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Abstract

Let G be acompact Lie group. In this paper, combining a short exact sequence obtained by Balanov
and Krawcewicz with some additional topological techniques, we complete the computation of the
first equivariant stemf St Using the exact sequence and a property of nonabelian connected compact
Lie groups, whose proof was suggested to us by R. Oliver, we show that this group is finite if and
only if Gis finite.
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1. Introduction

A description of the homotopy classes, or of the stable homotopy classes of maps between
two topological spaces has been a classical question in topology. Particularly, the stable
homotopy classes of (pointed) maps between spheres, namely the so-called stable stems,
7', have been important objects to study. Historically, via the Brouwer degree theory, the
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0-stem was computed, namedyg Z.The Hopf map and the Pontryagin theorem provided
13~ Z,. Letus mention that the Brouwer degree is the main tool in the Krasnoselsky (local)
and P. Rabinowitz (global) bifurcation theorems. Moreover, the nontriviality of the H. Hopf
map is the topological ingredient of the E. Hopf theorem on the bifurcation of periodic
solutions.

A variant of the question arises when we assume that a compact Lie Graots on all
spaces involved and that all the maps considered commute with the group action, namely,
that the maps aré-equivariant, oiG-maps for short. Then the corresponding question is
to provide a description of the stabzhomotopy classes betwe&ispaces. Especially,
the stable homotopy classes of maps between unit spheres of orthogonal representations
pose an important question. It is quite easy to show that the negattems are zero, that
is ¥ S'=0if k <0. In 1970, Segdl26], stated that for any finite group, n§ S'~ A(G),
where A(G) is the Burnside ring ofs. This result was proved by KosniowsKi8], and
independently by Rubinsztej24] with a gap that was filled later by Dancg]. Tom
Dieck [8] proved the same result for a general compact Lie g®ugiving a convenient
definition of the Burnside ringi (G) for this case.

The groupSn,f St k> 0, have been studied intensively by people working on nonlin-
ear analysis. First, tackling the question about the multiplicity of periodic solutions of a
nonlinear problem, one had to stuBy-equivariant maps. Second, they provide very inter-
esting applications to problems on bifurcations with symmetries[(<2jp 1ze et al. have
made many computations af’ St whenG is abelian[13,17] We should emphasize that
for the applications in nonlinear analysis, not only the forrmﬁfﬁt is of importance, but
also a knowledge of which element of this group corresponds to a given (unstable) map
S(V e RN — s(v).

Balanov and Krawcewicfl] showed for a general compact Lie groGghat there is a
direct sum decomposition

g '~ P i (H), (1.1)

(H)

wherell;(H) denotes the subgroup a::f st corresponding to the isotropy typéf), for

a subgroupd C G; the sum ranks over ai{lH) such that dimW (H) <k. HereW (H) =

N H/H is the Weyl group oH. Moreover, this splitting is in the unstable range (&34 for

an alternative proof of this fact), unlike that given[i®, V.9.1] Following computations
made in[10], where a construction of the equivariant degree is given, one obtains that if
dimW(H) =k, thenlly(H)=~Z or Z,, depending on whethé&¥ (H) is biorientable or not.
Onthe other hand, in the treatmentufS' made ir{1] it was shown that fofl1 (H) C ={ !,

with dim W(H) = 0, there is a short exact sequence

0— Zy — II1(H) — W(H)gp — 0, (1.2)

whereW (H )4, denotes the abelianization of the Weyl group[d] Balanov, Krawcewicz,
and Steinlein, using results of Ize and purely algebraic arguments, proved that this sequence
splits whenG is abelian.
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Cruickshani{5] has also considered stable equivariant homotopy groups of spheres. One
should beware, however, that his concept of equivariant 1-stem differs from that of our first
equivariant stem.

In the first part of the paper we give another geometrical interpretation of the kernel in
the short exact sequence (1.2) and then show that the sequence always splits (Theorem
2.19). This, together with well-known facts, leads to a complete descriptimfi Yffor any
compact Lie grougs in Theorem 2.7. It is worth to point out that this theorem works in the
unstable range, provided that the representation fulfills some conditions (see Proposition
2.18).

