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Abstract

The purpose of this paper is to show that the generalized fixed-point transfer, as defined by Ulrich
and the author, determines a transformation of the Leray—Serre and of the Rothenberg—Steenrod
spectral sequences for general homology and cohomology theories, under suitable conditions on the
considered fixed point situations.2002 Elsevier Science B.V. All rights reserved.
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1. Introduction
Recall from [9] the definition and some of the properties of the transfer.

Definition 1.1. Let X be a metric space. RA-fixed point situation ovek , k € Z, ak-FP&
for short, is a commutative diagram

]R”XEDV4>R”+"XE

ME\\ /AE

wherep: E — X isan ENRy,n € Z suchthak +k > 0,V is an open subset &" x E and
f is compactly fixegdthat is, thecoincidence seFix(f) = {(y,e) e V| f(y,e) = (0, e)}
lies properly overX, i.e., the preimage of every compact seins compact in Fixf).

To such ak-FPS we may assign a transfer, which is to be a certain stable map,
according to the definition below. In order to simplify matters, assume jpgh#&t — X
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is trivial, thatis,E = R™ x X. Before stating the definition, let us recall that, since([Fix
lies properly overX, there exists a continuous functign X — R* such that Fixf)
is contained in the tubular neighborhodt} = {(y, y",x) e R” x R" x X | [[(y, y)Il <
o(x)}, where|| - || denotes some norm.

Definition 1.2. Let W be any open neighborhood of Ej®). Without loss of generality,
we may assum& C V. Take the diagram of pairs of spaces and maps of pairs.

(Rn-i-k—i-m’ Rn—i—k-{-m _ O) x W

(W, W —Fix(f)) S G L G (Rrtktm Rutktm _ 0y 5 X xx xW
@

(R 5 X, R*™" x X — Fix(f))

(3]

(R x X, R"™ x X — D,)

~

3

(Rn+m’ Rn+m _ 0) x X

wherei: W — R*™ " « X is such thati(y,y’,x) = (0,y’,x) € R*™km « X (1)

and (3) are stably invertible mapgl) being an excision and3) being a homotopy
equivalence (on the second member of the pair, because one can easily strongly deform
R —0) x X =R"™ x X —0x X ontoR"™™ x X — D,; hence, inclusion (3) induces
isomorphisms for any homology and cohomology theory, being therefore stably invertible).
Thus the transfer

() X—>W

is a stable map of degréewhich induces for any cohomology thedr{ya homomorphism
T(f)* ¥ (W) — ¥R (X).

In particular, forW = E, one has
T(f)* h*(E) — h*(X),

and, on the other hand, passing to the inverse limit by varying on all neighborioods
Fix(f),

T(f)*h*(Fix(f)) — B (X),
whereh* is the Cechificationof the theoryi*.
Analogously, for any homology theory,, the stable transfer determines homomor-
phisms
T(f)s sk (X) = (W),
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T(s  hsq i (X) = hy(E),

T(f)s hapr (X) = e (FIX(f)).

The transfer for a generalFPS, can be defined using the commutativity property [9,
1.15].

In this paper we show that this general transfer is compatible with the spectral
sequences of a fibration (Leray—Serre and Atiyah—Hirzebruch—-Whitehead) and with the
one associated to the Milnag-resolution of the classifying bundle of a topological
group G (Rothenberg—Steenrod). For the case of the transfer of Dold [3] or of Becker—
Gottlieb [2], these compatibilities were proved in [5,7].

This transfer, as shown in [9], has several properties, of which, the pullback property will
be of special interest in what follows. We formulate all results hereon for the cohomology
case. The corresponding results for homology are similar (or better, dual) and their
formulation we leave to the reader.

Proposition 1.3. Let Y be a metric space and: X — X be continuous. Iff is a
k-FPS, then its pullbackf’: V' — R"** x E’ overw is ak-FPS, which has a transfer
t(f)*:h* (V') — h**(X’) such that the square

(V) —E— (V)
r(f)*i lr(f’)*
+k o Rtk
R (X) —= (X))
commutes, wher@: V' — V is the map induced hy.

