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for ramified covering maps
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Abstract. We construct a cohomology transfer for n-fold ramified covering maps.
Then we define a very general concept of transfer for ramified covering maps and prove a
classification theorem for such transfers. This generalizes Roush’s classification of transfers
for n-fold ordinary covering maps. We characterize those representable cofunctors which
admit a family of transfers for ramified covering maps that have two naturality proper-
ties, as well as normalization and stability. This is analogous to Roush’s characterization
theorem for the case of ordinary covering maps. Finally, we classify those families of trans-
fers and construct some examples. In particular, we extend the determinant function in
GL(k, C) to a transfer.

0. Introduction. In [3], we defined a transfer for ramified covering
maps in ordinary cohomology. We start this paper by giving a transfer ho-
momorphism tp : h(E) = [E,H] → h(X) = [X,H] for any topological
abelian monoid H and any ramified covering map p : E → X. In particu-
lar, if H is an Eilenberg–MacLane space (modelled by a topological abelian
group), then we have the cohomology transfer. This transfer is an example
of what we shall call (h, k)-transfers, where h and k are representable co-
functors from the homotopy category of spaces to the category of sets, rep-
resented by spaces H and K (not necessarily topological abelian groups or
H-spaces). We use the properties of the transfer in ordinary cohomology to
define the concept of a general (h, k)-transfer for ramified covering maps. We
give a classification of these transfers that extends the classification of trans-
fers for ordinary covering maps given by Roush [6]. In particular, the set of
(h, k)-transfers has a canonical group structure when k is group-valued. Our
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results are applied to the study of transfer families and their classification
and to conclude that there are (h, h)-transfers if and only if H is a weak
product of Eilenberg–MacLane spaces.

The structure of the paper is as follows. In Section 1 we recall the defi-
nition of a ramified covering map given by Smith [7] and define our (h, h)-
transfer for h(−) = [−,H]. In Section 2 we give the definition of a general
(h, k)-transfer and study its properties. We prove that there is a one-to-one
correspondence between (h, k)-transfers for n-fold ramified covering maps
and elements in k(SPnH). We prove further that there are nontrivial trans-
fers for n-fold ramified covering maps in singular cohomology (for large n)
only when the dimensions of the cohomology groups are the same, and that
those transfers are classified by the integers. In Section 3 we compare our
transfers with transfers for ordinary covering maps and prove that our clas-
sification extends Roush’s classification.

In Section 4 we consider families of (h, k)-transfers for n-fold ramified
covering maps for all n and give their classification. Namely, we prove that
there is a one-to-one correspondence between families of (h, k)-transfers
for ramified covering maps and elements in limn k(SPnH). Analogously to
Roush’s characterization theorem for the case of ordinary covering maps,
we give a characterization of those representable functors which admit a
family of transfers. We also show that for singular cohomology, all transfers
are determined by the transfers for 2-fold ramified covering maps. We fin-
ish the section by giving examples of transfers for functors that are not
cohomology theories. In particular, we extend the determinant function
det : GL(k,C) → C

∗, which yields an element in H2(BGL(k,C)), to a

transfer for ramified covering maps τ : VectC

k (−) → VectC
1 (−).

Finally, in Section 5, we study transfers for h(−) = k(−) = H1(−; Z) and
prove that the transfers for ordinary covering maps are the same as those
for ramified covering maps, i.e., in this case, one can extend in a unique way
the transfers for ordinary covering maps to transfers for ramified covering
maps. We conclude that for each n, the group of transfers for n-fold ramified
covering maps in 1-cohomology is isomorphic to the group of transfers for
ordinary covering maps, and both are isomorphic to Z.

1. Transfers for n-fold ramified covering maps. We start by re-
calling L. Smith’s definition of a ramified covering map (see [7]). We shall
need the concept of nth symmetric power of Y defined by

SPnY = Y × · · · × Y︸ ︷︷ ︸
n

/Σn,

where Σn represents the nth symmetric group acting on the product
Y × · · · × Y by permuting coordinates. We denote the elements of SPnY
by 〈y1, . . . , yn〉.
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Definition 1.1. An n-fold ramified covering map is a continuous map
p : E → X together with a multiplicity function µ : E → N such that the
following hold:

(i) The fibers p−1(x) are finite (discrete), x ∈ X.
(ii) For each x ∈ X,

∑
e∈p−1(x) µ(e) = n.

(iii) The map ϕp : X → SPnE given by

ϕp(x) = 〈e1, . . . , e1︸ ︷︷ ︸
µ(e1)

, . . . , er, . . . , er︸ ︷︷ ︸
µ(er)

〉,

where p−1(x) = {e1, . . . , er}, is continuous.