After analyzing some examples in Section 3, we prove that theGistem is finite if
and only if G is finite; otherwise, the firgb-stem is not even finitely generated. This will
be a consequence of the decomposition (1.1), following a suggestion of Bob Oliver. Note
that one can deduce this result also from the short exact sequence (1.2).

Finally, we would like to remark that, despite this sort of splitting theorems have been
studied for years, for instance, by Kosniow$k8], tom Dieck[7], and Hauschild11],
who have proved results in this direction in the seventies as well as by Lewis, Jr., May, and
McClure, who proved a general resul{i®, V.10.1]in 1986, we did not find in the literature
any description of:{’ s as the one given in Theorem 2.7 of the next section. We believe that
this explicit description might be applied to bifurcation problems with symmetry as were
studied by Chossat and coll. j4].

We wish to thank W. Krawcewicz, who, after reading a preliminary version of this paper,
pointed out a mistake in the proof of Proposition 2.18. We also thank Bob Oliver for giving
us the proof of Proposition 2.18.

2. Computation of the first G-stem

In this section, by showing that the short exact sequence (1.2) always splits, we compute
the first equivariant stem for any compact Lie grdsip

Given any orthogonal representatiginf G, SV will denote the one-point compactifica-
tion of V with the induced>-action.

Definition 2.1. We define thekth equivariant stem for a compact Lie groupds briefly
thekth G-stemk =0,1,2,..., by

7.L,kG st _ CO‘l/im [SVJrk, SV]G:
whereV varies along a cofinal set of orthogor@representations and-, —]; denotes

the set of pointeds-homotopy classes of point&&-maps. Of coursey + k denotes the
orthogonal representatidn @ R* with G acting trivially in the second summand.

Remark 2.2. Forthe concept of a colimitin general, we may refer the reader to Mac Lane’s
book on categorieR0]. Observe, anyway, that the eIementscﬁfSt can be represented by
maps of pairs

(VxR VxRE—0) — (V,V —0)

for some orthogonal representatigrof G (see alsd23]).
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Remark 2.3. In the language of modern algebraic topologﬁ,st can be considered as
thekth homotopy group of the infinite loop spagg; = Q' S™ = colimy Q'sV, where
QYSsY=Mapsg;(S", S"). Thisfollows from the adjunctiofs " X, S" y1=[x, Q"S"¥].

For the case of nonlinear analysis, it is more convenient to use the definition that we gave
above. For instance, in the Schauder approximation of a map of thelfernp, L linear
Fredholm andp completely continuous, we are lead in a natural way to the form of our
previous definition.

Let W(H) denote theNeyl groupof H C G, defined byW(H) = NH/H, where
NH C G is the normalizer oH in G.

For thekth G-stem, one has the following decomposition formula derived using an equiv-
ariant transversality argument [ih, 2.8]; namely

it @ M. (2.4)
(H)eOrg
dim W (H) <k
Recall that a compact Lie group is said to bebiorientableif it has an orientation
invariant under left and right translations (§&¢L0], or [22]). From considerations if10]
(see alsd22]) the following can be proved:

Proposition 2.5. Letdim W(H) = k. Then

_ |z it W(H) is biorientable
M (H) = {Zz otherwise.
Note 2.6. For instance, a compact Lie grotipis biorientable if it is either finite, abelian,
or connected (cf10]). The simplest nonbiorientable group (of dimension 1)iR).

In what follows, by showing that the short exact sequence (1.2) always splits, we shall
compute the subgroug$; (H) of the firstG-stem to obtain a full description of it. Combin-
ing this with Proposition 2.5 and the decomposition (2.4), we shall obtain the main result
of this section as follows.

Theorem 2.7. There is a sum decomposition of the first G-stem

G st= P I11(H)
(H)eOrg
dimW(H)<1

51

Here if dm W (H) =0,
H1(H)=Z2® W (H)gp, (2.8)
whereW (H )4y, is the abelianization oW (H), and, if dmW(H) =1,

Z  W(H) is biorientable

Ih(H)= {Zz if W(H) is not biorientable 29
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In view of Proposition 2.5, we only need to prove Eq. (2.8). For doing this, we shall make
some general considerations.