Another important property of the transfer, which, as a matter of fact, is a consequence
of the pullback property, is the homotopy property.

Proposition1.4. If f:V — R  x E, V c R" x E, is ak-FPS(;, wherel = [0, 1], and
if f,:V, — Rk x E, is the restriction off to the sliceX x {r} ~ X, then the following
diagram commutes.

(V) — (V)

f(f)*l/ if(f/)*

h*+k(X x 1) ?h*—l—k(x)
t
wherej; andf', are the corresponding inclusions and the bottom arrow is an isomorphism
(sincej; is a homotopy equivalenge
2. Thetransfer and the spectral sequences of afiltration

In order to study the behavior of the transfer with respect to the Leray—Serre and the
Rothenberg—Steenrod spectral sequences, we need to understand how the transfer fits into
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the spectral sequences determined by filtrations. To that end, we need first to observe that
the transfer, as defined in Definition 1.2, induces, in fact, a stable map of pairs. More
precisely, letf be ak-FPS; if A C X, and E4 — A, respectivelyW, — A are the
restrictions ofE — X to A, thatis,Ex = p~1A C E, Wy = E4 N W, thent(f) induces

a stable map of pairs

T(f) (X, A) = (W, Wa)

of degreek and therewith homomorphisms
T(f) T h (W, Wa) — "X, A),

or
T(f)*Th*(E, Ex) = B (X, A),

for the particular casé¥ = E, and, passing to the inverse limit by varying on all
neighborhood® of Fix(f),

T(f)* i (FIX(f), FiX(fa)) = R (X, A),

where f4 : W4 — R"T% x E4 is the restriction of thé-FPS; f to A.
Let now

A=X1cx%c...cxlicxitlc...cx®=Xx

be afiltration of the pair(X, A) and let
Ex=E'cE’c...cEICE c...cE®=E

be the induced filtration of £, E ), E? = p~1X4, and, more generally,
Wa=W1lcwlc...cwicwitlc...cw®=w

the corresponding filtration ofW, Wy), for any neighborhood¥v of Fix(f), W% =
EiNW.
Therefore, we have far < r < s <t the squares

Wq( Wr( Ws( w!

Lo

Xq( Xr( XS( X!

Using Proposition 1.3 we have the commutative square
(W, W)y ———=h*(W*, W9)
rl J/r (2.1)
h*+k(X’, Xr)Hh*+k(Xs7 X7)

where the horizontal arrows are determined by the inclusions andenotes the
homomorphisms induced by the transfers of the corresponding restrictighs of
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Since the transfer is induced by a stable map, it is compatible also with connecting
homomorphisms, specially the ones for the triplég? c W" c WS andX? Cc X" C X*,
thus producing commutative squares

h*(Wr, Wq)*6>h*+l(Ws, Wr)
l l 2.2)
h*+k(Xr, X7) T>h*+l+k(X$’ X"

The filtrations given above induce, fér*, spectral sequences, whogg-terms are
defined as

E;’-,S(X’ A) = hr-l—s(Xr’Xr—l)7
EYY(E.Ea) = W (E" E™Y),
E;’S(W, WA) — hr+s(Wr’ ‘A/V—l)7

respectively. Therefore, using the fact that the two squares (2.1) and (2.2) are commutative,
we have the following result.

Theorem 2.1. The transfer for thek-FPS; f induces transformations of spectral
sequences

v {E[*(E. Ea).di} > {E[* (X, X ). 41},
or, more generally,

T EPT (W, Wa), di) — {EF (X, X ), di)

There is a homology version of all these results, which will be useful in Section 4, but,
since the homology results are similar (dual) to these, we leave them out.

