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Degree and fixed point index.
An account *

Carlos Prieto

Abstract

In this account, a development of the concepts of Brouwer degree
and Lefschetz-Hopf fixed point index is discussed in the light of
work done mainly by A. Dold, H. Ulrich and the author. General-
izations to certain coincidence situations including the equivariant
cases are presented, as well as how to deal with the infinite di-
mensional cases. In two appendices a proof of the Lefschetz-Hopf
theorem for these indices is referred to, as well as a generalization
of Dold’s fixed point transfer is sketched.
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1 Introduction

1.0 Consider a system of equations
g1(z1,...,zK) = a1
(1.1)
g(T1,...,Tk) = a

where the unknown are restricted by some conditions. These restrictions
can be more precisely described by saying that the point (z1,..., k)
has to belong to a certain subset V of the euclidean space R¥. Thus,
we may see the system as an equation of the form

(1.2) 9() = a,
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where g: V — R!, and V C R*.

In the case k = [, V open and bounded in R¥ and g continuous, such
that it can be extended to the boundary of V' and has no solution in
this boundary, Brouwer [2] defined in 1911 the concept of degree, which
to such g assigns an integer, deg(g), such that if it is nonzero, then the
equation has a solution.

The problem can be modified as follows. We shall consider two cases.
1. k <. In this case, the system (1.1) can be rewritten as

filzt,...,zk) = gi(z1,...,2k) —a1+ 21 = 21

fk(ivl,...,xk) = gk($1,...,$k)—ak+$k = Tk
Jrvi(@r, - mk) = gerr(@1,-- 7)) —apgr = 0

fl(iL‘l,...,.’Ek) = gl(:vl,...,a:k)—al = 0

or, written in vector form, we have a map
f:V—oR=RxR* VCRF,

such that g(z) = a if and only if f(z) = (z,0); hence, we look for
solutions x € V for the equation

f(z) = (z,0) € RF x R=F.

This is a generalized fized point problem. For the classical problem,
k = [, Lefschetz [17] defined in 1926 an invariant, L(f), with integral
values, called the Lefschetz number, defined for V a polyhedron and f
such that f(V) C V. This number, which is easy to compute, has the
property that L(f) # 0 implies the existence of a fixed point of f, i.e.
a solution for the equation f(z) = z.

On the other hand, Hopf [12] and [13], a couple of years later defined
another integral invariant for the case £k = [, V open and bounded and
such that f can be extended to the boundary of V' without fixed points,
called the fized point indez, I(f), which fulfills the same theorem as
the Lefschetz number, namely, I(f) # 0 implies that f has fixed points.
This index deals with more general situations, but it is also more difficult
to compute. Their relationship is given by the so-called Lefschetz-Hopf
theorem which states that in the case that both L(f) and I(f) are
defined, then I(f) = L(f).
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The other case of our more general set up is the following:
2. k> 1. In this case, the system (1.1) can be written as

fl(xl,...,xk) = gl(iL‘l,...,iEk)—al-l-.Z‘l = I

filze, .. o) = gi@,..om) —at+3 = 3
or, put in vector form, we have a map
f:V—R, VCR =R xR,

such that, if z = (2/,2") €
we look for solutions z = (

V, g(z) = a if and only if f(z) = z'; hence,
z',z") € V for the equation
fa', 2"y =1

This is another generalized fized point problem.
Both cases 1. and 2. can be put together into the following problem.
Take

(1.3) f:V—=RxR", VCcR xR

and we ask for the existence of generalized fized points, namely, points
(z,z') € V such that f(z,z') = (z,0).

We shall describe in the next sections, for cases with increasing gen-
erality, fixed point indices which decide the existence of solutions for
this problem.

The first case we shall consider is when f not only is a map as in
(1.3), but a family f;, parametrized by the points b in a metric space B,
in whose case we substitute the space RF also by a family of more general
spaces FEj, which include finite polyhedra and smooth manifolds, which
in their time were considered by Lefschetz and Hopf. The problem is
now the following. Let

(1.4) f:V—ExM, VCEXxN open,

where E is a euclidean neighborhood retract over B, an ENRp for
short, namely a continuous family given by p: £ — B, of retracts
E, = p~1(b) of open sets in R¥ (see 2.0), M and N are euclidean spaces
(M = R™" N = R"), f preserves parameters (i.e. f(v) € E, x M
if v € Ep x N) and is properly fized, namely the solutions Fix(f) =
{(e,y) € V| f(e,y) = f(e,0)} lie properly over B; in particular, the
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fixed point set of the restriction f; of f to each fiber over b is compact
(see 2.0). In this case there is an invariant I(f), which lives in the (gen-
eralized) cohomology —or homology— of B in dimension m — n and has,
among others, the property that I(f) # 0 implies Fix(f) # .