Assumption 2.10.V denotes &-module and the eIementsfnﬁ Stare represented by maps
(VxR v x RFF—0) — (Vv x R, vV x B! —0), with ! >k + 3, whereG acts trivially
on the second factor.

In the rest of the paper, we denote the Weyl gréu@H ) of H ¢ G by I'y, or simply by
I’ when there is no danger of confusion. Note tHaicts effectively orv/ . We denote by
U the representatiori”’ x R/** of I', with the obvious action, and hiy, the representation
vH x R Let (P) be the principal orbit type of the action 6fonU, and letUp = U — S,
whereSconsists of all points iU with isotropy group type different froroP) (see[8]).

Note 2.11.

1. The seUp is in general disconnected; however, it is connected, provided th&tdim
Up)< dimU — 2. This holds if dimu !’ < dimU — 2 forany(I”) > (P), and this can
always be attained in the stable range. For this, it is enough to reéplagé & V.

2. Evenbeind/p connected, itneed not be simply connected. By Lefschetz duajitwill
be simply connected if dig/ — Up) < dimU — 3. This holds if dimu ! <dimU -3
for any (I"") > (P). For this, it is enough to repladéby V & V @ V.

3. Increasing the size &f further (summing again with itself) we may also assume that
Up has an orientation-preservird@action.

Denote bkaF fr(Up) the group of bordism classes bfframedk-submanifolds of/p.
For the definition and more details about the equivariant bordism, refg}.t@ne has the
following result of Balanov and Krawcewicz.

Proposition 2.12(Balanov and Krawcewicfl, 3.2]). Let dimI'<k. Then Il (H)=
oF " wp).

To focus on the proof of Eq. (2.8), assume in what follows that Biga O; that is,I" is a
finite group. Note thaf” acts effectively orJ, but sincel” is finite, the principal orbit type
corresponds to trivial isotropy, i.e., the actionlobn Up is in fact free.

LetU p denote the quotient spatk /I". There is a homomorphisdy : ri fr(Up) —
Q. (U p), whereQ, denotes the usual oriented bordisnkeafubmanifolds. The image of the
canonical homomorphis®! " (Up) — QI (Up) lies insideQ (Up)!", whereQ!l (Up)
has the action of induced by that o/ p. Consequently, ifM, ] € Q‘,;r F(Up), thenM is
a framed-submanifold ofUp (andy is al -trivialization of the normal bundle), and thiis
acts freely oM andM = M/T is an oriented submanifold &f ». By the Steenrod—Thom
theorem, we know that there is a homomorphi®@nUp) — H;(Up; Z) that is an
isomorphism fotk <3 and an epimorphism fdr= 4 (se€[25]). In the casd& = 1, that we
are concerned with, we thus have an isomorphism.

An essential step in deriving1(H) when diml” = 0 was done ifj1, 4.3], where details
on the previous comments can be seen; namely we have the following.
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Theorem 2.13. ker @~ 7, and thus one has a short exact sequence

0— 7, — QL "Wy L B(Tp; 7) — O. (2.14)

Moreover ker @ consists of those bordism classes of G-framed invariant manifbdds]
QF fr(Up) where M~ St andn is an equwarlant trivialization of the normal bundle
such that the quotient manifold = M/I" ¢ Up, M ~ S%, is nullbordant.

In[2, 2.5], itis shown that ifG is abelian, then the sequence (2.14) splits. Their argument
is purely algebraic and makes use of the computatiofldn of I11(H) as a product of
p-factors (see alsfi7]), p prime. We show in what follows that (2.14)wayssplits.

Note 2.15. There is an isomorphism
QL M(rx) = L () = Q (), (2.16)

thatis a consequence of the following well-known fact (8} Namely, there is a bijection
[SYAX,SYAY AT~ [SY AX, SY AY], that provides the isomorphism (2.16), since
the homology theorﬂf is equivalent to the theory! St. In particular,

QF T (Irx) = Qf (%) 2 Z,.

