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THE UNSTABLE EQUIVARIANT FIXED POINT INDEX AND
THE EQUIVARIANT DEGREE

WAC�LAW MARZANTOWICZ and CARLOS PRIETO

Abstract

A correspondence between the equivariant degree introduced by Ize, Massabó, and Vignoli and an
unstable version of the equivariant fixed point index defined by Prieto and Ulrich is shown. With
the help of conormal maps and properties of the unstable index, a sum decomposition formula is
proved for the index and consequently also for the degree. As an application, equivariant homotopy
groups are decomposed as direct sums of smaller groups of fixed orbit types, and a geometric
interpretation of each summand is given in terms of conormal maps.

Introduction

In this paper we study the equivariant degree defined by Ize, Massabó, and Vignoli
by comparing it with the equivariant fixed point index defined by Prieto and Ulrich.
In what follows, we define an unstable equivariant fixed point index with nice
properties, which is helpful in proving some results about the degree.

In the first two sections, in order to establish our notation, we recall the definitions
of the equivariant degree [14] and of the equivariant fixed point index [21]. After
comparing both concepts in the next section, we use the degree to define in Section 4
an unstable version of the fixed point index as an element of some unstable
equivariant homotopy group. Its properties allow us to extend the unstable index
to G-euclidean neighbourhood retracts. Using this, in Section 5 we prove a sum
formula, similar to the already proved formula for the stable index [21, 2.13], which
reflects the stratification of a G-euclidean neighbourhood retract in different orbit
types. This formula in turn provides a corresponding one for the degree, which
was obtained by Balanov and Krawcewicz using different techniques [2]. To do
this, we introduce the notion of conormal map, which in a sense is dual to the
notion of normal map used by others. We show that any equivariant map with
compact fixed point set is equivariantly homotopic to a conormal map that is
unique up to conormal homotopy. As an application, in Section 6 we give a direct
sum decomposition of equivariant homotopy groups, and illustrate how our sum
formula can be easily used to prove Segal’s theorem stating that the G-equivariant
0th stable homotopy group of a point is isomorphic to the Burnside ring of G,
namely, πst 0

G (∗) ∼= A(G).
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Figure 1.

1. The equivariant degree

In this section, we provide the definition of the equivariant degree, as given in
[14]. Let G be a compact Lie group, and let M and N denote G-modules with
orthogonal linear actions of G, of dimensions m and n, respectively. Denote by SN ,
SM the n- and m-dimensional spheres obtained as one-point compactifications of
N = Rn and M = Rm, with the corresponding G-actions. Later in the paper we
use the unit spheres of G-modules M , which we denote by S(M). Note that there
is a canonical equivariant homeomorphism (stereographic projection) between SM

and S(M ⊕ R) that sends the point at ∞ ∈ SM to (0, 1) ∈ M × R, where R has
trivial G-action.

Definition 1.1. For an equivariant map f : V −→ M , where V ⊂ N is an open
G-invariant set such that Z = f−1(0) is compact, the following is done.

(0) Shrinking V if necessary, we may assume that V is bounded, f is defined in
V , and that f−1(0) ⊂ V .

(1) Take R large enough such that V ⊂ BR, where BR denotes the open ball
centred at the origin with radius R in N .

(2) Using the Tietze–Gleason extension theorem, extend f to an equivariant
map f̂ : BR −→ M . Denote by Ẑ the zero-set of f̂ . f̂−1(0) = Ẑ = Z ∪ Z ′, where
Z ′ ⊂ BR − V .

(3) After taking an open set V ′ such that V ⊂ V ′ ⊂ BR, V ′ ∩ Ẑ = Z, using an
equivariant version of Urysohn’s lemma, construct a G-invariant map ϕ : BR −→
[0, 1] = I, such that ϕ|BR −V ′ = 1 and ϕ|V = 0.

(4) Define F : I × BR −→ R × M by

F (t, x) = (2t + 2ϕ(x) − 1, f̂(x)).

(5) Since F (t, x) = 0 if and only if t = 1/2 and x ∈ Z, F has no zeros on the
boundary ∂(I × BR) ≈ SN and therefore F determines, by restriction, a map

F ′ : SN −→ R × M − 0 −→ SM ,

where the second map is the usual retraction onto the unit sphere in R×M , which
is canonically G-homeomorphic to SM , as we mentioned above.

By definition, the unstable class degG(f) = [F ′] ∈ [SN , SM ]G is the equivariant
degree of f . Figure 1 illustrates the construction.
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Remark 1.2. The excision property of the degree [14, (c), p. 443] guarantees
that the definition above is independent of the equivariant shrinking mentioned in
Section 0.

2. The equivariant fixed point index

In this section, we recall the definition of the stable equivariant fixed point index,
as given in [21], but in a special case.

Let G be a compact Lie group. Given an equivariant map ϕ : V −→ K⊕M ′, where
K, M ′ and N ′ are G-modules and V ⊂ K ⊕N ′ is an open and G-invariant set such
that the fixed point set F = Fix(ϕ) = {(y, z) ∈ V ⊂ K ⊕ N ′ |ϕ(y, z) = (y, 0) ∈
K ⊕ M ′} ⊂ V is compact, one has an equivariant fixed point index, IG(ϕ), which
is an element of the (M −N)-homology group hM−N (∗), where hG is some RO(G)-
graded equivariant homology theory and M − N ∈ RO(G) is the element in the
real representation ring of G represented by the (virtual) difference of M = K⊕M ′

and N = K ⊕ N ′ (cf. [18]).

