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Abstract

We give a proof of the Bott periodicity theorem, along the lines proposed by McDuff, based on
the construction of a quasifibration over U with contractible total spac&Zan@®U as fiber.J 1999
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1. Introduction

The periodicity theorem of Raoul Bott is one of the most important results in algebraic
topology. This theorem is used to defiketheory, which is a generalized cohomology
theory that has enormous impact in topology, geometry and analysis. Bott's original proof
[5] used Morse theory (see also [11]). The proofs of Toda [21], Cartan and Moore [8] and
Dyer and Lashof [10] were based on homological calculations with spectral sequences.
Atiyah and Bott [3] (see also [14,22]) obtained the result from a study of bundles over
the product space& x S?, in terms of bundles oveK. In [2] Atiyah gave a proof
using the index of a family of linear elliptic differential operators (cf. also [4]). More
recently, other proofs have appeared. Kono and Tokunaga [15] use cohomology and Chern
classes; Latour [16] works with the space of Lagrangians; Giffen [12] and Harris [13] use
classifying spaces of categories defined via simplicial spaces; and Bryan and Sanders [7]
and Tian [20] use moduli spaces of instantons. In this paper, we give a proof which uses
only quasifibrations and linear algebra (and some basic differential topology). It is based
on a very beautiful idea of McDuff [17], whose program we develop. This proof is both
simpler and more elementary than previous proofs.
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We shall construct a quasifibration: E — U over the infinite-dimensional unitary
group, such that its total space E is contractible andZhasBU as fiber. This way, we
obtain a long exact sequence

oo = 1 (Z x BU) = 71; (E) = 7; (U)

— i 1(Z x BU) > 7 1(E) > -+, (2.1)
wherer; (E) = 0=m;_1(E), so that, for > 1,
7;(U) = 7;_1(Z x BU) = 7;_1(BU), (1.2)
and, fori =1,
m(U) =7Z. (1.3)

For the time being, one has (locally trivial) fibrations(E*) — BU; with fiber U,
where the base spaces are the classifying spaces of the unitary groups given by the colimits
of Grassmann manifolds, and the total spaces are the corresponding colimits of Stiefel
manifolds, such that, by passing again to the colimit, they determine a (locally trivial)
fibration EU— BU with EU a contractible space and U as fiber (see [19]).

On the other hand, consider thath space

PBU= {w:1 — BU | »(0) = xo}

of BU, wherexg € BU is the base point. One knows that PBU is contractible and the map
q :PBU— BU, such thay () = w(1), is a Hurewicz fibration with fibef2BU.

Clearly, if p: E — B is a quasifibration with fibeF, andp’: E’ — B is a Hurewicz
fibration with fiber F’, such that their total spaces are contractible, then there is a weak
homotopy equivalencé& — F’. Moreover, their homotopy groups satisfy_1(F) =
i (B) = mi—1(F"), i > 1. Therefore, by [18] and the Whitehead theorem, one obtains
homotopy equivalence@BU ~ U andZ x BU ~ £2U. So we have isomorphisms

mi_2(U)Em; _2(2BU) =7, _1(BU), i>2
Whence, we obtain the desired theorem, as stated below.
Theorem 1.4 (Bott periodicity).There is a homotopy equivalenZex BU ~ £2U; hence,
for i > 2 there is an isomorphism
mi(U) = mi—2(V),
or, equivalently,

7:(BU) = 7;_»(BU).

Or, in other terms, again by (1.2) one has that
7 (Z x BU) = ;41 (U) = 774.1(£2BU) = 7, (2°BU);
i.e., we obtain an isomorphism

7;(Z x BU) = ;(£2°BU),
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which is another usual version of Bott periodicity. In particular, from (1.3) and Theo-
rem 1.4, we obtain that

Z ifiiseven,

i(BU) = o
i (BU) {O if i is odd.

2. Preliminaries

Let —oo < p < ¢ < oo (not three of them equal) and define
Cl =1{z2:Z— C|z =0foralmostalli andifi < p ori > g},

with the usual topology in the finite-dimensional case and the topology of the union
in the infinite-dimensional case. Therefo@g =C4, Cp =C=, (C(l) =C, (Cg = {0},
etc. All spacesC‘,’7 are then subspaces GF . With these definitions, we have that if
—00 < p < q < 00, then dimC% = g — p; moreover, ifp < g < r, thenC% @ C,=Cr.