The case M = N = R = {0} = 0 was studied by Dold in [7], where
he generalized the work of Lefschetz and Hopf as well as previous work
of himself, [4] and [6]. In these last, he studied the case B = {*} (see
also [5]). The general case was studied by the author in [20]. This case
will be discussed in section 2.

Very frequently the problem presents symmetries, that is, all the
spaces E, B, M, N admit group actions for a group G, and p and f are
compatible with those actions, i.e. they are equivariant. The solution
of the problem in this case is sharper, and if M = N = 0 it has been
given basically by Dold in [9] and by Ulrich in [30, 31], although tom
Dieck has said something about it too [3]. Its generalization for real
G-modules of finite dimension M and N was given by Ulrich and the
author in [26]. This case we shall discuss in section 3.

There are generalizations of the problem in another direction, namely,
in the case that F has infinite dimension, of great importance in sev-
eral questions in nonlinear analysis. The development of this problem
is as follows. Leray and Schauder [18] 1934 defined an index for the
case B = {x}, M = N =0 and F a separable Banach space, requiring
f to be such that the closure of the image of V under f, f(V) C E
is compact. Granas [11] generalized this to the case in which E is an
absolute neighborhood retract (an ANR) and Ulrich [29] did it in the
parametrized case (B # {*}). The general case (ANRgs and M and N
finite dimensional G-modules) will be shortly discussed below in 3.4.

2 Fixed point index

2.0 Let B be a metric space. We shall be concerned with the following
commutative diagrams, called fized point situations over B

(2.1) ExNDOV ExM

m A’jl

B,
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where p: E — B is an ENRp, i.e. a wvertical retract (meaning that
the retraction commutes with the projections p and projg) of an open
set in B x K, K a euclidean space (K = R¥), M and N are euclidean
spaces (M = R™ N =R") too and f is properly fixed over B, i.e. the
restriction of the projection into B, p o proj;, to the fixed point set,
Fix(f) = {(e,y) € V| f(e,y) = (e,0)}, is proper, in other words, for
each compact set C C B, the set (p~!(C) x N) NFix(f) is compact.
We first study the case E = B x K. The properness of Fix(f) — B,
that is, the continuous compactness of F' = Fix(f) implies the validity
of a parametrized Heine-Borel theorem; namely, there exists a function
p: B— Rt =(0,4+00), such that F C B, = {(b,z,y) € Bx K x N |
II(z,y)|| < p(b)} (the set B, can be described as a continuous family of

balls in K x N = RE+" of radius varying according to p).
Consider the following sequence of maps of pairs

(2.2) V,V —F) L B x (K x M, K x M — 0)
Wy’
(ExN,ExN-B,)“(ExN,ExN-F)
@y

Bx (K xN,KxN—0)
Il
B x (RIH—n’RIH—n _ 0) ________ > B x (Rk+m7Rk+m _ 0)’

where (2 - f)(bazay) = (ba (Z,O) - fQ(b;Z;y)); if f(bazay) = (ba fQ(baza
y)). The vertical inclusions are, respectively, (1) an excision and (2) a
homotopy equivalence (of the second spaces of the pairs), and all maps
are over B (i.e., they preserve the fibers). Thus they induce a stable
map

(2.3) I;:B—B

of degree (k+m)— (k+n) = m—n (see [10], [24] or Appendix A (A.3)).
Equivalently, (2.2) induces a homomorphism

(2.4) Ip: B*(B) — ™™ (B).

for any cohomology theory h*. More precisely, applying h* to (2.2) we
get a homomorphism

hi+k+m(B x (Rk+m,Rk+m _ 0)) — hi+k+m(B x (Rk+n,Rk+n _ 0))7 i€ Z7

which, after desuspending k + m times on the left side and k + n times
on the right side, gives

h(B) — K™ M(B), i€,
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and thus (2.4). This homomorphism is called the index homomorphism
of f. Important examples of h* are ordinary cohomology, K-theory,
or stable cohomotopy. All these examples are multiplicative theories
having an element 1 € h%(B); hence, for these theories, we may define
the fized point index of f as

(2.5) I(f) = I;(1) € ""7"(B) .