Definition 2.1. The fixed point index of ϕ is defined as follows. Consider the
diagram in Figure 2 where j : V −→ M is such that j(y, z) = (y, 0) ∈ K ⊕ M ′,
(y, z) ∈ V ⊂ K ⊕N ′. Since F is closed and V is open in N , then (1) is an excision,
and (2) is a homotopy equivalence in the second term of the pair; thus both induce
isomorphisms in homology. Therefore, the dotted arrow iϕ induces a well-defined
homomorphism

(iϕ)∗ : hG
ρ+N (N,N − 0) −→ hG

ρ+N (M,M − 0),

where ρ ∈ RO(G), which, after desuspending, determines a homomorphism

IG
ϕ : hG

ρ (∗) −→ hG
ρ+N−M (∗)

and, taking the image of the element 1 ∈ hG
0 (∗), also an element IG(ϕ) = IG

ϕ (1) ∈
hG

N−M (∗).
Particularly interesting is the case where hG is the equivariant stable homotopy

πG
st. Then the index IG(ϕ) is a stable element in πG

st N−M (∗) = {SN , SM}G =
colimK [SN⊕K , SM⊕K ]G, where K varies over a cofinal set of G-modules. Note that
this homotopy group can also be considered as the cohomotopy group πst M−N

G (∗).
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Figure 2.
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Figure 3.

(R, R − 0) × (N, N − Z)
F̃ �� (R, R − 0) × (M, M − 0)

(R × N, R × N − BR)

��

��

df

������ (R × M, R × M − 0)

Figure 4.

3. Comparison of the degree with the fixed point index

Recall Section 1, where given a map f : V −→ M , V ⊂ N open G-invariant such
that Z = f−1(0) is compact, we defined the degree degG(f) as the equivariant
homotopy class of a map F ′ : SN −→ SM .

In order to compare the construction of the equivariant degree with the one
for the equivariant fixed point index, first, using the linear homeomorphism D1 =
[−1, 1] −→ I, t �−→ (t + 1)/2, we change the map F in Definition 1.1(4) to a map
G : D1 × BR −→ R × M . Thus

G(t, x) = (t + 2ϕ(x), f̂(x)).

Then we can extend the map G further to a map F̃ : R × N −→ R × M , say by
taking first

F̃ (t, x) =



G(t, x) |t| � 1 and |x| � R

G

(
t

|t| , x
)

|t| � 1 and |x| � R

G

(
t, R

x

|x|

)
|t| � 1 and |x| � R

G

(
t

|t| , R
x

|x|

)
|t| � 1 and |x| � R.

Then, the zero set Z̃ = F̃−1(0) = {0} × Z and we have indeed a map of pairs
F̃ : (R, R−0)×(N,N−Z) −→ (R×M, R×M−0). The triangle in Figure 3 commutes
up to equivariant homotopy of pairs, since if (t, x) ∈ R×V , then F̃ (t, x) = (t, f(x))
if |t| � 1 and = (t/|t|, f(x)), if |t| � 1.

One has the map of pairs df : (R × N, R × N − BR) −→ (R × M, R × M − 0)
defined by the diagram in Figure 4.

Proposition 3.1. The map df : (R×N, R×N −BR) −→ (R×M, R×M − 0)
induces in homotopy classes the element

degG(f) ∈ [(R × N, R × N − 0); (R × M, R × M − 0)]G ∼= [SN , SM ]G.
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Figure 5.

Proof. Let k∗ be any graded reduced homotopy functor with a natural exact
sequence for pairs of spaces, such as either equivariant homotopy groups πG

∗ (see
[1]), or any equivariant reduced homology theory h̃G

∗ . Take the diagram in Figure 5
where the horizontal arrows on the left ladder are given by the corresponding
connecting homomorphisms, and the two on the right by inclusions. The horizontal
arrows (1) and (2) are natural isomorphisms, since kj+1(R×N) = kj+1(R×M) =
kj(R × N) = kj(R × M) = 0 and the vertical arrow (3) is an isomorphism
given by a canonical homotopy equivalence. The curved arrow on the left is
the homomorphism df defined above. The two isomorphisms on the right-hand
side ladder follow because the inclusion of the unit spheres in R × N − 0,
respectively R × M − 0, are equivariant homotopy equivalences, and these spheres
are equivariantly homeomorphic to SN and SM , respectively.

In the special case kj = πG
N = [SN ,−]G, the homomorphism d′f corresponds to a

homomorphism

[SN , SN ]G −→ [SN , SM ]G,

which sends [idSN ] to degG(f).

Given any element [α] ∈ [SN , SM ]G, it induces a homomorphism α∗ : h̃G
∗ (SN ) −→

h̃G
∗ (SM ).

Corollary 3.2. If 1 ∈ hG
0 (∗) ∼= h̃G

0 (S0) = h̃G
N (SN ), then degG(f)∗(1) =

IG(j − f) ∈ h̃G
N (SM ) ∼= h̃G

N−M (S0) ∼= hG
N−M (∗). In particular, if h̃G

∗ is equivariant
stable homotopy, then degG(f)∗(1) ∈ {SN , SM}G is the stabilization of degG(f) ∈
[SN , SM ]G, which we call the stable degree.

Proof. Figures 3 and 4, together, give us Figure 2 suspended by taking the
product with (R, R−0) on the left, and taking K = 0; therefore, j = 0, and ϕ = j−f .
Then F = Z, that is, Fix(ϕ) = f−1(0). Hence, taking kj = h̃G

N , the homomorphism
d′f in Figure 5 sends 1 to IG(j − f) ∈ h̃G

N (SM ) ∼= h̃G
N−M (S0) ∼= hG

N−M (∗).

4. The unstable fixed point index

In this section we redefine the equivariant fixed point index to obtain an unstable
version of it. We shall use the equivariant degree instead of Figure 2 in Section 2,
which was used to define the stable index.
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Definition 4.1. Let M , N and K be G-modules and let V ⊂ N × K be open
and invariant. If ϕ : V −→ M ×K is such that F = Fix(ϕ) = {(y, e) ∈ V |ϕ(y, e) =
(0, e)} is compact, then, if j : V −→ M ×K is such that j(y, z) = (0, z) and
f(y, z) = (j − ϕ)(y, z), define the unstable equivariant fixed point index of ϕ by

Iu
G(ϕ) = degG(f) ∈ [SN⊕K , SM⊕K ]G.