We have the Grassmann manifold(@%) ={W | W is a subspace c(tg of dimension
n} and BU, = G, (Cg°) = colim, G,,((Cg), where the colimit is taken with respect to the
maps

Gn(C§) — Gu(CE™™)
given by sendingV c CitoW =W &0cC C{ @ (CZ+1 = (CgH. Hence, BY) can be seen
as the sefW | W is a subspace df3° of dimensiom}.

If L is any linear operator, then we shall denotedayl) = ker(L — I) the space of
eigenvectors ol with eigenvalue 1.

Definition 2.1. Givenk € Z we define theshift operatorby & coordinates

1 CX, — C
by #.(z); = zi—r. These shift operators are continuous isomorphisms suchgthat and
trotj =t oty = tr4].
Definition 2.2. Given n, there is a mapj”*':BU, — BU,;1 sendingW c C* to
C @ t11(W) Cc C*. So, we define BU as

BU = collim BUy.

In order to compare this definition with a different way of stabilizing, we have to prove
a lemma. But before that, we give a definition.

Definition 2.3. Take W C (Cf( and letm be such thaC}' ¢ W. ThenW/C;" will denote
the orthogonal complement &f;" in W, i.e., if {ex11,..., en} is the canonical basis for
Cy', we complete it to an orthonormal basgig 1, . . ., em, w1, ..., wy} of W, thenW/C!

is spanned byws, ..., w,} and we have that}’ @ (W/CJ') =W.
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Lemma 2.4. There is a homeomorphism

®:BU—BU={W c C{|dimW < oo andC§ c W < k =0}.

Proof. TakeW € BU,, and letk be the largest integer such th@@ c W. Defined, (W) =
t_x(W/Cf) € BUC. Obviously, the magp, :BU, — BU? determines in the colimit the
desired map.

@ is surjective, since, iW € BU? and dimW = n, thenW € BU,, and®,(W) = W,
because in this case= 0. (In fact, the mapl :BU® — BU such thatW — W is the
inverse.)

It is also injective, since, iV € BU,, andW < BU,, are such that,, (V) = &, (W),
then, if p andg are the largest integers such ttﬁ%‘tc 14 andcg C W, one has

t_p(V/ChY =1_4(W/C}). (2.5)
Therefore, the dimensions — p andn — ¢ coincide. Without losing generality, we may
assume thap < ¢, so that, in particulay — p =n —m > 0. Applying?, and addingﬁg
on the left to both sides of (2.5), yields, on the left,

C{®1,-p(V/CH=CE " @ Cl_, ®1,—,(V/CE)

=Ci @ty p(ClaV/CH=CI " ®ty_p(V),
which is the image oV’ in BU,,,,,—, = BU,; and, on the right,

Cl @ o(w/Cl) =w;
hencej,, (V) = W, wherej;, = j' ;0---0 jn’g'“, and, thusy andW represent the same

elementin BU. O

Definition 2.6. Define BU = (W | C” ., c W c C?,, —00 < p < g < oo}, which is
covered by the subspacBB” = (W € BU | C” , c W andp is maxima}, p € Z.

Clearly, the mapW — C°_ & W determines a homeomorphisBU? — BU?;
similarly, W > 7_; (W) determines a homeomorphidgt¥ — BU?, so that one has a
canonical homeomorphism

7Z x BU? - BU

given by the composité, W) — (W) € BU* — BU. By Lemma 2.4, we have proved
the following.

Theorem 2.7. There is a homeomorphism
Z x BU — BU.

We define an operatdy in C* asunitary if (Uz, Uz') = (z,Z) or, equivalently, if
UU* =, the identical operator itC>_, whereU* denotes the transposed conjugate

—00!

operator ofU. Let U= {U | U is unitary and of finite type where we understand by a
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unitary operator ofinite typeone for which there exist < s such that/e! = ¢’ if i <r or
i > s, where{e'} denotes the canonical basis@®, . In other words, a unitary operator
of finite type can be represented as a direct sum of the form

" coU®I®,
where [}, represents the identical operator or identity matrix(@ andU is a unitary
operator orC? (or an(s — r) x (s — r) unitary matrix).
For convenience, we denote by, theunitary groupof n x n matrices acting om‘;'i/f/z