Since the index map factors through the pair (E' x N,E x N — F), it
vanishes when F' = g, therefore, it has the fundamental property

(2.6) I(f) # 0= Fix(f) # 0.

Before passing to other important properties of the index, let us see
some special cases.

Let B = {*} and m = n(= 0); the three cohomology theories men-
tioned above are such that h%(*) = Z. In this case, the index I(f) is
an integer, which is the same in all cases; this is the classical fized point
index, or Lefschetz- Hopf indez, [4].

If B = {*} and n > m = 0, then, taking h* as stable cohomotopy,
the index I(f) becomes an element of the n-stem, i.e. of the group IS
of stable homotopy classes of maps S¥T™ —s S¥ of spheres. In fact, in
[6] and [20] it is proved that every element in IT%! is the index of some
f.

The fixed point index has, among others, the following properties.

Homotopy 2.7. Let f: V — Ex M,V C E x N be properly fized
over B x I (I =[0,1]). Then its restrictions fo: Vo — Eop X M and
fi: Vi — E1 X M to bottom B x {0} = B and top B x {1} = B of the
cylinder B x I are properly fized and I(fo) = I(f1) € K™ "(B).

Additivity 2.8. Let f: V — Ex M, V C E x N be properly fized
over B. Let V.=V, UV, with Vi and Vy open. If f1 = f|V1, fo = f|Va
and fia = f|Vi NVa are such that two of them are properly fized, then
s0 1s also the third and I(f) = I(f1) + I(f2) — I(f12) € K™ ™(B).

Excision 2.9. Let f: V — Ex M,V C E x N be properly fized over
B. If V! C V is open and such that Fix(f) C V', then f' = f|V' is
properly fized and I(f') = I(f) € K™ "(B).

The next property allows us to define the index for general ENR gs.
It is this property which constitutes the main difference between index
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and degree and shows the convenience to work with the index rather
than with the degree, which, in general, can not be defined for arbitrary
euclidean neighborhood retracts.

Commutativity 2.10. Let E=B XL — B and E'=Bx L' — B
with L and L' euclidean spaces, and let U C E, U' C E' X N be open.
If p: U' — E x M and v: U — E' are maps over B such that the
composite

(W x1py)p: o (UxM)—E xM, o ({UxM)CU CE xN
is properly fized, then also the composite

1
(¢xmy%wﬂﬂi§ExMy (¥ x1y) Y(U)CUxNCExN

is properly fized and I((v x 1p1)p) = I(o(yp x 1xn)) € N~ ™(B).

We show now how the commutativity allows us to generalize the
index:

Proposition and Definition 2.11. If p: E — B is an ENRp, M
and N are euclidean spaces and V. C E X N is open, then every map
over B, f: V — E x M admits a decomposition
axly ,B
f:V—U——ExM,
where U is open in BX K XN for some euclidean space K, and a: E —»
B x K. If f is properly fized, then

g=(ax1y)p:U—BxKxM

is also properly fized. Hence, I(g) € h™ ™(B) is defined and depends
only on f and not on the factorization f = B(a x 1y). Thus we define
the fized point indez of f as I(f) = I(g).

Proof: (sketch) Let

T

E//P\\WCBXK
S~

i

be a representation of E as an ENRp and define U = (r x 1)~V C
WxNCBXxKXxN. Solet « =1 (then a x 1y: V — U, since
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(rx1y)(ix1ly)=id: V — V)and 8 = f(rx1y): U — EXxM. Then
B(a x 1x) = f. The rest of the proof is a straightforward application
of the commutativity property 2.10.

Properties 2.7 to 2.10 remain true for the general index. O

Comment 2.12. There is a Lefschetz-Hopf formula relating the index
with a trace (Lefschetz number) in the case m = n (= 0); see [8] or [10].
For the case m > n (= 0), the formula holds trivially; see [20]. The case
m < n has also a formula which follows from a more general one; see
[24] and appendix A.

Examples 2.13.