This group is abelian if dim(NG ⊕ KG) > 0 (see [14] or [12]).

This unstable index has the following properties which are either direct
consequences of the corresponding properties of the equivariant degree, or can be
obtained by a slight modification of the corresponding proofs in [21] for the stable
index (cf. also [14, (c), (b), (e) p. 443]).

(a) Localization (corresponding to the excision property of the degree): If W ⊂ V
is open and G-invariant and F ⊂ W , then

Iu
G(ϕ) = Iu

G(ϕ|W ) ∈ [SN⊕K , SM⊕K ]G.

(b) G-homotopy: Let ϕτ : Vτ −→ M × E be such that Fτ = Fix(ϕτ ) = {(y, e) ∈
Vτ |ϕτ (y, e) = (0, e)} is compact for every τ ∈ I, then

Iu
G(ϕτ ) = Iu

G(ϕ0) ∈ [SN⊕K , SM⊕K ]G, τ ∈ I.

Such a homotopy ϕτ will be called admissible.
(c) Additivity: Let ϕν : Vν −→ M × K, ν = 1, 2, Vν ⊂ N × K open and G-

invariant, be such that the fixed point sets Fν = Fix(fν) are compact and disjoint.
By the localization property, one can thus assume that the domains Vν are also
disjoint. If V = V1 ∪ V2 and ϕ : V −→ M ×K is such that ϕ|Vν

= ϕν , then ϕ has a
compact fixed point set F = Fix(ϕ) = F1 ∪ F2 and

Σ
(
Iu
G(ϕ)

)
= Σ

(
Iu
G(ϕ1)

)
+ Σ

(
Iu
G(ϕ2)

)
∈ [SN⊕K+1, SM⊕K+1]G,

where Σ : [SN⊕K , SM⊕K ]G −→ [SN⊕K+1, SM⊕K+1]G is the suspension homomorph-
ism and, for any L, SL+1 denotes the one-point compactification of the G-module
L ⊕ R. (The additivity holds, thus, already after one suspension.)

Moreover, the unstable index has a property that the degree does not have.
(d) Commutativity (corresponding to [21, 1.15]): Let M , N , K, and K ′ be G-

modules and let U ⊂ N × K, W ⊂ K ′ be open invariant sets. If α : U −→ M × K ′

and β : W −→ K are continuous equivariant maps such that the map

N × K ⊃ α−1(M × W )
(1M ×β)α �� M × K

has a compact fixed point set F = Fix((1M × β)α), then also the map

N × K ′ ⊃ (iN × β)−1(U)
α(1N ×β) �� M × K ′

has a compact fixed point set F ′ = Fix(α(1N × β)). Moreover, both F and F ′ are
homeomorphic and

ΣKIu
G((1M × β)α) = ΣK

′
Iu
G(α(1N × β)) ∈ [SN⊕L, SM⊕L]G,

where L is the smallest G-module, such that K ⊕ K = L and K ′ ⊕ K
′
= L and

Σ denotes the corresponding suspension homomorphism. In particular, if K = K ′,
one can take L = K = K ′ and then one does not need to suspend in order to have
the commutativity property.
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Using this last property, as in [21], one can extend the definition of the unstable
index to more general situations.

To that purpose, let E be a G-euclidean neighbourhood retract, namely E ⊂ U ⊂
K, where U is open and G-invariant, and there is an equivariant retraction r :U −→
E (see [15, 23] for general properties of G-euclidean neighbourhood retracts). Let
i : E ↪→ K be the inclusion.

Definition 4.2. Let V ⊂ N ×E be open, invariant and let ϕ : V −→ M ×E be
such that F = Fix(ϕ) = {(y, e) ∈ V |ϕ(y, e) = (0, e)} is compact. Then we define
the unstable equivariant fixed point index of ϕ taking ϕ̃ : Ṽ −→ M × K, such that
Ṽ = (1N × r)−1(V ) ⊂ N × K and ϕ̃ = (1M × i) ◦ ϕ ◦ (1N × r) and putting

Iu
G(ϕ) = Iu

G(ϕ̃) = degG(j − ϕ̃) ∈ [SN⊕K , SM⊕K ]G,

where, as before, j : Ṽ −→ M × K is such that j(y, z) = (0, z).

This general unstable equivariant index for maps (partially) defined on G-
euclidean neighbourhood retracts is well defined and has all properties (a)–(d),
which the previous case has.

Remark 4.3. Consider a map ϕ, partially defined on N × K and with image
in M ×K with a compact fixed point set. For the sake of notational simplicity, one
might simply write Iu

G(ϕ̃) ∈ [SN⊕K⊕L, SM⊕K⊕L]G for the unstable index Iu
G(ϕ̃) ∈

[SN⊕K , SM⊕K ]G, instead of the suspension ΣLIu
G(ϕ̃), since from the term ⊕L in

the homotopy set one can infer that one is dealing with the L-suspension.
Similarly, for a map f , partially defined on N × K and with image in M × K

with a compact zero-set, one might simply write degG(f) ∈ [SN⊕K⊕L, SM⊕K⊕L]G
for the degree degG(f) ∈ [SN⊕K , SM⊕K ]G, instead of the suspension ΣLdegG(f).

Even though the unstable equivariant fixed point index is defined via the
equivariant degree, it allows us to extend the definition of the degree to a more
general situation, which will be useful later on in Theorem 5.6.