—1)/2

(n41)/2 if n is odd, and consider the inclusions

if n is even, and omj(_"
i"1:U, - U,y
such that
—n/2
U I7<n+2)/269U

if n is even, and

(n+1)/2
U Ueal(n_l)/2
if nis odd.
The inclusions,, : U,, — U such thatU — |:’;{2 U Iff/’z if nis even, andJ —
"0l e U e I0i—1)/2 if n is odd, determine an isomorphism

colimU, = U.
n

Remark 2.8. Let §: C> — C7° be such that
2i T
i e if i >0,

S = {e2lil+1 if i <0;
then the usual inclusiong**:U, — U, of the usual unitary groups acting Grf and
(C’é“, respectively, such thdt — U @ I"*1, and the induced inclusion in the colimit,
k,:U, — U, up to a shuffling of the intermediate coordinates, indqﬁz-:l andi,; that
is, essentially;"+1(U) = Sk"+1(U)S~1, respectivelyi,(U) = Sk,(U)S~. Therefore,
algebraically as well as topologically, the given definition of U coincides with the classical
one.

Before passing to the proof of the main result of this paper, let us state a criterion to
determine when a given map is a quasifibration, which is an easy consequence of theorem
[9, 2.15] (see also [1, A.1.19]).

Lemma 2.9. Let B = J, B,, whereB,,_1 C B, is a closed subspace, with the topology
of the union and take ésurjectivg mapp: E — B. Assume that there are trivializations
p (B, — By_1) ~ (B, — B,_1) x F. Furthermore, assume that for evetythere is a
neighborhood/,, of B,_1 in B, and a strong deformation retractior): V,, — B,_1in B,
such that it has a lifting, : p~%(V,,) = p~1(B,_1), inducing a homotopy equivalence on
the fibers. Them is a quasifibration.
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3. Proof of the main theorem

Before constructing the desired quasifibration mentioned in the introduction, we shall
study, more as a motivation, the finite-dimensional case; afterwards we shall show the
stabilization.

Recall that am x n matrix C with complex entries idHermitian if C = C*, where
C* denotes, as before, the transposed conjugate matri€.df (—, —) denotes the
canonical Hermitian product £}, then for anyv, w € Cj, C satisfies the identity
(Cv, w) = (v, Cw). This implies, in particular, that the eigenvalues of the maftiare
real.

The set H(C) of all Hermitiann x n matrices has the structure of a real vector space.
Let E, be the topological subspace of ) consisting of matrices whose eigenvalues lie
in the intervall. The space Eis contractible through the homotopyE, x I — E, such
thath(C, 1) = (1 — t)C, which starts with the identity and ends with the constant map
with value the matrix O.

Let M,,«,, (C) be the complex vector space of comptex n matrices and let GL(C) be
the subgroup of the invertible ones (general linear group). One has a (differentiable) map

exp:M,x,(C) - GL,(C)

given by
2

© pi B
eXFxB)EeBZE i_'=|n+B+7+"'a
- b !

which fulfills the exponential laws, whenever the matrices taken as exponents commute
among themselves. One can easily check the following properties:

eTBT’l —T1eBT1

for any invertible operatorf’, and

e A
e An

Let M7, (C) C M, «,(C) be the real subspace skew-Hermitiarmatrices, that is, of

matricesA such thatd* = —A. If A is skew-Hermitian, thee?)* = e?" = e 4, so that
eet =e et =P =1,.
Therefore, the map exp defined above restricts to

exp:M4, (C)— U,.

nxn
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One has an isomorphism,kC) — M¢, , (C), given byC — 27iC. We define a map

nxn

Pn-En — Uy, by p, (C) = exp(2iC); then the diagram

Mg, (©) 5 u,
H,.(C) /p,
En
commutes.

Proposition 3.1. The mapp, is surjective.

Proof. TakeU € U,;; we diagonalize this matrix taking another matfixe U, and the
productl ~*UT. Since the eigenvalues of a unitary matrix have norm 1, we have that

eZnikl 0
. ezni)\.z
TUT = . :
0 it
wherer; €I,i=1,2,...,n. Take
A 0
A2

D=

0 An

and consider the matrik DT ~1. SinceT € U,, thenT 1 = T* and, therefore,
(TDTYH*=(TDT**=TD*T*=TDT %,
thatis,7 DT 1 is Hermitian; thus7 DT 1 € E,. Whence, we have that
pn(TDTfl) _ eZni(TDT’1) _ eT(ZniD)T* — 7Dl
g2t 0

- el -1_
=T . T7°=U. O (3.2)

0 - in
Let us now analyze the fibers @f,. For this, given a matrixC € E,, consider the

subspaces kéf — 1) and ket p,(C) — 1).
If veker(C —1),thenCv =v and one has that

. N2
pa(C)v = (") = (I +27iC + (2’;') c2+.._>v

(2ri)?
2!