(a) [7, 5.3 Let B=S!= {2z € C||z|| = 1} and consider the map
f: BxS!'— B xS!, f(b,z) = (b,b- 2). This is a properly fixed
map over B (for the projection B x S' — B and M = N = 0).
If one takes stable cohomotopy as the cohomology theory, then
I(f) is the nontrivial element of 7% (B) = II$* = Z/2 which also is
the Lefschetz trace of f*: 7% (B x S!) — 7% (B x S!), seen as a
homomorphism of 7} (B)-modules.

(b) [20, 4.27] Let S2 = C U {co} be the Riemann sphere. If k € Z,
then the map

s?Hc—l-s2xC, f(z) = (2,25

is properly fixed over B=S? (E= B, p=id, M = C=R?), and
I(f) = k € %(B) = Ti§ = 2.

3 Generalizations of the index

3.0. Very often the situations one studies present some kind of symme-
tries; if these are given by the action of a compact Lie group G, there
are cohomology theories which are fine enough to detect the symmetries.
More precisely we shall be concerned in first place with the equivariant
index, which will be defined for situations like (2.1), but now assum-
ing that G acts on all spaces involved and that every map in question
commutes with the group action. To be precise, p: E — B will be a
G-ENRp, i.e., G acts on both F and B, p is G-equivariant and FE is
a vertical equivariant retract of an open (invariant) set B x K, where
now K is a G-module. In fact, K, M and N are now all G-modules,
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that is, euclidean spaces with a linear action of G. Observe that in this
case the fixed point set F' of f is G-invariant and hence it is possible to
choose p: B — RT also G-invariant, i.e. p(yb) = p(b) for all v € G,
b € B. Therefore, B, becomes G-invariant too. One has thus that the
sequence of maps (2.2) consists of equivariant maps (over B) and thus
produces an equivariant stable map

(3.1) I;:B— B

of degree [K & M| —[K & N] = [M]—[N] € RO(G) (A.3) where RO(G)
denotes the real representation ring (or ring of G-modules) of the group
G, (see e.g. Appendix A).

As before, this sequence induces, equivalently to (2.1), an equivariant
index homomorphism of f as

(3.2) Iy: hy(B) — b M= N(p)

for any RO(G)-graded G-equivariant cohomology theory hf, (see [16] or
[21]). More precisely, applying hf, to the, now equivariant, sequence
(2.2), we get, for any p € RO(G), a homomorphism

peHEFIMI(B x (K @ MK & M —0)) — h*TEFM(B (Ko N, K & N —0)),

which, after desuspending, by K @ M on the left and by K & N on the
right, yields

W (B) — hHMIZINI(B), p e RO(G),

and thus (3.1).

In analogy to the nonequivariant case, important examples for Ay, are
the equivariant ordinary cohomology of Lewis, May and McClure [19],
equivariant K-theory ([1] or [27]), equivariant stable cohomotopy ([28],
[16], [10]) or its approach via fixed point theory, FIX ([30, 31], [21]). All
these theories are multiplicative and have an element 1 € hl(B). We
define the equivariant fixed point index of f as the element

(3.3) Io(f) = I;(1) e B ™M(B).

Once again, this index has the properties 2.5. through 2.10. and
can thus be extended to general G-ENR ps exactly in the same way as
before, (2.11).

The case B = {x} and M = N(= 0) is interesting. Equivariant
stable cohomotopy 77, is such that 7% (x) 2 A(G), the Burnside ring of
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G (of finite G-sets, if G is finite; see [3] for a thorough study of A(G)
for G a compact Lie group). Thus the equivariant index in this case is
an element of A(G). In [8] it is proved that every element of A(G) is
the equivariant index of some equivariant f. In fact, more generally, in
[30, 31] and [21] it is proved that every element in W[CJ;V[ ]7[N](B) is the
index of some equivariant f (as described in 3.0).

In [8] it is proved that for M = N = 0 and B = {x*}, the equivariant
index is determined by the “classical” indices I(ff) of the restrictions
fh: VH — EH of f to the spaces whose points remain fixed under
the action of the elements of the closed subgroups H C G. In [30],
relationships between I (f) and {I(f#)} are thoroughly studied.

3.4. The adequate set up to speak about the fixed point index in infinite
dimensions is that of (separable) Banach spaces or, more generally, that
of the absolute neighborhood retracts over B, the ANRpgs. We shall
sketch here in a very short way a generalization of Ulrich’s work [29] in
this direction.