Definition 4.4. Given a G-retract E of an open invariant set U in a G-module
K with retraction r : U −→ E, such that 0 ∈ E, and a map f : N×E −→ M×E, such
that Z = f−1(0) is compact, one may define degG(f) = Iu

G(ϕ) ∈ [SN⊕K , SM⊕K ]G,
if ϕ = j − f(1 × r) : N × U −→ M × K, where j : N × U −→ M × K is such that
j(y, z) = (0, z).

5. Sum decomposition formula

In this section we show that the unstable equivariant index decomposes as a sum
of elements, each corresponding to one orbit type. This leads to a decomposition of
the group [SN , SM ]G into a direct sum, as was shown by Balanov and Krawcewicz
[2] using the equivariant degree. Our approach is based on a method used
in [21], where the formula was proved for the stable index (see also [20]),
and it originated in [23]. This approach is simpler since it does not need any
G-transversality as it was the case in [2], and thus it works in more general situations
(G-euclidean neighbourhood retracts).
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We begin by recalling a few notions of compact transformation group theory. Let
X be any G-space and H ⊂ G be a closed subgroup. We use the following notation
of [21]:

X(H) = {x ∈ X | (H) ⊂ (Gx)},

X(H) = {x ∈ X | (H) � (Gx)},

X(H) = {x ∈ X | (H) = (Gx)},

where (H) ⊂ (H ′) means that some conjugate of H is contained in H ′. Therefore,
X(H) = X(H) − X(H) and consists of points of isotropy groups in (H), that is, of
orbit type (G/H). For simplicity we may call the orbit type of these points (H)
instead. The set of all orbit types of X, that is, of conjugacy classes (H) such that
X(H) �= ∅, will be denoted by Or(X).

Note that for every G-euclidean neighbourhood retract X, the set Or(X) is finite,
since by definition, X is an equivariant retract of an open invariant set V ⊂ M ;
thus Or(X) ⊂ Or(V ) ⊂ Or(M) = Or(S(M)). However Or(S(M)) is finite, because
the unit sphere S(M) in M is a smooth, compact G-manifold (cf. [4, IV.1.2]).

Next, observe that for a G-space X with a finite set of orbit types there is an
ordered indexing (Hj) of Or(X) such that

(Hj) ⊂ (Hi) =⇒ j � i. (5.1)

Indeed, we may enumerate the minimal elements of Or(X) in an arbitrary way and
subtract them from Or(X), then enumerate the minimal elements of the remaining
set, and continue this procedure.

For such an indexing, we define a filtration of X by

Xi =
⋃
i�j

X(Hj ). (5.2)

Note that for the difference sets of the filtration (5.2) we have Xi −Xi−1 = X(Hi ).
If we now take X = E to be a G-euclidean neighbourhood retract, then every

Ei is a closed G-euclidean neighbourhood retract subspace of E, because for every
H the set E(H) is a closed G-euclidean neighbourhood retract subspace of E (cf.
[15, 23]).

Now we state the main technical step (cf. [23, II.5.2], see also [21, 2.11]) that we
use below, which when adapted to our situation reads as follows.

Proposition 5.1. Let E be a G-euclidean neighbourhood retract. Consider
Rm×E and Rn×E, where Rm and Rn have trivial actions, and let ϕ : V −→ Rm×E
be a G-map with a compact fixed point set F = Fix(ϕ) ⊂ V , V ⊂ Rn × E.
Moreover, let D ⊂ E be a closed G-euclidean neighbourhood retract subspace such
that ϕ(V ∩ (Rn × D)) ⊂ Rm × D.

Then there exists a G-map ϕD : V −→ Rm × E, homotopic to ϕ relative to V D

by an admissible homotopy, that is, a homotopy with a compact fixed point set, of
the form

ϕD = ϕ ◦ r,

where r|U : U −→ D is an equivariant deformation retraction for some open
invariant set U ⊃ D.
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Proof. By the localization property of the unstable index, we may restrict ϕ to
a numerically open G-invariant set V with compact closure. Thus V and V D are G-
euclidean neighbourhood retracts and so the inclusion V D ↪→ V is a G-cofibration
(see [1, 4.2.13]); hence there exists a G-deformation dτ : V −→ V relative to V D

such that d−1
1 (V D) is a G-neighbourhood of V D (see [1, 4.1.16(b)]).

We can make dτ stationary outside of a G-neighbourhood U of V D as follows.
Take U such that U ⊂ d−1

1 (V D) (that is, U is a shrinking of d−1
1 (V D)), and take W

to be an open G-neighbourhood of U in V . Then take σ : V −→ I to be an Urysohn
G-function such that

σ|U = 1 and σ|V −W = 0

and modulate d by taking (v, τ) �−→ dσ(v)τ (v) instead. Call this deformation again
dτ . Now d0 = idV and dτ |V −W = idV −W , thus d is now stationary outside of W .
We may assume W to be compact and contained in V .

The map ϕ◦dτ : V −→ Rm×E is a G-homotopy of ϕ relative to (V D)∪(V −W ),
and its fixed point set is a closed subset of W × I ∪ Fix(ϕ) × I and it is thus
compact. Take r = d1. Then the map ϕD = ϕ ◦ r satisfies all the requirements of
the statement.

Proposition 5.1 leads us to the notion of a conormal map, which is dual to the
notion of a normal map that was used to study the equivariant degree and was first
introduced in [8] for G = S1 (see [9, 2] and the references therein for the general
case).

Definition 5.2. Let E be a G-euclidean neighbourhood retract and ψ : V −→
Rm ×E be a G-map with a compact fixed point set F = Fix(ψ) ⊂ V , V ⊂ Rn ×E,
where Rm and Rn have trivial actions. We say that ψ is conormal if for every
(H) ∈ Or(E) there exist an open invariant neighbourhood U of V (H) in V (H) and an
equivariant retraction r : U −→ V (H) such that for the restricted map ψ(H) = ψ|V (H )

we have

ψ(H)|U = ψ ◦ r : U −→ Rm × E. (5.3)

As a direct consequence of the definition we get the following.