—lv+27iCv + C%v+---
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2 2
=v+2niv+(m) v
2!
. 2mi)? :
=(1+2m+%+-~-)v=e2”'v:v,

Therefore, kefC — 1) C ker(p,(C) — I). Hence, if U € U,, we may define a map
g:p;l(U) — G(ker(U — 1)), the Grassmann spacef all finite-dimensional vector
subspaces of ké/ — I), which mapsC e p;l(U) to the subspace k@ — ) = &1 (v).

Lemma 3.3. The mapg : p; 1(U) — G(ker(U — 1)) is bijective.

Proof. g is surjective; indeed, le¥ C ker(U — 1) be a subspace. We wish to construct a
matrix Cy € pn_l(U) C E, such that kefCy — I) = V. For this, we construct a matrik
diagonalizingU adequately.

Let{vi,..., vy, Ur41, ..., Ur4+s} b€ an orthonormal basis 6 (U) such thaf{vs, ..., v,}
is a basis ofV. SinceU is unitary, the orthogonal complement&f(U) in C", £1(U)*,
is an invariant subspace undgr indeed, ifw € £1(U)* andv € £1(U), then(Uw, v) =
(w, U*v) = (w, U"Tv) = (w, v) = 0. That is,U(E1(U)1) c £1(U)* and, therefore, we
may find an orthonormal basfs, 511, . .., v,} of £1(U)* built up by eigenvectors df,
with eigenvalues different from 1.

Let T € U, be such thaT€ = v;, i = 1,...,n, where & denotes the vectors of the
canonical basis of". ThenT~1UT = D is a diagonal matrix,

1 0

)
Il

2T i A 41 ’

0 . e271ik,,

with r 4+ s ones in the diagonal and all other eigenvalues different from 1.
Take now

1 0

Arts+1

0 An
with r ones in the diagonal and zeros in the placeasl throughr +s.
We shall see thafy = T DT 1 is the desired matrix. Clearly*8? = D, so that

pu(Cy) = 2TiCv — gl niDT™ _ pe2niDp=1_ ppr-1_
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On the other hand, it is immediate to verify tHat(Cy) = T (£1(D)). But £1(D) = {z €
C"|zj=0forr < j <n};sinceTe; =v; fori =1,...,nandV is the subspace generated
bywvi,..., v, thenT(E1(D))=V.

To check that the mag — £1(C) is bijective, one only has to show th@t= Cg,(c).
For that, observe that @' is Hermitian, theri is an eigenvalue of if and only if €7i*
is an eigenvalue of%81€ . To see this, leR € U, be such thaD = R~1CRis a diagonal
matrix, then

R—1e21IC p — oR7'27iCR _ 27iR"'CR _ 27iD

which is a diagonal matrix with an entr§’8* for each entry. of D. Let nowCy, C2 € E,
be such that &€t = 27iC2 and that€1(C1) = £1(C2), thenC1 = C». To see this, let
A, ..., Ay be the eigenvalues @y andus, ..., u, those ofCa. Sincef1(C1) = £1(C2),
we may assume that = ux =1 for 1<k <r =dim&1(C1) and, thenjiy # 1 # py if
r <k <n.As we proved before 28 and &7« 1 < k < n, are the eigenvalues of &1
and €712, respectively. Consequently? @+ = e™ii for all k and, taking: < k < n, this
implies that\; = ux. We have proved, therefore, that = u for all k, so thatCy = Cs.

If, in particular, we apply what we did t6'1 = C andCz = C¢,(¢), then we have that
C= Cgl(c). O

We may summarize all in the following theorem.

Theorem 3.4. Let E, be the space of Hermitiam x n matrices whose eigenvalues lie in
the unitinterval and lep, : E, — U,, be such thap, (C) = e?"iC_ThenE, is contractible,
pn is surjective and the fiber over each mattixe U,, is homeomorphic to the Grassmann
space ofG(E1(V)).