3. Thetransfer and the L eray—Serre spectral sequences

Let p: E — X be a Hurewicz fibration and assume thatc X is such that the pair
(X, A) is a 0-connected relative CW-complex and let

A=X1cXxXc...cx?cxitlc...cx®=Xx
be its skeletal filtration and
Es=E'cE°c...cEICcE"c...CE®X=E

be the induced filtration of the paifE, E4). Let either h* be a strongly additive
cohomology theory, or assume that the p@i; A) has only finitely many cells in each
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dimension. Then one has a (cohomology) spectral seqL{eE‘chQE, EA), d;} associated
to the filtration of E and the following result.

Theorem 3.1 (Leray—Serre).The spectral sequenceEl’"‘(E,EA),dl} converges to
h*(E, E4) and for its Ex-term there is an isomorphism

E;°(E,Ex) = H' (X, A; h*(F)),

where H* denotes ordinarycellular) conomology and its coefficients are taken, as usual,
in the local system determined by(p~1(x)), x € X.

For a proof, we refer the reader to [11], though we give a description of the isomorphism,
which will be of interest to prove our results.
In order to define the local systefi(F ) as a contravariant functor

W (F): MI(X)—> A
from the fundamental groupoid of to the category of abelian groups, let first
rMExyXx'—E'
be a lifting map for the fibratiop : E — X. Then
W (F)(x) =h*(Fy), Fo=p'(x)
and for a pathw: I — X joining xg with x1,
W (F)(w) =07,

wherew: Fyy, — Fy, is given byo(y) =I'(y, w)(1).
Recall also that theellular cochain complewith coefficients in the local systent (F)
associated to the skeletal filtration @f, A) is defined by

C" (X, A h*(F)) = [T 7 Foeo):
peP,
where @, denotes the set of characteristic maps of tkeells of (X, A), seen as maps
e: (D, YH > (X", X" andeg = (1,0,0,...,0) D" C R".
If ¢ is a characteristic map, as above, one can pull back the (restricted) fibration
E" — X" overg to obtain

T(/JLE’/

-

Dr?xr

This induced fibration is fiberwise homotopy trivial, i.e., there exists a vertical homotopy
trivialization

ap D" x Fye) —= Ty.
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Then«:EY*(E,Ea) = K" T(E", E"™Y) — C"(X, A; h*(F)) is an isomorphism given
into each factor by the composite

hr—i—s(Er Er— l) hr—H(Tw, T )

e (.578) x F)<Z ).

whereT(/ﬁ — "1 s the restriction to the boundaf—1 ¢ D" ando” is the suspension
isomorphism.

Remark 3.2. In the caseE = X, p = id, the local system becomes constant with
value 2*(x) and the isomorphism described above is very simple, namely, one has an
isomorphisnx : EE’S(X, Xa) =k (X", X"~ = C7 (X, A; h* (%)) giveninto each factor

by

hr+s(Xr X' 1) hr+s(]D)r S 1)<—h (qu(eo))

This determines thAtiyah—Hirzebruch—Whiteheagbectral sequence; namely, one has the
following special case of Theorem 3.1.

Theorem 3.3 (Atiyah—Hirzebruch-WhiteheadJhe spectral sequend&,* (X, X 4), d;}
converges ta* (X, X 4) and for its Eo-term there is an isomorphism

E3*(X,Xa) ZH' (X, A; h* (%)),

where H* denotes ordinarycellular) cohomology.

Take now a Hurewicz fibratiofi: E — X x I with liftingmap I" : (X x I)! xxx1 E —
E', calli,: X ~ X x {v} = X x I the inclusion ¢ =0, 1), and letE” = E|x () C E be
the corresponding restriction @t

There is a homotopy equivalen@esuch that one has a commutative triangle

EO\\—/> El

given by
@(e) =T (e, w,)(D),
wherew, : I — X x I is such thatv.(t) = (px(e),t) andpy : E— Xis theX-component

of p.
We have the following lemma.
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Lemma3.4. Take ak-FPS