Proposition 5.3. Let ψ : V −→ Rm × E be a conormal map and F = Fix(ψ).
Then for every orbit type (H) we have

F ∩ V(H) ∩ V (H) = ∅.

Moreover, we have

Iu
G

(
ψ(H)

)
= Iu

G

(
ψ(H)

)
+ Iu

G

(
ψ(H)

)
∈ [Sn+K+1, Sm+K+1]G,

where ψ(H) = ψ|V(H ) .

Proof. Indeed, for every x ∈ U ⊂ V (H), if ψ(x) = x then x ∈ V (H). This shows
the first part of the statement.

Now take U and U ′ = V (H) −U . By the additivity and localization properties of
the unstable index, we have

Iu
G

(
ψ(H)

)
= Iu

G(ψ|U ) + Iu
G(ψ|U ′) = Iu

G(ψ|U ) + Iu
G

(
ψ(H)

)
,
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because all the fixed points of ψ|V(H ) lie in U ′. On the other hand, by the com-
mutativity property of the index and since ψ is conormal, namely of the form (5.3),
Iu
G(ψ|U ) = Iu

G(ψ|V (H)) = Iu
G(ψ(H)).

For any given map, the following theorem states the existence and uniqueness of
homotopic conormal maps.

Theorem 5.4. Let E be a G-euclidean neighbourhood retract and let ϕ : V −→
Rm ×E be a G-map with a compact fixed point set F = Fix(ϕ) ⊂ V , V ⊂ Rn ×E,
where Rm and Rn have trivial actions. Then we have the following.

(a) ϕ is equivariantly homotopic by an admissible homotopy ϕτ to a conormal
map
ψ = ϕ1 : V −→ Rm ×E. Moreover, if A ⊂ V is a closed G-euclidean neighbourhood
retract subspace, then this homotopy can be taken relative to A.

(b) Furthermore, if ϕ0 and ϕ1 are equivariantly homotopic by an admissible
homotopy, and each of them is equivariantly homotopic by an admissible homotopy
to two conormal maps ψ0, ψ1 : V −→ Rm × E, respectively, then these two maps
are equivariantly homotopic by an admissible conormal homotopy.

Note that in the second part of (a), ψ is conormal, provided it is conormal on
A. Otherwise it is conormal relative to A only. On the other hand, what (b) really
states is that any two homotopic conormal maps can be deformed into each other
by a conormal homotopy.

Proof of Theorem 5.4. By induction over the length of the filtration Ei of E
defined in (5.2). For E = E1 the statement is trivial and the required conormal
map is ψ1 = ϕ. Now let E = E2 and take D1 = E1 ∪ A. We apply Proposition 5.1.
Let U1 = U, W1 = W , and d1

τ = dτ : U1 : −→ D1 be as in the proof of Proposition
5.1. Then ψ2 = ψ1 ◦ d1

1 = ϕ ◦ r1 is a conormal map.
Assume now that the result has been proved up to length n−1 and take E = En.

Assume that ψn−1 : V −→ Rm × E is the already constructed conormal map for
En−1 such that ψn−1 = ψn−2◦dn−1

1 = ϕ◦r1◦r2◦. . .◦rn−1, where r1, r2, . . . , rn−1 are
the corresponding local retractions. We now take Dn = En−1 ∪ A ⊂ En and apply
Proposition 5.1 again. Thus we have Un = U, Wn = W , and dn

τ = dτ : Un −→ Dn

as in the proof of Proposition 5.1. Take ψn = ψn−1 ◦ dn
1 = ϕ ◦ r1 ◦ r2 ◦ . . . ◦ rn.

In order to see that ψ = ψn is a conormal map, note that by its construction ψ is
equivariantly homotopic to ϕ, relative to A and V −

⋂n
i=1 Wi; thus it is homotopic

via an admissible homotopy. Suppose that for a given orbit type (H) we have
(H) = (Hi+1) in the ordering (5.1). As U we can take Ui ∩ V (Hi ) and as the
retraction ri|V (H i ) . ri is equivariant and ri(Ui) ⊂ V (Hi ) ∩ Ei = V (Hi ), so that we
have completed the proof of (a).

To prove (b), it is enough to apply (a) to the following situation. Take E × R

instead of E as the given G-euclidean neighbourhood retract; instead of the map
ϕ take the homotopy ϕτ between ϕ0 and ϕ1, defined on the open set Ṽ = V ×
(−ε, 1 + ε). Moreover, take the homotopies from ϕ0 to ψ0 and from ϕ1 to ψ1.
Thus there is a homotopy that we call ϕτ between the two conormal maps ψ0

and ψ1 which can be extended constantly over (−ε, 0] and [1, 1 + ε). As the closed
subset A we take V × {0} ∪ V × {1}. Thus (a) provides the desired conormal
homotopy.
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We should point out that an analogous statement has been shown by Komiya
[16, Lemma 1] for m = n = 0 and E a compact, smooth G-manifold.

We are in position to prove our main theorem on the decomposition of the
unstable fixed point index which corresponds to [21, 2.13] for the stable fixed point
index.

Theorem 5.5. Let ϕ : V −→ Rm × E, V ⊂ Rn × E open G-invariant, E a
G-euclidean neighbourhood retract, be a G-map with compact fixed point set, and
let ψ : V −→ Rm × E be a homotopic conormal map by an admissible homotopy.
Then

Iu
G(ϕ)=

∑
(H)

Iu
G

(
ψ(H)

)
=

∑
(H)

(
Iu
G

(
ϕ(H)

)
− Iu

G

(
ϕ(H)

))
∈ [Sn+K+1, Sm+K+1]G,

where the sum runs over (H) ∈ Or(V ). Additionally, for every fixed (H0) ∈ Or(V )
we have

Iu
G

(
ϕ(H0)

)
=

∑
(H)

Iu
G

(
ψ(H)

)
=

∑
(H)

(
Iu
G

(
ϕ(H)

)
− Iu

G

(
ϕ(H)

))
∈ [Sn+K+1, Sm+K+1]G,

where the sum now runs over (H) ∈ Or(V ) such that (H) ⊂ (H0). This
decomposition agrees with the additive structure of [Sn+K+1, Sm+K+1]G, in the
sense that every (H)-coordinate of the sum of two elements ϕ, ϕ′ is given by the
sum of their corresponding coordinates.