Let us now study two ways of stabilizing this result. The usual one is to take the
canonical embeddinggj+1 ‘En — Ep1 andrl:’+1 ‘U, — U, 41, given by

c|0
on(C) = ——F—| €E41,
0|0
and by
0
T(U) = | —1— | € Un+11,
0|1l

or as it was described above. It is immediate to check that the diagram

n
E Pn+1
n > En+l

pnl lanrl

Un *)r" Un+1
n+l
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commutes. This way, one obtains a mglp colim, E, — colim, U,, such thatp’ o p, =
P'|En = pn.

Let us now analyze the fibers gf . It is clear that ifU € U,, then £1(z(U)) =
E1(U) ®dC, and that1(p(C)) = £1(C) & 0; therefore, we have the following commutative
diagram:

Pt () " pr L (r(U))

~ ~

G(&(U)) —=GEU) 8 0)

wheres(V) =V @ 0. For instance, if we tak& = I, we haves : G(Cp) — G((C’é“). This
way, the fibers op’ are homeomorphic tp], -, G, (C5°) = [ [, BU:.

Now we shall construct a new map: E — U whose fiber will beZ x BU, which is,
in a certain way, a completion qf'. We define an operata? in C*, asHermitian if
(Cz,7) = (z, CZ') or, equivalently, ifC = C*. Let E= {C | C is Hermitian, of finite type
and with eigenvalues ih}, where we understand for a Hermitian operatdirfe typeone
for which there exist < s such thalCe! =0if i <r ori > s. In other words, a Hermitian
operator of finite type is a sum

0 ®C &0,

where Q denotes the 0-operator dﬁﬁc (the zero(l — k) x (I — k) matrix) andC is a
Hermitian(s — r) x (s — r) matrix acting onC;. Again, as [k, E is contractible.
We can define amap:E — U by p(C) = exp(2riC), that is

p(C)=1" & C 1>,

TakeU e U; the space of eigenvectors Gfwith eigenvalue 1, k€t/ — 1), is obviously
C"_, @ ker(U — ) @ C° and, thus, isomorphic t68%, . We define th&rassmannian

Goo(kerU — 1)) = {W c kerU —1) | C" o, ¢ W and dim(W/C" ) < oo}.

We clearly have the following result.

Lemma 3.5. For eachU € U, there is a homeomorphism

o Goo(ker(U — 1)) ~ BU.
Analogously to Lemma 3.3, we have the following result.
Proposition 3.6. Let U € U. Thenp~1(U) ~BU = Z x BU.

Proof. Itis enough to show that there is a homeomorphism
gu i p HU) = Goo(kenU —1)).

Observe first that i€ € E, thenVe = ker(C — 1) = ker(C — I9) C Ci. TakeC € p L),
then definggy (C) =C~_ ® Ve € Goo(ker(U —1)).
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We shall now show thagy is surjective. TakeW € Gy, (ker(U — I)); hence,W =
C’' . ® W, with dimW < oo.

Without loss of generality, we may assumie=r. SinceW C ke(U — 1) =C" &
ker((7 — I¥) @ C°, then, takings sufficiently large, one has that c ker(l7 -5 =
&1(U) c Cs.

Asin Lemma 3.3, lefvy, ..., v} be an orthonormal basis o, {Um+1, -+ Umsn} @n
orthonormal basis of the orthogonal complemenﬁofn 51(17) and{vm4n+1s .. .» Vs—r}
an orthonormal basis of the orthogonal complemen£gf/) in C! (which is invariant
under(7), this last built up by eigenvectors with eigenvalues different from 1.

If we defineT e U such that

. é ifi <r,

1 . .
Te = v, ifr<i<s,

e ifi >s

we have thal ~*UT =D is diagonal of the form

ezni)‘m+n+1
| g eI
e2Tihs—r
If we take now
Am+n+1
D=0 el™e0int"e 0,

As—r

we defineCy = T DT, whichis suchthap(Cy) = €W = Te2" PT-1 = TDT-1 =
U. Moreovergy (Cw) = C_ @ker(Cw —I). The same argument as in Lemma 3.3 shows
that ke(Cw — I) = W, whencegy (Cw) = W.

The mapgy is injective, since ilC1 andC2 are such that ex@riC1) = exp2riCz) = U
and&1(C1) = ker(C1 — 1) =ker(C2 — 1) = £1(C2); then we can prove in the same way as
in the corresponding part of Lemma 3.3 tliat=C2. O

In order to show thap :E — U is a quasifibration applying Lemma 2.9, we need two

facts. First, we shall see thafy,—u,_, is trivial, that is, we will define a homeomorphism

h:p~t(U, —U,-1) = (U, —U,_1) x BU,

such that prgjo 1 = p.