Remark 1.2. Given an n-fold ramified covering map p : E → X with
multiplicity function µ, one can construct an (n+ 1)-fold ramified covering
map as follows. Let E = E ⊔X and p : E → X be such that p|E = p and
p|X = idX . Then p is a ramified covering map with the obvious multiplicity
function. To see that p is indeed a ramified covering map, notice that ϕp is
given by the following diagram:

X
(ϕp,id) //

ϕp
&&L

L
L

L
L

L SPnE ×X oooo q×id

���
�

�
En ×X

̺

��
SPn+1(E ⊔X) oooo q

(E ⊔X)n+1

where ̺((e1, . . . , en), x) = (e1, . . . , en, x). Observe that q × id is an identifi-
cation, since q is an open map. Therefore, ϕp is continuous.

On the other hand, given a map f : Y → X, one can construct the
induced n-fold ramified covering map f∗(p) : f∗(E) → Y by taking the
pullback f∗(E) = {(y, e) ∈ Y × E | f(y) = p(e)} and f∗(p) = projY . The
induced multiplicity function f∗(µ) : f∗(E) → N is given by f∗(µ)(y, e)

= µ(e). Denote by f̃ : f∗(E) → E the projection projE .

Examples 1.3. Typical examples of ramified covering maps are orbit
maps E → E/G of actions of a finite group G on a space E. They can be
considered as |G|-fold ramified covering maps by taking µ(e) = |Ge|, where
Ge denotes the isotropy subgroup of e ∈ E and |H| denotes the order of a
group H.

It will be of particular interest to consider the following example. Let B
be a space and πn = πBn : Bn ×Σn n → SPnB be given by πn〈b1, . . . , bn; i〉
= 〈b1, . . . , bn〉, where n = {1, . . . , n} and ×Σn represents the twisted prod-
uct. Then πn is an n-fold ramified covering map with multiplicity function
µn = µBn : Bn×Σnn→ N given by µn〈b1, . . . , bn; i〉 = #{j | bj = bi} (see [7]).
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Definition 1.4. Let p : E → X be an n-fold ramified covering map
with multiplicity function µ. If H is a topological abelian group, define

tp : [E,H] → [X,H] by tp([α̃]) = [α],

where α(x) =
∑

p(e)=x µ(e)α̃(e), x ∈ X. To see that the map α is continu-
ous and that its homotopy class depends only on the homotopy class of α̃,
observe that α is given by the composite

α : X
ϕp
→ SPnE

SPnα̃
−−→ SPnH → H,

where the last map is given by the group structure on H.
Let X be a pointed space and L be an abelian (topological) group.

Denote by F (X,L) the McCord topological group of functions u : X → L
such that u(∗) = 0 and u(x) = 0 for all but finitely many elements in X.
This has the structure of a topological group (see [5] or [3]). If H is an
Eilenberg–Mac Lane space of type K(L, q), for instance given by F (Sq, L),
then tp is the cohomology transfer

tp : H̃q(E;L) → H̃q(X;L).

Here H̃q stands for ordinary cohomology when the spaces involved have
the homotopy type of CW-complexes, or for Čech cohomology if they are
paracompact Hausdorff, provided that either L is countable or the spaces
are compactly generated (see [4]).

Example 1.5. For the ramified covering map πn : Bn ×Σn n → SPnB
of 1.3, the cohomology transfer is as follows. Let H be a topological abelian
group. Then

tπn : [Bn ×Σn n,H] → [SPnB,H]

is given by tπn([α̃]) = [α], where

α〈b1, . . . , bn〉 =

n∑

i=1

α̃〈b1, . . . , bn; i〉.

The following propositions establish the fundamental properties of the
transfer.

Proposition 1.6. If p : E → X is an n-fold ramified covering map,
then the composite

[X,F]
p∗

→ [E,F]
tp
→ [X,F]

is multiplication by n.

Proof. If [α] ∈ [X,F], then tpp∗(α) = tp(α ◦ p) : X → H, and

tp(α ◦ p)(x) =
∑

p(e)=x

µ(e)αp(e) =
( ∑

p(e)=x

µ(e)
)
α(x) = n · α(x).

Thus tpp∗([α]) = n · [α].
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We also obtain the following.

Proposition 1.7. Let Zn act on Xn by cyclic permutation of coordi-

nates, and take the quotient map p : Xn → Xn/Zn. If the prime q does not

divide n, then p∗ : H l(Xn/Zn; Zq) → H l(Xn; Zq) is a split monomorphism.

Proof. The map p : Xn → Xn/Zn is an n-fold ramified covering map.
Take its transfer given by the additive structure of K(Zq, l). Then tp ◦ p∗

is multiplication by n, thus an isomorphism. Hence p∗ is a split monomor-
phism.

The invariance under pullbacks is given by the following.

Proposition 1.8. If p : E → X is an n-fold ramified covering map,
F is a topological abelian group, and f : Y → X is continuous, then the

following diagram commutes:

[E,F]
tp //

f̃∗

��

[X,F]

f∗

��
[f∗(E),F]

tf
∗(p)

// [Y,F]

Proof. Let α̃ : E → F represent an element in [E,F]. Then the map

y 7→
∑

f∗(p)(y,e)=y

f∗(µ)(y, e)α̃(y, e) =
∑

p(e)=f(y)

µ(e)α̃(y, e),

which represents tf
∗(p)f̃∗([α̃]), clearly also represents f∗tp([α̃]) ∈ [Y,F].