Proof. We start proving a sum formula for a conormal map. We do it by
induction over the filtration (5.2) and the explicit form of a conormal map given in
the proof of Theorem 5.4. Suppose that this formula holds for all (Hj), j � i. Note
that the map ψ = ϕ◦r1 . . .◦rl preserves this filtration and ψ|Ei+1 = ϕ◦r1 . . .◦ri−1◦ri,
where ri is the end of a G-homotopy defined on Vi+1 relative to Vi such that the
restriction ri : Ui −→ Vi is a retraction, for some invariant neighbourhood Ui of Vi.
Repeating the argument of the proof of Proposition 5.3, we get

Iu
G(ψ|Vi+1) = Iu

G(ψ|Vi
) + Iu

G(ψ|Vi+1−Vi
).

However Vi+1 − Vi = V(Hi+1), and consequently Iu
G(ψ|Vi+1−Vi

) = Iu
G(ψ(Hi+1)) −

Iu
G(ψ(Hi+1)), by Proposition 5.3. The sum formula is thus proved for a conormal

map.
By Theorem 5.4, any equivariant map ϕ : V −→ Rm × E is G-homotopic to a

conormal map ψ. Thus Iu
G(ϕ) = Iu

G(ψ), and Iu
G(ϕ(H)) = Iu

G(ψ(H)), Iu
G(ϕ(H)) =

Iu
G(ψ(H)). This proves the first sum formula of the statement. The second sum

formula follows from the first, when applied to the G-equivariant map ϕ(H0).
As for the last assertion of the statement, it follows from the fact that any sum

of two fixed point indices can be realized as the fixed point index of one map, by
taking a disjoint union. This is always possible in our case, since we are dealing
with suspensions by taking the product with R (which has no action), using the
additivity property.

We shall call the first equation Iu
G(ϕ) =

∑
(H) Iu

G(ψ(H)) of Theorem 5.5 the
decomposition formula, because it decomposes Iu

G(f) into a sum of indices (of
another map, in general) each of which corresponds to the index on the nonsingular
open part of the natural invariant stratification {E(H)} of E.
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We shall call the second equation Iu
G(ϕ) =

∑
(H) Iu

G(ψ(H)) of Theorem 5.5, or the
equation of Theorem 5.6 below, the sum formula, because it shows the numerical
value of each term of the above-mentioned decomposition.

We now apply our decomposition and sum formulae of Theorem 5.5 to get similar
formulae for the equivariant degree. Since our spaces are not open subsets of a G-
module, but only retracts of them, we use here the concept of equivariant degree
given in Definition 4.4. If f : V −→ Rm × K is a G-map such that V ⊂ Rn × K is
open and invariant and the zero-set Z = f−1(0) is compact, then degG(f) = Iu

G(ϕ),
where ϕ = j − f , j : V −→ Rm × K such that j(y, z) = (0, z). Thus, since Iu

G(ϕ) =∑
(Iu

G(ϕi) − Iu
G(ϕi−1)), we have

degG(f) =
∑

Iu
G

(
ϕ(Hi )

)
=

∑ (
Iu
G

(
ϕ(Hi )

)
− Iu

G

(
ϕ(Hi )

))
=

∑ (
degG

(
f (Hi )

)
− degG

(
f (Hi )

))
and we obtain the desired decomposition formula for the equivariant degree. Thus
we have the following.

Theorem 5.6. Let f : V −→ Rm ×K be a G-map such that V ⊂ Rn ×K is an
open invariant set and the zero-set Z = f−1(0) is compact. Then

degG(f) =
∑ (

degG

(
f (H)

)
− degG

(
f (H)

))
∈ [Sn+K+1, Sm+K+1]G,

where f(H) = j − ϕ(H), and the sum is taken over all orbit types (H) ∈ Or(V ).
Moreover, under the same hypotheses as above, for any (fixed) subgroup H0 ⊂ G,

degG

(
f (H0)

)
=

∑ (
degG

(
f (H)

)
− degG

(
f (H)

))
∈ [Sn+K+1, Sm+K+1]G,

where the sum is taken over all orbit types (H) ∈ Or(V ) such that (H) ⊂ (H0).

Remark 5.7. Using techniques of differential topology, namely the notion of
a regular normal map, Balanov and Krawcewicz [2] obtained the decomposition
formula for the equivariant degree, which corresponds to the equation Iu

G(ϕ) =∑
(H) Iu

G(ψ(H)) in Theorem 5.5 stated as

degG(f, V ) =
∑
(H)

degG

(
f(H), V

)
(5.4)

provided that f is normal. However, they do not have the sum formula of
Theorem 5.6, because they and previous authors did not have defined degrees in
the more general context that we have in Definition 4.4. On the other hand, we
must add that if f is regular normal, by a transversality argument, it follows that
in formula (5.4) [2, (2.1)] there are no terms that correspond to (H) such that
dim W (H) > n − m, where W (H) = N(H)/H is the Weyl group of H. We could
not show that using conormal map techniques.