For this, assume that is even; the odd case is analogous. ketbe a matrix in
p LU, —U,_1); thereforelU = p(C) is of the form [’;éz ®U, where—n /2 is maximal,
i.e.,U is not of the form [ZZH ol

Take the homeomorphisnay : p~1(U) — G (kerU — 1)), given in the proof of
Proposition 3.6. Since k@y — 1) = (C:;'éz ® ker(l7 - I‘f’n/z), it depends continuously

onU, as does the homeomorphigm. Analogously, one can choose the homeomorphism
U : Goo(ker(U — 1)) — BU of Lemma 3.5, depending continuously bn
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Consequently, the mapdefined byr(C) = (p(C), ¢(C)), wherep(C) = oy (gu (C)),
is a homeomorphism, since, fiberwise, it is one.

Second, we have to show that there is a neighborhigodf U,,_1 in U,, and a strong
deformation retraction o¥,, onto U,_1, which lifts to a strong deformation retraction of
p~1(V,) onto p~1(U,_1) in p~1(U,). To see this, since L1 is a submanifold of |J, we
shall construct a tubular neighborho®g of the first in the second as follows.

Recall H,(C), the space of Hermitian x n matrices, and defing : GL,,(C) — H,(C)
by f(A) = A*A. One can easily verify thaf is smooth and has | as a regular value;
therefore, | = f~1(1) is a smooth manifold and i < U,,, then the tangent space of, U
atW, Tw(U,), is the kernel of the differential of at W, that is,

TW(Un) = {A € Mnxn((c) | A*W = —W*A}.

Now recall that there is a Hermitian productij, ., (C), given by(A, B) = tracg AB*);

thus, taking the real part of this product, we get an inner progitit, (C) x M, x, (C) —

R. The restriction of this inner product to each tangent spagéJJ,) C M, x, (C) defines
a Riemannian metricon,JLeti:U,_1 — U, be the inclusion, such thatU)=U & I,

then the differential & Ty (U,—1) — T;w)(U,) is an inclusion mapping a matrik to

R &0, thatis

di(R):(]; g).

One can easily check that the orthogonal complemenyq,—1) in T;)(U,) is given

by
0 b b
TyUp—)t = { (—b*U it) € My xn (C) ‘b: ( : ) eC"tands eR},

by_1

whichis a real2n — 1)-dimensional vector space. We denotévoy: UUeuH Ty (U,—1)t,
the normal bundle of L1 in U,,.

Any vector space basis of|{U,) provides a parallelization of Jwhich defines a
connection on it. This connection does not depend on the chosen basis and determines
a spray on . By [6], there existse > 0, such thatN, = {v € N | ||v|| < ¢} is an
open neighborhood of the 0-section, and the exponential map associated to the spray,
Exp:N. — U,, is an embedding onto a neighborhood of_W in U,. Now, since the
geodesics of this spray are the integral curves of the left-invariant vector fields, then
EXp(A) = Ly exp((dLy)~1(A)), where A € Ty(U,_1)*, Ly:U, — U, is given by
Ly(W) =UW, and exp is the usual exponential map defined above. Evaluating the
differential of Ly, we obtain ExpA) = U exp(U* A).

Therefore, we have the following description of a tubular neighborigog Exp(N,)
ofU,_1inU, as

{Uexp(U* (_b(iU Il;)) ‘ UecU,_1, (b,1) eC" 1 xRand|®,1)] <e}.
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0
—b*U

gef O bBY_( 0 U
—b*U it) \=b*U ir )’

Set

A(b,t):(_(;* i)

Assumeb # 0. To diagonalize this matrix, one takes an orthonormal basis of eigenvectors
and uses it to form a matrix. Thex n matrix A(b, t) hasn — 2 eigenvalues equal to 0 and
two eigenvalueg, A2, such that

L (=1)V/4|b|2+ t2i
= 2 ,

v

In order to comput&/ exp(U* ( ilj)), first note that

so that the matrix

vi -0 Up—2  p1b u2b
W0 = ( 0 -~ 0 M M2/\2>’
where{vs, ..., v,_2} € C"~1 is an orthonormal basis of the spaké = {v | v L b} C
c"Yandu, = (b2 + |A,1%)~1/2, is a unitaryn x n matrix which satisfies
0 0
Db, )y =W, t)*Ab, Wb, t) = 0
Al
0 )