R'xEDV Rk < E

L

X x1I

and letA c X. If fV: VY — Rk x EV is the restriction off to X x {v}, then one has a
commutative diagram

h*(E, E9) n*(EY, EY)
m %
h*+k(X, A)

Proof. If j,: EY < E is the inclusion, Proposition 1.3 guarantees the commutativity of

*(E®, EQ) < p*(E, Epxy) —2—=h*(E, EL)

r(fo)*l ir(f)* ir(fl)*

R (X, A) %h*%((x, A) x I)—=h*Th(X, A)
0 1

Taken: E — E* such that
n(e) = I'(e, @) (D),

where @,(t) = (p(e), (1 — pi(e))t + pi(e)), pi:E — I the I-projection of 5. Then

no j1~idg1 andn o jo = @. Therefore, we can substitute the top arrows of the diagram
above byw* (pointing to the left). Obviously, the bottom arrows compose to become the
identity. Thus, the diagram becomes the desired orme.

Using the previous lemma we obtain the next result.

Proposition 3.5. Let f:V — R"tk x E be ak-FPS,, wherep: E — X is a Hurewicz
fibration. Then the transfer determines a transformation of local systems

T h*(F) = (%),

such that for eachr € X, 7, = t(f)*:h*(Fy) — h*tK(x), where f, is the restricteck-
FPS«

R"” x F, DV—>R”+"><F

~

over{x} - {x} — X.
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Proof. Take a pathw: 1 — X from xgtox1 and letp': E — I bethe pullback op overw.
Let w: Fy, — Fx, be defined as above (fof = {x}). From Lemma 3.4 we obtain the
following commutative diagram

)t

h* (Fyy) —— h*tk (%)
T(fx)* i
h*(Fy,) — 2> ) Bk ()

which is what we wanted to prove.O
From Lemma 3.4 we deduce the following consequence.
Proposition 3.6. Let f:V — R"tk x E be ak-FPS,, wherep: E — X is a Hurewicz

fibration and X is contractible and letA c X. If «:X x F — E is a homotopy
trivialization of p, then one has a commutative triangle

h*(E, Ep) o h*((X, A) x F)

()* T(idx fo)*
Jxtk (X, A)

where fo denotes the restriction of the situatighto the singular spacéxp} to which X
contracts.

Proof. If H:X x I — X is a homotopy such thaf (x, 0) = xg andH (x, 1) = x, take the
inducedk-FPS¢ s

R'x E5V ! R+ B

~.

X x1I

over H. Apply Lemma 3.4 to obtain
()@ =211

where f0 is the restriction off

R”xXxF3V04>IR”+k><XxF

T~

£O= Flxxq: (@, x,y) = (0,x, fo»))

and
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since H(X x {0}) = {xo}. On the other hand, the restrictiofit of f over X x {1}
is, precisely,f. On the other handy is a trivialization of E — B which is vertically
homotopic tox. Therefore

7(id x fo)*a* =1 (f)*. ]
Basically, the main result of this section is contained in the following assertion.

Proposition 3.7. The diagram
RHS(ET, ET™Y ——=C"(X, A; h*(F))
r(f)*i J/Cr(X,A;r)
hr+S+k(Xr’ Xr—1)4K>Cr(X7 A; hs-i-k(*))
is commutative.

Proof. We consider the following diagram

"
%y

* ‘ —-ro
WS (BT, EFL Y prts (Ty. T}) S (@, ST x Fopep) ™1 (Fp(eg))

N -
AN T
Oy TS - @) *Upteg))”
S A 2~
hr+s+k (Xr , Xr—l) T hr+s+k(Dr’ Sr—l) — hS(*)

whose commutativity follows by subdividing it in three diagrams, the first of which
commutes by the naturality of the transfer, the second, by Proposition 3.6, and the third,
by the stability of the transfer. o

We can now write the main result, which follows immediately from Proposition 3.7.