To finish this section we include an algebraic scheme that allows to compute the
coordinates of the decomposition theorems, Theorems 5.5 and 5.6. Recall that for
any poset (X,�), one can define a function ζ by

ζ(x, y) =

{
1 x � y

0 otherwise.
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This produces an ‘upper triangular matrix’ Z with ‘entries’ Zx
y = ζ(x, y) and

1s along the diagonal. Thus there is (see, for instance [3, 7.5.2]) another ‘upper
triangular matrix’ M , known as the Moebius matrix of the poset, such that it is an
inverse matrix, in the sense that MZ = I and ZM = I, or entrywise, such that∑

z

Mx
z Zz

y = δx
z and

∑
z

Zx
z Mz

y = δx
z ,

where δx
z is the Kronecker δ-function. Call µ(x, y) the entries Mx

y of this matrix. µ
is the so-called Moebius function of the poset.

Thus, given any two abelian group-valued functions α, β : X −→ Γ such that

α(y) =
∑
x�y

β(x) , then β(y) =
∑
x�y

µ(x, y)α(x). (5.5)

This last is called the Moebius inversion formula. Applying (5.5) to the second sum
formula of Theorem 5.6, we obtain the following.

Theorem 5.8. Under the same hypotheses as the previous results

Iu
G

(
ϕ(H0)

)
− Iu

G

(
ϕ(H)

)
=

∑
µ((H), (H0)) Iu

G

(
ϕ(H)

)
,

degG

(
f (H0)

)
− degG

(
f (H0)

)
=

∑
µ((H), (H0)) degG

(
f (H)

)
,

where the sum is taken over the orbit types (H) ∈ Or(V ) such that H ⊂ H0, and
µ is the Moebius function of the poset {(H) |H is a subgroup of G}.

Remark 5.9. A similar formula using the generalized Moebius function
obviously holds also for the fixed point index using the sum formula for the index
as in [21, 2.13] instead. Komiya [16] deals with a similar formula for the classical
equivariant fixed point index, which in our terms corresponds to the case m = n = 0,
and applies it to an equivariant fixed point problem.

Remark 5.10. Making use of a GAP programming package, one may derive the
Moebius function µ for the poset of conjugacy classes of subgroups of G, provided
that the group G is included in the library of the package.

6. Direct sum decomposition of equivariant homotopy groups

To begin this section we show that our decomposition theorem leads to already
known decompositions of unstable as well as stable equivariant homotopy groups
graded by integers.

Definition 6.1. Given n, m ∈ N∪{0}, a G-module K, and an orbit type (H) ∈
Or(Rn ⊕ K) = Or(K), we define the subset [Sn+K , Sm+K ]G,(H) ⊂ [Sn+K , Sm+K ]G,
as the set of elements of the form

Iu
G(ψ, V ) = Iu

G(ψ) ∈ [Sn+K , Sm+K ]G,

where ψ : V −→ Rm ⊕K is a conormal map with compact fixed point set Fix(ψ) ⊂
V(H) and V is an open invariant subset of Rn ⊕ K.

We have the following theorem (cf. [2]).
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Theorem 6.2. Suppose that m > 0 or dim KG > 0. Then for every (H) ∈
Or(K), the set [Sn+K+1, Sm+K+1]G,(H) is a subgroup of [Sn+K+1, Sm+K+1]G, and

[Sn+K+1, Sm+K+1]G ∼=
⊕
(H)

[Sn+K+1, Sm+K+1]G,(H),

where the sum is taken over all (H) ∈ Or(K).
Moreover [Sn+K+1, Sm+K+1]G,(H) = 0, if dim W (H) > n − m, where W (H) is

the Weyl group of H.

Proof. The fact that [Sn+K+1, Sm+K+1]G,(H) is a subgroup follows from the
decomposition theorem (Theorem 5.5), since the (H)-coordinate of the sum of
two elements is the sum of their corresponding (H)-coordinates. In order to
see that it is a decomposition as a direct sum, suppose that [ϕ] �= 0 lies in
[Sn+K+1, Sm+K+1]G,(H1) as well as in [Sn+K+1, Sm+K+1]G,(H2). Then it is of the
form Iu

G(ψ1, V1), as well as Iu
G(ψ2, V2), where ψν , ν = 1, 2, are conormal maps

and Fix(ψ1) ⊂ V1 (H1), Fix(ψ2) ⊂ V2 (H2). Using the localization property of the
index, we may assume that V1 = V2 = V by taking V = V1 ∪ V2. By Theorem
5.4, ψ1 and ψ2 are homotopic by a conormal homotopy. On the other hand, it is
easy to check that a conormal homotopy does not change the orbit type, that is
Fix(ψ1)∩V(H) �= ∅ if and only if Fix(ψ2)∩V(H) �= ∅. This shows that (H1) = (H2),
which completes the proof of the decomposition.

Theorem 5.5 shows that every element of the form Iu
G(ϕ, V ) belongs to the

above direct sum. We are left with the task of showing that every element in
[Sn+K+1, Sm+K+1]G is of the form Iu

G(ϕ, V ). Since (Rm+1 ⊕ K)G �= {0}, we
can construct an equivariant isotopy on Sm+K+1 that takes any given point
x0 ∈ Sm+K+1 to ∞. Consequently, every class [f ] ∈ [Sn+K+1, Sm+K+1]G has a
representative f such that f(∞) = ∞. Take V = Rm+1 ⊕K = Sm+K+1 −{∞} and
ϕ = j − f . Since f(∞) = ∞, ∞ is not an accumulation point of zeros of f , thus
neither of fixed points of ϕ. Consequently Iu

G(ϕ, V ) = degG(f, V ) = [f ].
To show that [Sn+K , Sm+K ]G,(H) = 0 if dim W (h) > n − m, one needs a

transversality argument (cf. [2]).

Remark 6.3. We re-proved a theorem about the decomposition of the groups
[Sn+K+1, Sm+K+1]G into a direct sum of subgroups [Sn+K+1, Sm+K+1]G,(H). Our
interpretation of each element of the latter as an index seems to make the
construction of some special elements easier. Note that we need only construct
a conormal map on an open invariant set.