An absolute neighborhood retract over B, an ANRpg, p: E — B is
defined as a vertical retract of an open set in B x K, where K now
denotes a separable Banach space. We consider fixed point situations,
that is, commutative diagrams

(3.5) ExNDV ExM

\/

B

where E — B is an ANRp, M and N are euclidean spaces (possibly
with a group action, in whose case f has to be equivariant) and f
is strongly fized, which means that besides being properly fixed, the
closure, W, of its image (or at least to the image, f(W), of some
open neighborhood W of Fix(f)) lies properly over B. In the case
that F = B x K — B, it is possible to approximate f by maps
f': V! — B x P x M, properly fixed over B, where V' is open in
B x P x N and P is a finite polyhedron contained in K. Since then
P is an ENR, then B x P is an ENRp and the index I(f’) is defined.
If two approximations f’ and f” are close enough to f then they are
homotopic (in the sense of 2.7; thus I(f') = I(f"). Therefore, we may
define the index of f, I(f), as I(f’) for f' close enough to f.
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Since, if Fix(f) = ¢ we may assume V = ¢ and so V' = ¢, we have
(3.6) Fix(f) = o = I(f) = 0.

Properties 2.7. through 2.10. remain true and so the possibility of
defining the index of the situation (3.4) for a general ANRg p: E — B
holds.

With due care all this can be carried out equivariantly too.

4 Equivariant degree

4.0. In this section we describe a special case of the index which refers
to an important class of equations (cf. [14, 15]). We shall discuss the
degree, which we shall define via the index, and using the properties of
this last, we shall show its fundamental properties.

Let G be a compact Lie group and M, N (finite dimensional) real
G-modules, and let K be a euclidean space. If B is a metric G-space
and

(4.1) BxKxNOV—2-KxM

is an equivariant map, with V open and invariant in B x K x N, and
is such that the set of solutions g=!(0) of the equation g(b, z,y) = 0 lies
properly over B (e.g. is compact, if B = {*} or B itself is compact); for
instance, if the closure V lies properly over B and g can be extended to
V in such a way that no zeroes appear on the boundary, then we define
the degree of g as

(4.2) deg(g) = I(i — ¢') € m T ™M(By),

where g': V. — BxKxM, ¢'(b,z,y) = (b,9(b, 2,y)) and (i—g')(b, z,9)
(b,(2,0) — g(b,z,y)) € B x K x M. This can be defined because i — ¢’
is properly fixed, since Fix(i — ¢') = g~ 1(0).

The degree is an invariant which detects solutions of the equation

(43) g(b,z,y) =0,

which can be seen as a family of equations in the sense of [14, 15]
parametrized, equivariantly, by the metric G-space B. It has the fol-
lowing properties.
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4.4. deg(g) # 0 = (4.3) has a solution.
(This follows from the equivariant version of 2.6).

Excision 4.5. ¢g71(0) C W C V, W open in B x K x N = deg(g) =
deg(g|W).

(This follows from the equivariant version of 2.9).

Additivity 4.6. V = ViUV, Vi, V5 open in BXx K x N and g~ 1(0)NV1N
Vo proper over B = deg(g) = deg(g|V1) + deg(g|V2) — deg(g|V1 N V5).

(This follows from the equivariant version of 2.8).

Homotopy Invariance 4.7. If g; is a homotopy between gy and g1 such
that for every t, g;*(0) lies properly over B, then deg(go) = deg(g1).

(It follows from the equivariant version of 2.7. In fact, the inverse is
also true, if we allow the domain V; of g; to vary along with ).

Clearly, it is not necessary to assume in (4.1) that G acts trivially
on K. On the other hand, as described in 3.4, we may more generally
assume that K is a separable Banach space. The situation is as follows.
Let

(4.8) BxKxN>V-LKxM
be equivariant and such that g=1(0) C V, as well as the closure of
{(b’zﬂy) | (z’y) = (zl,O) _g(b,zl’yl) e K X M’ (b”z,’y’) E V}

in B x K x N lie properly over B. Then i — ¢': (b,z,y) — (b,(2,0) —
(g(b,2,v)), (b,z,y) € V, is strongly fixed and thus its Leray-Schauder
type index, I(i — ¢') is defined. Hence we define the degree of g by

(4.9) deg(g) = I(i — ¢') € 721"V B)

as before. It has the same properties as the finite dimensional index.

As in [14], K may have an action of G by isometries. There, the
authors consider the case B = {*}, in which our degree lies in the sta-
ble equivariant stem ng I=INT o stable homotopy classes of equivariant
maps between the G-spheres SM and S¥, given by the one-point com-
pactifications of the G-modules M and N, respectively.