Theorem 3.8. Let f:V — R"** x E be ak-FPS such thatp: E — X is a Hurewicz-
fibration and(X, A) is a0-connected relativ€W-complex. Let, moreover; be a strongly
additive cohomology theorpr assume that the paiX, A) has finitely many cells in each
dimension. Then the transfer of induces a transformation of spectral sequences

t(N)*A{E(E,Ex). di} — {E{’”"(X, Xa).di}

converging tor (f)*: h*(E, E4) — h*t*(X, A), such that at theZ,-term level one has a
commutative diagram

EYS(E,Ex) = H'(X,A;h5(F))
T(f)* H"(X,A;7)
EFTRX, Xa) = H'(X, A; it (%)

where the transformatiom : #° (F) — h***(x) between local systems is such that=
T(fo)* 1 h*(Fy) — h* T (%) is the transfer of the restriction of to each fiber ofp.
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Proof. Just apply Proposition 3.7.0

There is, of course, a homology version of Theorem 3.8, whose proof can be similarly
(dually) given. We leave it to the reader.

4. Thetransfer and the Rothenber g—Steenrod spectral sequences

Let G be a compact Lie group (it could even be a more general topological group) and
let EG — BG be its classifying (principal) bundle. Moreover, [8tact continuously in a
spaceF'. In [6] the construction of general Rothenberg—Steenrod spectral sequences which
approximate the homology and cohomology of the associated bundleG x ¢ F) and
h*(EG xg F), for h, a generalized multiplicative homology theory and an associated
generalized multiplicative cohomology theohyf, (say, both represented by the same
spectrum) was given. Sindg.(x) = h*(x), we shall simply writeh (x) for this ring, when
there is no danger of confusion. The-terms for these spectral sequences are, respectively,
Tor™(9) (h(x), h(F)) and Ex}, () (h(x), h*(F)). This second will be the case/if, and
h* are represented by a spectrum satisfying the finiteness and duality condition 13.3in [1],
which we call theAdams conditiort (For example, as proved by Adamsap. cit, the
classical spectra, such as the sphere spectrum, the Eilenberg—Mac Lane spectrum, MO,
MU, MSp, BO, BU, satisfy the Adams condition.)

More precisely, leEgC E1 C--- C E, C Er4+1 C --- C EG be the MilnorG-resolution
(cf. [6]). Then one has the corresponding filtration in the base space

BoCcB1C---CBCB,41C---CBG
as well as the filtration of the total space
EoxgFCE1xgFC---CE, XxgFCE,s1XgFC---CEG xg F.
Let {EL,(EG x¢ F),d'} and {E]*(EG x¢ F),d;} be the corresponding spectral

sequences for homology and cohomology. Then one has the following result proven in [6].

Theorem 4.1 (Rothenberg—SteenrodJhe spectral sequences associated to the Mil-
nor G-resolution of BG {E. (EG x¢ F),d'} and {E]""(EG x¢ F),d;} converge to
h(EG xg F) and h*(EG xg F), respectively. If the homology algebra.(G) is
h(x)-projective, then

E2(EG xg F) =Tor! (@ (h(x), hy(F)).

Moreover, leth, andh* be represented by a spectrum which satisfies the Adams condition,
then

Ey*(EG xg F) = Ext;j(G)(h(*), h*(F)).
1The ring spectrunk representing: must be the colimit of finite specti&, , for which E.(DEy) is projective

overmy (E), whereDE,, the S-dual oft,, satisfiesF* (DEgy) = Hom;"r*(E) (Ex(DEy), 4« (F)) for any module-
spectrumF overE.



50 C. Prieto / Topology and its Applications 121 (2002) 39-56

Particularly, if one take# = {x}, if the homology algebra. (G) is h(x)-projective, one
has

E2 (BG) = Tor! (D (h(x), h(*)) = h.(BG),

and if, moreoverj, andh* are represented by a spectrum which satisfies the Adams
condition,

E}* (BG) Z Ext® ¢ (h(). h(x)) = h*(BG).