Moreover, besides the decomposition, we have the sum formula of Theorems 5.6
and 5.8, which give the ‘numerical’ values of the coordinates of this decomposition.

Of course all the decompositions and sums for the unstable index and degree
imply, after stabilizing, the corresponding results in the stable range.

To gain confidence on the above results, we established a connection between
our decomposition and sum formulae and the Segal theorem which states that the
stable cohomotopy group πst 0

G (∗) is isomorphic to the Burnside ring A(G) of G. This
theorem was proved independently by Hauschild [10] (see also [11]), Kosniowski
[17], and Rubinsztein [22], with a correction of a gap in the latter by Dancer
[5] (see also [12]). Recall that the Burnside ring A(G) of a finite group G is an
additively free group with generators given by the orbits (G/H), that is, every
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element α ∈ A(G) can be uniquely written as α =
∑

(H) k(H)(G/H), k(H) ∈ Z.
Recall that the unit sphere S(K⊕R) coincides with the one-point compactification
SK of K and the point (0, 1) in the former corresponds to the point at infinity ∞
in the latter. Either of these points is taken as the natural base point. We denote
by [S(K ⊕R), S(K ⊕R)]∗G (or [SK , SK ]∗G) the set of pointed equivariant homotopy
classes. We also set V∞ = SK − {∞} = K.

Suppose that G is finite, K is a complex representation of G, and f : SK −→ SK

is an equivariant (pointed) map. We assign to f an element ω(f) of A(G) ⊗ Q by

ω(f) =
∑
(H)

Iu
(
(j − f)(H), V

(H)
∞

)
− Iu

(
(j − f)(H), V

(H)
∞

)
|G/H| (G/H) , (6.1)

where in the numerator of the fraction, we write nonequivariant (unstable) indices,
whose difference is an integer, and the sum runs over all (H) ∈ Or(V ). Note that
ω(f) is a well-defined equivariant homotopy invariant, that is, it depends only on
[f ]. Furthermore, ω(f1 + f2) = ω(f1) + ω(f2).

Proposition 6.4. The element ω(f) lies in the Burnside ring A(G); that is,
all coefficients k(H) in (6.1) are integers, and ω(f) determines the homotopy class
[f ] of f .

In other words, the mapping [f ] �−→ ω(f) defines a monomorphism from
[SK , SK ]G to A(G).

Proof. The first statement follows from the fact that Iu((j − f)(H), V
(H)
∞ ) −

Iu((j − f)(H), V
(H)
∞ ) is divisible by |G/H| (cf. [23]), consequently ω(f) ∈ A(G).

Next we recall that an element α ∈ A(G) is uniquely determined by the collection
{χH(α)} of values of some homomorphisms χH : A(G) −→ Z, (H) ∈ Or(G) (cf. [6,
7] for the definitions and properties of χH). One can show that for the element
ω(f) we have χH(ω(f)) = deg(fH) for every subgroup H ⊂ G (cf. [23]).

On the other hand, by a theorem of tom Dieck it follows that the collection
{deg fH}, H ∈ Or(G), determines the homotopy class of f , provided that dimKL−
dim KL′ � 2 for every two subgroups L � L′ ⊂ G (see [6]). This latter condition is
satisfied if K is complex.

Lemma 6.5. Let ψ : V −→ K, V ⊂ K, be an equivariant conormal map such
that Fix(ψ) ⊂ V(H). Then

Iu
G(ψ) = Iu

G

(
ψ(H)

)
− Iu

G

(
ψ(H)

)
=

Iu
(
(ψ)(H)

)
− Iu

(
(ψ)(H)

)
|G/H| .

Consequently, formula (6.1) is the sum formula of Theorems 5.5 and 5.6 if we
understand elements of [SK , SK ]G as elements of A(G) by Proposition 6.4.

Proof of Lemma 6.5. The statement follows once more by comparing all values
of χL, L ∈ Or(V ), with deg(j − ψ)L, both as elements of A(G).

Now we show that our sum formula allows us to see any element of A(G) as an
index of an equivariant map, which consequently leads to the subsequent result.
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Proposition 6.6. Let G be a finite group. Let K be the complex regular
representation of G or any other complex unitary representation of G that contains
all irreducible representations of G as summands. Then the mapping given in
Proposition 6.4

ω : [SK , SK ]∗G = [S(K ⊕ R), S(K ⊕ R)]∗G −→ A(G)

yields an epimorphism. Consequently [SK+1, SK+1]∗G ∼= A(G), and thus also
π̃st 0

G (∗) ∼= A(G).

Proof. We apply Lemma 6.5. Since the sum formulae of Theorems 5.5 and 5.6
are additive with respect to the addition in [SK , SK ]G, at least after one suspension,
it is enough to construct, for a fixed (H), a conormal map ψ : V −→ K, V ⊂ K
open G-invariant, with only one fixed orbit (G/H) ≈ Gx ⊂ V(H) and such that
Iu(ψ, V ) = ±|G/H|. Note that by the localization property, we may assume that
V = G×H Dε(x), where Dε(x) is a small disk around x considered as an H = Gx-
space. On the other hand, the G-maps from G ×H Dε(x) to V are in one–one
correspondence with H-maps from Dε(x) to V (cf. [4, 6]). Consequently our task
is to find an H-map ψ̃ : Dε(x) −→ V with Fix(ψ̃) = {x} and Iu(ψ̃) = ±1. To that
end, take the H-equivariant projection pH : Dε(x) −→ Dε(x)H and compose it with
any map ψ : Dε(x)H −→ Dε(x)H such that Fix(ψ) = {x} and Iu(ψ,Dε(x)H) = ±1.
This map ψ̃ = ψ ◦ pH is the required map and consequently also provides ψ.
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