1 andC2 are such that exp(2π iC1)= exp(2π iC2)=U
andE1(C1)= ker(C1− I)= ker(C2− I)= E1(C2); then we can prove in the same way as
in the corresponding part of Lemma 3.3 thatC1= C2. 2

In order to show thatp : E→ U is a quasifibration applying Lemma 2.9, we need two
facts. First, we shall see thatp|Un−Un−1 is trivial, that is, we will define a homeomorphism

h :p−1(Un −Un−1)→ (Un −Un−1)× B̃U,

such that proj1 ◦ h= p.
For this, assume thatn is even; the odd case is analogous. LetC be a matrix in

p−1(Un−Un−1); therefore,U = p(C) is of the form I−n/2−∞ ⊕ Ũ , where−n/2 is maximal,

i.e.,Ũ is not of the form I−n/2+1
−n/2 ⊕ Ũ ′.

Take the homeomorphismgU :p−1(U) → G∞(ker(U − I)), given in the proof of
Proposition 3.6. Since ker(U − I) = C−n/2−∞ ⊕ ker(Ũ − I∞−n/2), it depends continuously
onU , as does the homeomorphismgU . Analogously, one can choose the homeomorphism
ϕU : G∞(ker(U − I))→ B̃U of Lemma 3.5, depending continuously onU .
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Consequently, the maph defined byh(C)= (p(C),ϕ(C)), whereϕ(C)= ϕU(gU (C)),
is a homeomorphism, since, fiberwise, it is one.

Second, we have to show that there is a neighborhoodVn of Un−1 in Un and a strong
deformation retraction ofVn onto Un−1, which lifts to a strong deformation retraction of
p−1(Vn) ontop−1(Un−1) in p−1(Un). To see this, since Un−1 is a submanifold of Un, we
shall construct a tubular neighborhoodVn of the first in the second as follows.

Recall Hn(C), the space of Hermitiann× n matrices, and definef : GLn(C)→Hn(C)
by f (A) = A∗A. One can easily verify thatf is smooth and has I as a regular value;
therefore, Un = f−1(I) is a smooth manifold and ifW ∈Un, then the tangent space of Un
atW , TW(Un), is the kernel of the differential off atW , that is,

TW(Un)=
{
A ∈Mn×n(C) |A∗W =−W∗A

}
.

Now recall that there is a Hermitian product inMn×n(C), given by〈A,B〉 = trace(AB∗);
thus, taking the real part of this product, we get an inner productMn×n(C)×Mn×n(C)→
R. The restriction of this inner product to each tangent space TW(Un)⊂Mn×n(C) defines
a Riemannian metric on Un. Let i : Un−1 ↪→Un be the inclusion, such thati(U)=U ⊕ I ;
then the differential di : TU(Un−1)→ Ti(U)(Un) is an inclusion mapping a matrixR to
R⊕ 0, that is

di(R)=
(
R 0
0 0

)
.

One can easily check that the orthogonal complement of TU(Un−1) in Ti(U)(Un) is given
by

TU(Un−1)
⊥ =

{(
0 b

−b∗U it

)
∈Mn×n(C)

∣∣∣b =
 b1

...

bn−1

 ∈Cn−1 andt ∈R
}
,

which is a real(2n−1)-dimensional vector space. We denote byN =⋃U∈Un−1
TU(Un−1)

⊥,
the normal bundle of Un−1 in Un.

Any vector space basis of TI(Un) provides a parallelization of Un which defines a
connection on it. This connection does not depend on the chosen basis and determines
a spray on Un. By [6], there existsε > 0, such thatNε = {v ∈ N | ‖v‖ < ε} is an
open neighborhood of the 0-section, and the exponential map associated to the spray,
Exp :Nε → Un, is an embedding onto a neighborhood of Un−1 in Un. Now, since the
geodesics of this spray are the integral curves of the left-invariant vector fields, then
Exp(A) = LU exp((dLU)−1(A)), whereA ∈ TU(Un−1)

⊥, LU : Un → Un is given by
LU(W) = UW , and exp is the usual exponential map defined above. Evaluating the
differential ofLU , we obtain Exp(A)=U exp(U∗A).

Therefore, we have the following description of a tubular neighborhoodVn = Exp(Nε)
of Un−1 in Un as{

U exp

(
U∗

(
0 b

−b∗U it

))∣∣∣U ∈Un−1, (b, t) ∈Cn−1×R and‖(b, t)‖< ε
}
.
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In order to computeU exp(U∗
(

0 b

−b∗U it

)
), first note that

U∗
(

0 b

−b∗U it

)
=
(

0 U∗b
−b∗U it

)
.

Set

A(b, t)=
(

0 b

−b∗ it

)
.

Assumeb 6= 0. To diagonalize this matrix, one takes an orthonormal basis of eigenvectors
and uses it to form a matrix. Then×n matrixA(b, t) hasn−2 eigenvalues equal to 0 and
two eigenvaluesλ1, λ2, such that

λν = t + (−1)ν
√

4|b|2+ t2
2

i,

so that the matrix

W(b, t)=
(
v1 · · · vn−2 µ1b µ2b

0 · · · 0 µ1λ1 µ2λ2

)
,

where{v1, . . . , vn−2} ⊂ Cn−1 is an orthonormal basis of the spaceb⊥ = {v | v ⊥ b} ⊂
Cn−1 andµν = (|b|2+ |λν |2)−1/2, is a unitaryn× n matrix which satisfies

D(b, t)=W(b, t)∗A(b, t)W(b, t)=


0 0

. . .