As in the case of Theorem 3.1, we will not give the proof of Theorem 4.1, but we
shall give a description of the isomorphisms, in order to prove their compatibility with our
transfer.

In the case of homology, what one proves is the existence of an isomorphism

B:hi(Er, Er—1) ®h,(G) h«(F) = hy((Er, Er_1) X F) (4.1)
and for the cohomology, of an isomorphism

B:h*((Er, Er—1) xG F) — HOomy, () (h+(Ey, Er—1), h*(F)) (4.2)
at the E1-level, which, after taking homology (first derivative) determines the wanted
isomorphisms at th&,-level. We prove, in fact, that the transfer is compatible with the
isomorphisms at th&'1-level.
Lemma4.2. The exteriorthomology product

@:hy(Er, Er—1) ®nx) h«(F) = hs((Er, Er1) X F)
determines the homomorphism

B:hi(Er, E;_1) ®h,(G) h«(F) > hy((E, Er_1) xG F)
in such a way that the following diagram is commutative

hw(Er, Er—1) @) ha(F) —2hi( Er, Er—1) ®no(G) h(F)

a B
hy((Er, Er—1) X F) ———>hs((Er, E; 1) XG F)

wherey; is the canonical epimorphism and is induced by the identificatiatE,, E,—1) x
F — (Er, E,_1) xg F.

Analogously, one has the next result for cohomology.

Lemma4.3. The homomorphism
o h*((Ei’v Ey_1) x F) - Homh(*) (h*(Era Er—1), h*(F))
defined by the slant product determines the homomorphism

B:h*((Er, Er—1) xG F) — HOomy, () (h+(Ey, Er—1), h*(F))
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in such a way that the following diagram is commutative

h*((Er, Er—1) xG F) = h*((Er, Er—1) x F)

) I

Homh*(G) (h«(E;, Er_1), h*(F)) T) Homh(*) (h«(E;, Er_1), h*(F))

where y; is the canonical monomorphism ang, is induced by the identification
(Er,Er 1) X F — (Er, Er—1) X F.

Take now a&-FPS¢

R" x EG xGFDV—>R”+k><EG xg F

T(f)s  hatik (BG) = hy(EG X6 F),
t(f)* 1 h*(EG xg F) = h*t*(BG)

and let

be its homology and cohomology transfers, respectively. Then, by Theorem 2.1 applied to
h, andh* and the filtrations oEG x g F andBG, we have the following result.
Proposition 4.4. The transfer induces transformations of spectral sequences
o {EL  (BG),d'} > {E. (EG x¢ F),d'}
and
o E(EG xg F),di} — {E}* ™ (BG), dy}.
In what follows, we shall discuss how the transfers behave inRherms; more

precisely, with respect to the homomorphisphsand g given in Lemmas 4.2 and 4.3.
To that end, recall theompleteG-resolution ofEG (see [6, 1.1])

*x=DpCG=EoCD1CE1CDoC---CE,_1CD,C---CEQG,
such that the action af, EG x G — EG induces relative homeomorphisms
@r:(Dy, Er—1) x G — (Ey, Er—1),

(in particulargg : Do x G =~ Ep). The following lemma was proved in [7].

Lemma4.5. The diagram

Dy x F—Y~FE, xG F

ol I

D,——=B,

&
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is a pullback square, whetg andé, are the restrictions of the quotient maps x F —
E, xg F andE, — B,, respectively.

Let f/: (idgn x £)71V, - R"* x D, x F be the pullback of the restriction the
FPSG fto V., =V N([R" x E, xg F) - R*™* x D, x F. We can decompose this map
as follows

F(xy) =W (v,x, ). %, 00 (v, %, )
Let

R"x F> Vo—>R"+k x F

be the restriction off to the base poin{x} = By of BG; then, one has the maf’ :
R" x D, x F — R"™* x D, x F suchthatf/(y, x, ') = (f3(v,¥'), x, f2(y, ")), where
fo=(f. f&) and is partially defined for sudy, x, y) that(y, y') € Vo.