Since we can writeD(b,t) = W(b,t)*UU*A(b,t)UU*W (b,t), and A(U*b,t) =
U*Ab, 1)U, thenA(U*b,t) = U*W(b,t)D(b,t)(U*W (b, 1))*. Therefore, the points in
the tubular neighborhood are of the folthexp(A(U*b, t)) = UU*W (b, t) exp(D(b, t))
W (b, 1)*U = exp(A(b, ))U.
Hence, every element i, coming from the fiber ovet/ in N is right translation by
U of an element coming from the fiber over I. It is thus enough to study the situation over
the identity matrix.
Since we may linearly deform the neighborhodd to the zero section, simply by
v (1—1)v, 0< v < 1, we obtain a strong deformation retractigi: V,, — V,, such
that

rT (exp(A(b, ))U) = exp(A((L— )b, (1 — 1)n)U.

Observe that forr = 1, rnl(exp(A(b, HU) = expO)U = 1U = U, so that it is a
retraction ofV, onto U,_1.

In what follows, we define the lifting?? : p~1(V,,) — p~1(V,). Since fiberwise,
p~1(V,) consists of spaces homeomorphic to the Grassmanaian&€1(U")), U’ € V,,
we will show howr! acts on these spaces. It is clearly enough to study thercade:

Take U’ = exp(A(b, 1)U € V,, and letGy p: = Goo(€1(U")); we also have to show
that the restriction of the lifting2, 71|: Gy.p., — Gu.00 = G(E(U)) is a homotopy
equivalence.
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Since&1(exp(A(b,1))U) = UE1(exp(A(U*b, t)) and forb #£ 0,1 #£ 0, E1(exp(A(U*D,
1)) = (C(,"O:fl)/z & Cya because’@ # 1 # €2, we have that the Grassmannia@ig , ,
andG, . differ only by left multiplication byU . Itis thus enough to study the cale=1,
namely the map

F1Goo CU 2 @ €, — Goo(CX,).

If Vc C(,"of)/z @ Cff/’z is a subspace, then we defif@/) =V c C=

* 1-€., the map
induced by the inclusio@(_”o:f")/2 ® Cj, = €. The result now follows from the next

proposition.

Proposition 3.7. The inclusionC’”_, & C° — C=, r < s € Z, induces a homotopy
equivalence between the Grassmannians

0 Goo(C o ®CP) = Goo(CX,).

Proof. TakeV € G(C%,,) and decompose it a8 = V1 @ V», whereV; C C”, and
Vo C C2°, and defingd : Goo (C2,)) = Goo(C o @ C°) suchthaiB(V) = V1 @, V2,
wheret;_, is the shift bys — r coordinates (see Definition 2.1). The(V) = V1 &
ty—rVo C C=, and Ba(W) = W1 @ 1, Wa, if W=W1 @& WoC C__ & C*. The
proposition now follows immediately from the next lemmaz

Lemma 3.8. The mapy : Goo(C"_, ® C°) - Go(C_, & C°), r < 5 € Z, given by
y(V)=V1®t(V2), k >0, whereV = V1 @ Vo, V1 C C___ and V> C C2°, is homotopic
to the identity.

Proof. The homotopy:?! = sin(377)l + cog377)11:C® — CL, 0< 7 < 1, starts with
11 and ends with the identity through monomorphisms, &fe: hl o --. o0 hl (k times) is
such thatik = 7 andhX =1. Thenh. (V) = V1 @ kX (V>) is a homotopy as desired 0

We have thus shown that : p~%(V,,) — p~1(U,_1) is fiberwise a homotopy equiva-
lence. It should be remarked that fox 1, the deformatiors : p~ LV, = p~ (v, is
fiberwise a homeomorphism, since after identifying the fibers with the associated Grass-
mannians, it is the identity. This behavior is congruent with the first fact needed for the
verification of Lemma 2.9.

Thus we have our main theorem, which, as already seen in Section 1, implies Bott
periodicity in the complex case.

Theorem 3.9. Let E be the space of Hermitian operators @t°,, of finite type with
eigenvalues in the unit interval, and lpt E — U be such thap(C) = exp(27iC). Then
p is a quasifibration such thd is contractible and for eacl/ € U, p~1(U) ~ Z x BU.
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