Here X andY represent topological spaces with some distinguished base point, and the
+-sign means adding an isolated point as a base point.

Lemma 2.17. Takex € Up. If il : I'=I'x = U, is the inclusion and, = il,
QI (I — @ "(Up) is the induced homomorphisthen

ker® =im().

Proof. Recall first thatd = dimUp = dimU p >3 (see Assumption 2.10), and assume
that we have a metric ob/p that is I'-invariant and take: > O sufficiently small, that
YD) =] ger YDe(x) & I x Dy (x), whereD, denotes the correspondidepalls of
radiuse, and letM be the boundar@D 12(X) C U p of a 2-disk of radiug/2 contained in

D(x). HenceM is diffeomorphic toS1 -
Let#o, 71y : V(M) — M x R?~1 pe trivializations of the normal bundle @f such
that [M, 7] = 0 € QY (D.(x)) and[M,71] # 0 € Qf(D:(X)). Let j, = Dy(¥) —>
D (x) be the inverse diffeomorphism to that |ndl£ednbyind callM, = j,(M). Define
M= Uyef yM, C Up. M is homeomorphic td” x M.
Note thatv(M,) C D,(x) is diffeomorphic tov(M) via the mappingm, v) — (n(m),
Dn(m)v). On the other hand,

YMy C yDg(x) = Ds(yx) and v(yMy) =y(v(My)),
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sincey induces a diffeomorphism, because it is a linear orthogonal map. Consequently, the
tubular neighborhood

vM) =|_|r(r(M.))
vell
and thus we can define an equivariant trivializatipn v(M) — M x Up, i =0, 1, by
n; (ym, yv) = (ym, y; (n(m), Dr(m)v))
form € M, andv € v,,(M,). Observe thaf; is equivariant, since for € I" we have
1 (uCym, yv)) = n; ((up)m, (uy)v)
= ((uy)m, (uy)(@; (n(m), Dr(m)v)))
= (u(ym), u(yn; (n(m), Dn(m)v)))
= pn; (ym, yv).
Hence we get thatM, ngl, [M, ;] € QL "(I' x D,(x)) c @ "(Up). Consequently,

M = M/T is nullbordant, thus implying thdtV, ng], [M, ;] € ker®. By construction,
they lie in im(i,) =im(ij, ), wherei}, : I' x D; < Up, and obviously[M, 5] # 0 in

o "wp). O

Proposition 2.18. If I" is finite andUp is connectegthen
QL "(WUp) =72 & H1(U p; 7).

If, moreover Up is simply connectedhen

II1(H)=Z5 @ I'ap.

Proof. Consider the following commutative diagram:

ol 'y = ol "wp)

- Js

QL "I/ ——— Q{WUp/I),
3
where the vertical homomorphisms divide out the actiod 0By the note abovey is an
isomorphism, and both groups on the left Qflé(*);zz. The homomorphisng is well
defined, since the action d@f on Up is orientation-preserving and thus dividing out this
action preserves the trivialization of the normal bundles and thus $efrasned manifolds
to framed manifolds. Hence, the diagram is equivalent to

A" s 0 "We)

) |

ANy —— QNwp/D).

Ly
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In order to produce a splitting of the tégpwe consider’ : Qflr(Up/F) — Qflr(*) on the
bottom, given by the obvious mdpp /I" —> x. This obviously splits the bottom row and
thuso =atod o f: QL "(WUp) — QL ™(I") is well defined and provides the desired
splitting. [

Therefore, we have the following.

Theorem 2.19. The short exact sequence
[

0—0] (") = @f "Wp) 2 Hi(Up: 7)—>0.

*

splits

Combining 2.12 and 2.13 with the previous theorem, we obtain our main Theorem 2.7.

3. Some applications of the decomposition theorem for the firds-stem

We start this section with a brief discussion of examples of the Decomposition Theorem
2.7 beginning with the simplest groups. We do this for the convenience of the reader, since
they are all spread in the literature, mostly written in rather different ways.

Examples 3.1.