Lemmad.6. t(f))«=1(f)s:hutik(Dr, Er_1) = h+((D;, Dr—1) x F) and correspond-
ingly for cohomology:*, (in fact, both transfers are equal as stable maps of degyee

Proof. Just recall thaD, = Con€E,_1) and apply Proposition 3.6.0

Now, from Lemmas 4.5 and 4.6, we obtain the following result.

Proposition 4.7. There are commutative diagrams

h*-l—k(Dr, Er_1) Lh*—i—k(Br, B,_1)
T(ldeO)*\L ir(f)*
h«((Dy, Er—1) X F)Th*((Erv Er_1) xg F)

and
S*
h*((Dy, E;—1) x F)<"—h*((E,, E;_1) xG F)
r(ideo)*l ir(f)*

WDy, Ey—1) <———h*"(B,, By_1).

The main theorem of this section is the following.
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Theorem 4.8. Take ak-FPSg, f:V — R"™  x EG xg F,V C R" x EG x F and let
its restriction to the base poirBg = {*} of BG

R" x F > Vp fo R x F

~.

{x}

be such thatr (fo)« : hwyr (x) — hy(F), respectivelyr(fo)*:h*(F) — h*tk(x), is an
h«(G)-homomorphism, wheve, (x), h.(F), h*(x) andh*(F) are given thé, (G)-module
structures induced by th&-space structures caand F. If the assumptions of Theorethii
are fulfilled, then the following diagrams commute

E2 (BG) = Tor™©(n(x), hyps (%)
T*\L \LTor(l,r(fo)*)
E2(EGxG F) = Tor' 9 (h(x), h(F))

and
Ey (EGxg F) = BXG G (), h*(F))

r*l/ \LEXt(l,r(fo)*)

E;"N(BG) = EXtl (0. hHE ()

Proof. We have to prove that the following diagrams are commutative. They are the
corresponding diagrams at ttig-level.

h(Er, Er—1) @Gy Mtk () — Lo 4 (By, By_1)
1®T(fo)*i ir(f)* (4.3)
hs(Er, Er—1) Qn,(G) hx(F) Th*((Er, Er_1) xGg F)
and -
W*((Ey, Er—1) x6 F)—2F>Homy,_ () (hs(E;, E,_1), h*(F))
r(f)*l \LHom(l,T(fo)*) (4.4)
h***(B,, B._1) —5. HOM &) (ha (Er. Er-1). R ()

One can check these commutativities by analyzing the corresponding diagrams with the
a-s instead of with thgg-s. Namely, in the case of homology one has a composed diagram

ix®1 %
Mgy k(Dr. Ep_1) <% hae(Dy, Ep_1) ® hye (%) O (Er, Ep_ 1) ®hyq (%) M h(Er E,_p) ®hse(G) Mtk ()

z(idx fg) 1®7(fo)* 1t (fo)* 1®7(fo)*

hx((Dr,Dp_1) x F) < hx(Dr,Dy._1) ® hx(F) T) hx(Er, E,._1) ® hs(F) T) hs(Er, Ep—1) ®p (G) hx(F)
Ix

(4.5)
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The left square commutes, sinee constitutes a natural transformation of homology
theories; the other diagrams commute obviously.

If one now glues diagram (4.3) on the right side of diagram (4.5), the top row composes
to produce the isomorphismp,.. and the bottom row producés,. Therefore, the glued
diagram, by Proposition 4.7, commutes, and, since the rows of (4.5) are isomorphisms,
(4.3) is commutative. Dually, one can show that (4.4) is also commutative, thus proving
the theorem. O

Remark 4.9. The assumption of Theorem 4.8 thalfo)« : h.+x (x) — h«(F), respectively
t(fo)*:h*(F) — h**t*(x), has to be am,(G)-homomorphism holds, for example,
if, say, V.= R" x EG xg F and f(y.x.y) = (fg(.¥), %, [§(v.¥)) € R"** x
EG xg F and fo = (f}, f2):R" x F — R"*k x F is a G-map, or if f(y,x,y) =
(fd.¥). g(x), fE(y.¥)) e R"™™ x EG x¢ F and fo = (3. f) andg: EG — EG
areG-maps ands is abelian.