0
λ1

0 λ2

 .
Since we can writeD(b, t) = W(b, t)∗UU∗A(b, t)UU∗W(b, t), and A(U∗b, t) =

U∗A(b, t)U , thenA(U∗b, t) = U∗W(b, t)D(b, t)(U∗W(b, t))∗. Therefore, the points in
the tubular neighborhood are of the formU exp(A(U∗b, t)) = UU∗W(b, t)exp(D(b, t))
W(b, t)∗U = exp(A(b, t))U .

Hence, every element inVn coming from the fiber overU in Nε is right translation by
U of an element coming from the fiber over I. It is thus enough to study the situation over
the identity matrix.

Since we may linearly deform the neighborhoodNε to the zero section, simply by
v 7→ (1− τ )v, 06 τ 6 1, we obtain a strong deformation retractionrτn :Vn→ Vn, such
that

rτn
(
exp(A(b, t))U

)= exp
(
A((1− τ )b, (1− τ )t))U.

Observe that forτ = 1, r1
n(exp(A(b, t))U) = exp(0)U = IU = U , so that it is a

retraction ofVn onto Un−1.
In what follows, we define the liftingr̃ τn :p−1(Vn) → p−1(Vn). Since fiberwise,

p−1(Vn) consists of spaces homeomorphic to the GrassmanniansG∞(E1(U
′)), U ′ ∈ Vn,

we will show howr̃ τn acts on these spaces. It is clearly enough to study the caseτ = 0.
TakeU ′ = exp(A(b, t))U ∈ Vn and letGU,b,t = G∞(E1(U

′)); we also have to show
that the restriction of the lifting̃r1

n , r̃1
n | :GU,b,t → GU,0,0 = G∞(E(U)) is a homotopy

equivalence.
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SinceE1(exp(A(b, t))U)= UE1(exp(A(U∗b, t)) and forb 6= 0, t 6= 0, E1(exp(A(U∗b,
t))) = C(n−4)/2

−∞ ⊕ C∞n/2, because eλ1 6= 1 6= eλ2, we have that the GrassmanniansGU,b,t
andGI,b,t differ only by left multiplication byU . It is thus enough to study the caseU = I,
namely the map

r̃ :G∞(C(n−4)/2
−∞ ⊕C∞n/2)→G∞(C∞−∞).

If V ⊂ C(n−4)/2
−∞ ⊕ C∞n/2 is a subspace, then we definer̃(V ) = V ⊂ C∞−∞, i.e., the map

induced by the inclusionC(n−4)/2
−∞ ⊕C∞n/2 ↪→ C∞−∞. The result now follows from the next

proposition.

Proposition 3.7. The inclusionCr−∞ ⊕ C∞s ↪→ C∞−∞, r 6 s ∈ Z, induces a homotopy
equivalence between the Grassmannians

α :G∞(Cr−∞ ⊕C∞s )→G∞(C∞−∞).

Proof. TakeV ∈ G∞(C∞−∞) and decompose it asV = V1 ⊕ V2, whereV1 ⊂ Cr−∞ and
V2⊂ C∞r , and defineβ :G∞(C∞−∞)→G∞(Cr−∞ ⊕C∞s ) such thatβ(V )= V1⊕ ts−rV2,
where ts−r is the shift bys − r coordinates (see Definition 2.1). Thenαβ(V ) = V1 ⊕
ts−rV2 ⊂ C∞−∞ and βα(W) = W1 ⊕ ts−rW2, if W = W1 ⊕ W2 ⊂ Cr−∞ ⊕ C∞s . The
proposition now follows immediately from the next lemma.2
Lemma 3.8. The mapγ :G∞(Cr−∞ ⊕ C∞s )→ G∞(Cr−∞ ⊕ C∞s ), r 6 s ∈ Z, given by
γ (V )= V1⊕ tk(V2), k > 0, whereV = V1⊕ V2, V1⊂ Cr−∞ andV2⊂ C∞s , is homotopic
to the identity.

Proof. The homotopyh1
τ = sin(1

2πτ)I + cos(1
2πτ)t1 :C∞s → C∞s , 06 τ 6 1, starts with

t1 and ends with the identity through monomorphisms, andhkτ = h1
τ ◦ · · · ◦ h1

τ (k times) is
such thathk0= tk andhk1= I. Thenĥτ (V )= V1⊕ hkτ (V2) is a homotopy as desired.2

We have thus shown thatr̃1
n :p−1(Vn)→ p−1(Un−1) is fiberwise a homotopy equiva-

lence. It should be remarked that fors < 1, the deformatioñrsn :p−1(Vn)→ p−1(Vn) is
fiberwise a homeomorphism, since after identifying the fibers with the associated Grass-
mannians, it is the identity. This behavior is congruent with the first fact needed for the
verification of Lemma 2.9.

Thus we have our main theorem, which, as already seen in Section 1, implies Bott
periodicity in the complex case.

Theorem 3.9. Let E be the space of Hermitian operators onC∞−∞ of finite type with
eigenvalues in the unit interval, and letp : E→ U be such thatp(C) = exp(2π iC). Then
p is a quasifibration such thatE is contractible and for eachU ∈U, p−1(U)≈ Z×BU.
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