1. LetG = 1 be the trivial group. Then there is only oieC G andW(H)=G/H =1
has dimension 0. Thus' = Z.

2. Historically, the first case of{ St described was fo6 = S*, when
=20 @z
HcS!

and was given this way by Dylawerd#].
3. LetG be afinite group. Then for evely C G, dimW (H) = 0. Thus

o= P (Za® W(H)). (32)
(H)€Or(G)
If Gis abelian, thetW (H) = G/H and thus
nf '~ @B (Z2 @ G/H). (3.3)
HCG

Particular cases axg = Z,,, wherep is prime. Then

027, 07,07,.

Description (3.3) agrees with the decomposition in terms of prime facto&gi¥en
by Ize and Vignoli14-17]
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4. LetG be eitherO (2) or SO3). ThenG has infinitely many conjugacy classes of closed
subgroup$ such thatv (H) is finite (sed3, IV.(4.10) Ex.9). Thusz{ 5 has infinitely
manyZ,-summands and for each of them als& é8H ) ,,-summand (sep?] for further
details on the casé = SQ(3)).

5. LetG = O(k). ThenG has infinitely many finite conjugacy classes of subgrodps
generated by reflections such th#i( H) is finite (se€3, V.(2.19) Ex.6). Thus, as in
the previous exampleqi)(k) ' has infinitely manyZ,-summands and for each of them
also aW (H)5,-summand.

Examples 2, 3, and 4 above show infinite compact Lie gréadsr which nf Stis also
an infinite—and quite complicated—group. This is true in general, as we shall prove below.
We have the following.

Theorem 3.4. Let G be a compact Lie group. Thet{ St is finite if and only if G
is finite.

Remark 3.5. Infact, we prove that i is not finite, themf Stis not even finitely generated:;
i.e., nf Stis either finite or infinitely generated.

The proof of the theorem requires to construct an infinite collection of nonconjugate
subgroups of5, such that their Weyl groups have dimension 0 or 1. In the first case, each of
them contributes with at leasZa-summand; while in the second, wit#@aor Z,-summand,
according to Theorem 2.7.

Before passing to the proof of the theorem, we shall state some results in this direction.
The following is an immediate consequence of the structure theorem on compact abelian
Lie groups and of the fact that the sequence of sets of roots of unity of growingrarder
builds up such a collection for the circle (see, for instaidg).

Lemma 3.6. Let G be an infinite compact abelian Lie group. Then the grodps
m € N, constitute an infinite sequence of nonconjugate subgroups of G that siitisfy
W(Zy) =1.

The next result, whose proof was suggested to us by Bob Oliver, is the main result of this
section. Itis, clearly, the nonabelian counterpart to Lemma 3.6.

Proposition 3.7. Let G be a nonabelian connected compact Lie group. Then there exists
an infinite sequence of nonconjugate subgrogs} such thatW (H,,) is finite.

Proof. We start with the further assumption thais semisimple.

Let T be the maximal torus and lét= |W(T)| be the order of the Weyl group. For
simplicity denoteW (T) by W and N(T) by N. We have <k <oo. LetT,, = {g €
T | g" =1}, and letp = ¢, : T — T be given byp(g) = g*. Since the exten-
sionT <= N—W represents an element in the cohomology gralfgW; 7'), and since
this group is anihilated by multiplication by, then there is a commutative
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diagram

i — T — N N w — 1

i —— T —s TV —s W —s 1,

where T x W is the semidirect product given by the canonical actioof W on T by
conjugation; thatisg(¢ (y))(t)=yty~1 (q : N—W the quotientmap, and, w)(t’, w') =
(tp(w)(@"), ww”)). Moreovern(y) = (¢, q(h)) if y=ht € N,t € T.Recallthat — (¢, 1)
embedsT as a subgroup of xW, and(s, w) — w is a quotient map of groups. (Remind
that the bottom row with the semidirect product represents the 0 elem#ii(ii; 7), see
[12] for this and all related topics.)

Put Hy = n~1(W). This group has the following properties:

e HyNT =Ty,
e H; — N—»W is surjective.

Finally take for allm € kZ, H,, = Hy - T,, € N. Then we have

e H,NT =T,,.
e T,, C H, is asubgroup such thét,, /T,, =~ H,/ T, =W.