Remark 4.10. The Dold-Lashof’s approach to Milnor&-resolution (see [4]) holds as
well for (strictly) associativeH -spaces5. Therefore, our results hold in fact in a more
general set up.

5. Applications and comments

Let G be a discrete group. Then, the filtration induced BG by the Milnor
G-resolution coincides with the skeletal filtration of the CW-compBax. Therefore, the
Rothenberg—Steenrod spectral sequences (Theorem 4.1) which approximate the homology
and cohomology ofEG xg F and BG coincide with the corresponding Leray—Serre—
Atiyah—Hirzebruch—Whitehead spectral sequences (Theorem 3.1) for the fibEafion;

F — BG. We have the following result.

Theorem 5.1. Let G be a discrete group and assume the hypotheses of Thebteane
satisfied. Then for the cohomology case
H*(BG; h*(F)) ZEXG* ) (hs (%), h*(F))
and, in particular
H*(BG; h* (%)) = EXt* ) (h« (%), A (%)).
And for the homology case
Hy(BG; hi(F)) = Tor": 9 (%), hi(F))
and, in particular
Hy(BG; hi(#)) = Tor"(@ (n, (%), hy(%)).

All four isomorphisms are of bigraded groups.
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Observe that, being discrete, the:(x)-algebran, (G) is the group algebra(x)(G)
of G.

In this case, &-FPSs as in Theorem 4.8 induces transformations both for the Leray-
Serre spectral sequence as for the Rothenberg—Steenrod spectral sequence producing
commutative squares. That is, we have the following result.

Theorem 5.2. Let G be a discrete group. Given &FPSzs f, the following squares
commute.

H*(BG; h*(F)) = EX{7 ) (he(x), h*(F))
H*(BG,Tt) J/Ext**(h*(*),r(fo))

H*(BG; h*(x)) = EX{” ) (he(x), 1™ (),

Ho(BG; hi(%) = Tor™( D (h,(x), hy(%))

Hy(BG,1) \LTor**(h*(*)yf(fO))

H(BG;ho(F)) = Tor= D (h(x), hy(F)),

where t represents the corresponding transfers for local coefficient systems @fadl
denotes the transfer for the restriction ffto the base point.

As shown in [9], given a&-FPS& f, the formulaz(f)* o p* =— I(f):h*(X) —>
h*tk(X) holds, wherd (f) € h*(B) is thefixed point indexf f. For the restriction to the
fiber overx € X f,, a similar formula holds, namely,(f,)* o pf =~ I(fy) :h* (%) —
h*tk (). If, for example, the element(f,) € h*(x) is an invertible element, then Theo-
rem 3.8 implies that (f)* o p* is an isomorphism, that ig* is a split monomorphism.
More generally, ifX is connected and for some (hence anyd X, I(f,) € h*(x) is such
that— I(f):h*(x) = h*T* (%) is isomorphic, then the same holds.

Example 5.3. Let G be a compact Lie group and I8t be the normalizer of its maximal
torus. It is well known that the Euler-characteris¢G/N) = 1. For the 0-FPgg
idegxgn (in the fibration EG x¢ N — BG) we have by the Rothenberg—Steenrod
spectral sequence, that its transfer is determined inEtréerm by 7o = t(idg, ). But
00 pé = I(idg,n) =&(G/N) =1, thereforer (idggxgn) © p* :h*(BG) — h*(BG) is

an isomorphism, ang* is a split monomorphism, whege: BN = EG x N — BG is the
canonical fibration.
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