As a last comment in this section it should be remarked that the
degree in [14, 15] is defined in a nonstable equivariant homotopy group of
G-spheres. After stabilizing, their degree becomes ours. This explains,
in particular, that their additivity (property (e) of the degree in [14], p.
445) only holds up to one suspension, whereas ours is plain.
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A The Lefschetz-Hopf theorem

In this appendix, a short account of the results in [24] is given. There we
give a conceptual proof of a Lefschetz-Hopf trace formula for computing
the index of a globally defined fixed point situation. We prove the
following.

Theorem A.1. Let p: E — B be a proper G-ENRp such that hi;(E)
is a projective, finitely generated hi,(B)-module, and let M and N be
G-modules. Then, if f: E X N — E x M is an equivariant map over
B such that Fix(f) — B is proper and f~1(E x 0) C E x B for some
ball B C N, then

I(f) = trace(f* : hiz(E) — h&(B)) € hY"™N(B),

where f* is, up to suspension, the endomorphism of degree [M] — [N]
induced by (the stable map)

(A.2) fiEx(N,N—B) — E x (M,M —0).

Proof: 1t is an application of Proposition 4.4 in [10]. We sketch it.
There is s category B-Gtabg, whose objects are triples (X, X'; p),
where X is a G-space over B, X' is an invariant subspace and p is an

element of the real representation ring RO(G).
Its morphisms are the stable maps given by

(A.3) B-Gtabg((X,X';p), (Y,Y';0)) =
= colim (X, X)x (K®p, K®p—0),(Y,Y)x (Kdo,K®o—0)],

also called stable maps from (X, X') to (Y,Y') of degree o —p € RO(G),
where [-] denotes G-homotopy classes of G-maps over B of pairs, and K
varies in the category (made small) of unitary (complex) representations
of G, the direction given by K < L. <= 3 M such that K @ M = L.
(By taking K large enough, K @ p and K @ o become G-modules).

This category can be endowed with the structure of a monoidal
category, and inside it the proper G-ENRgs, F, are strongly dualizable,
whose dual is (B x L, B x L — E), if FE is a G-neighborhood retract in
B x L.

Under the assumptions of A.1, the defining sequence (2.1) of the
index, defines the trace, (2.2), of the morphism (A.3) in the category
G-Gtabp. Since the cohomology h, defines a functor from this category
to the category of hf,(B)-modules, which satisfies the hypothesis of [10,
4.4], then it preserves traces, thus sending (2.2) to the trace we seek. O

For all details of the proof see [24].

13
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B The transfer

Given an equivariant fixed point situation as (2.0) there is another
homomorphism related to the index homomorphism Iy: hf;(B) —

h*G+[M]_[N](B), called the transfer homomorphism of f. To define it,
consider, as before, first the case £ = B x K and take the sequence of
equivariant maps of pairs
(B.1)
WV, v —F) Dy s (B x M, E x M —0)
(ExN,EXN—-B,) >(ExN,ExN—F)

(Ex N,ExN-0)
I
Bx(KxN,KxN-0)—-—-——-——————— >V x(KxM,KxM-—0).

This, again, induces a stable map as (A.3)
7p: B—V
of degree [M] — [N] € RO(G), or equivalently, a homomorphism
7} hG (V) — h(B)

for any RO(G)-graded G-equivariant cohomology theory h;, called a
transfer homomorphism of f.

Since we may restrict f to any W C V, as to approach Fix(f), then
all transfers TZY fit together to pass to the limit and yield the minimal
transfer

Fr: JeFix(f) — hg N (B),

through which all other transfers factor. This shows, in particular, that
(B.2) Fix(f) =90 = T}/V =0 forevery W.

These transfers have all properties, which generalize the ones in [8] as
can be seen in [26]. Thus they can provide applications of fixed point
theory to algebraic topology. As an example of an application to this
last, in [25] it is proved that any equivariant stable map o : X — Y
between pointed G-spaces of degree [M] — [N] € RO(G), that is, a map
in the category Gtabg, factors through a transfer of some G-fixed point
situation f over X and a nonstable map, namely, one has

I LA N
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Here V' is an open invariant neighborhood of the fixed point set Fix(f)
and 9 : V — Y is an equivariant (nonstable) map.

Carlos Prieto
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