Thus it follows|H,,| = | T, ||W| = c(m). We have
m#m' = c(m) #c(m’), thus m #m' = (Hy) # (H,,).

If G is semisimpl@nd connected, thefi(G) is finite (sed3, Chapter V.(3.13),(3.14)]
Thus

(@) TV isfinite, sincel’V = Z(G); and also
(b) the centralizeC(T) is an abelian subgroup that containsThusCg(T) =T

To see (a), observe thatife TW, then, by[3, (2.6)] for all g € G, t = grg~1, hence
t € Z(G). SoTY < Z(G). Conversely, sinc&(G) c T, and sinceZ(G) remains
pointwise fixed under conjugation by any element, we hawe) c TV .

SincelJ,, T, is dense irT, we haveCg (|, Tin) = T. Hence

Tn CTyw = Co(Tw) D Co(Ty)

and{C¢;(T,,)} is a decreasing sequence of subgroups. It has to be stationary and so there is
anl with

Co(I) =T.

We may assume thatll. ThenCg(H;) ¢ T". Namely, observe first thats(H;) C
Cs(T)) =T.Takeg € Cg(H;) andfi =ar € N(T), wheret € T anda € Hy, which
can be done by the choice &, . Then(at)g(at) ™t = argt 11 = uga—1 = g, because
Cc(Hy) C Co(Hy).
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SinceT" is finite, so isC (H;), and sinceN (H;)/ Cg (H;) acts effectively or;, the
quotient group is a subgroup of the symmetric graiyg,|, thus finite. This shows that also
the normalizeV (H;) in Gis finite, and with itN (H,,) for all mdivisible byl are also finite.

Thus{H,, | m € [Z} is an infinite family of finite subgroups @, no two conjugate
(since they have different order), all of which have finite normalizers. Hence, all Weyl
groupsW (H,,) are finite.

Finally, if G is connected buhot semisimplethen the quotient groug = G/Z(G)
is semisimple. As above, také1, Ho, ... a family of nonconjugate (of different order)
subgroups o such that the normalizemg(ﬁm) are finite for allm.

Let H,, be the inverse image off,, in G under the quotient homomorphism. Then
H,~Z(G) x H, andNg(H,) = Z(G) x Ng(H,,). Thus the Weyl group® (H,,) =
Ng(Hy)/H; ;Ng(ﬁm) are finite for allm. Clearly these group#,,, are not conjugate to
each other, since otherwise the groupg would be conjugate to each other]

Lemma 3.8. Let G be a compact nonabelian Lie group and consider its extersion>
G—I = G/Gop, whereGy is the connected component of the unit element. If there exists
an infinite sequence of subgroufg?}, H® C Gy, such thaidim W (H?) = 0, and such

that they are not conjugate i@, then there exists an infinite sequence of subgr¢efhs,
nonconjugate in Gsuch thatdim W (H,,) = 0.

Proof. DefineH,, = H,?, C Go C G.We shall show that among the members of this family

there are infinitely many conjugacy classes. Observe first that the relation to be conjugate in

Gy is finer than that of being conjugate® Moreover, each conjugacy classdns a union

of at mostI"| conjugacy classes iip. Thus, if we pick an element in each conjugacy class

in G of the family { H,, }, we still obtain an infinite subfamily of nonconjugate subgroups.
According to the above, it is now enough to show tha¥if( H,,,) = No(H,,,) / H,, is finite,

thenW(H) = N(H)/H is also finite, where&Vo(H,,) is the normalizer ofd,, in Gg. The

proof of this fact is straightforward. [J

Proof of the theorem. If Gis finite, then clearly, by Theorem 2.7'z’f Stis finite. Thus we
assume thab is infinite and consider two cases.
Casel: Gg is nonabelian. Apply Proposition 3.7 and Lemma 3.8.
Case2: Gg is abelian. In this cas&jp = T is the torus. Then apply Lemmas 3.6 and 3.8
Thus we have in both cases th@St is infinitely generated. [

We obviously have the following consequence.
Corollary 3.9. Let X be any finite G-CW-complex. Th@St(X) is finite if and only if G

is finite
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