One further useful property of the cohomology transfer is the following.

Proposition 1.9. Let f : B → C be continuous and consider the com-

mutative diagram

(1.10)

Bn ×Σn n
fn×Σn1n //

πB
n

��

Cn ×Σn n

πC
n

��
SPnB

SPnf // SPnC

Then the following diagram commutes:

[Cn ×Σn n,F]
tπ

C
n //

(fn×Σn1n)∗

��

[SPnC,F]

(SPnf)∗

��
[Bn ×Σn n,F]

tπ
B
n // [SPnB,F]

Proof. The result follows easily from the description of the transfer given
in Example 1.5.
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In 1.6 we computed the composite tp ◦p∗. The opposite composite p∗ ◦ tp

is also interesting. An immediate calculation yields the following.

Proposition 1.11 (cf. [3, 5.6]). Let p : E → X be an n-fold ramified

covering map with multiplicity function µ. Then the composite

[E,F]
tp
→ [X,F]

p∗

→ [E,F]

is given as follows. If [α] ∈ [E,F], then p∗tp[α] is represented by the map

α′ : E → F given by

α′(e) =
∑

p(e′)=p(e)

µ(e′)ϕ(e′).

In the case of an action of a finite group G on E and X = E/G, we have
the following consequence.

Corollary 1.12 (cf. [3, 5.7]). If [α]∈ [E,F], then p∗tp[α] = [α′]∈ [E,F],
where

α′(e) =
∑

g∈G

α(ge).

Proof. Just observe that the element α(ge) is repeated in the sum
µ(e) = |Ge| times.

Remark 1.13. Considering an action ofH on E and a subgroupK ⊂ H,
one has different ramified covering maps as depicted in

E
qK

||xx
xx

xx
xx

x
qH

""E
EE

EE
EE

E

E/K
qK
H // E/H

One may easily compute several combinations of the functions induced by
these covering maps in homotopy sets and their transfers (see Proposi-
tions 1.15 and 2.11 below).

Another interesting property of the transfer is the relationship given by
computing the transfer of the composition of two ramified covering maps.
Before giving it we need the following.

Definition 1.14. Let p : Y → X be an n-fold ramified covering map
with multiplicity function µ : Y → N, and let q : Z → Y be an m-
fold ramified covering map with multiplicity function ν : Z → N. Then
the composite p ◦ q : Z → X is an mn-fold ramified covering map with
multiplicity function ξ : Z → N given by ξ(z) = ν(z)µ(q(z)). In order
to verify that this composite is indeed an mn-fold ramified covering map,
consider the wreath product Σn ≀ Σm, defined as the semidirect product of
Σn and (Σm)n, where Σn acts on (Σm)n by permuting the n factors. We
have an action (Zm × · · · × Zm) × Σn ≀ Σm → Zm × · · · × Zm given by
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(ζ1, . . . , ζn) · (σ, τ1, . . . , τn) = (ζσ(1) · τ1, . . . , ζσ(n) · τn), where ζi ∈ Zm. Then
we have the following diagram, where all maps are open:

Zm × · · · × Zm
q×···×q //

π

��

Zm/Σm × · · · × Zm/Σm

π′

��
(Zm)n/Σn ≀Σm //_________ SPn(SPmZ)

One may easily show that π is compatible with π′ ◦ (q× · · · × q). Therefore,
there is a homeomorphism Xmn/Σn ≀ Σm ≈ SPn(SPmZ) and hence one
has a canonical quotient map ̺ : SPn(SPmZ) → SPmnZ. Then one can
easily verify that ϕp◦q = ̺ ◦ SPn(ϕq) ◦ ϕp : X → SPmnZ. Thus ϕp◦q is
continuous.

The cohomology transfer behaves well with respect to composite ramified
covering maps.

Proposition 1.15. The following holds:

tp◦q = tp ◦ tq : Hk(Z;L)
tq
→ Hk(Y ;L)

tp
→ Hk(X;L).

Proof. We prove that tp◦q = tp ◦ tq : [Z,F] → [X,F] for any topo-
logical abelian group F. Take w = [h] ∈ [Z,F], v = [g] ∈ [Y,F], u =
[f ] ∈ [Z,F]. Then v = tq(w) if g(y) =

∑
q(z)=y ν(z)h(z), and u = tp(v) if

f(x) =
∑

p(y)=x µ(y)g(y). Hence,

f(x) =
∑

p(y)=x

µ(y)
∑

q(z)=y

ν(z)h(z) =
∑

pq(z)=x

µ(q(z))ν(z)h(z) =
∑

pq(z)=x

ξ(z)h(z).

Therefore, tqtp(u) = tp◦q(u).

Corollary 1.16. Given an n-fold ramified covering map p : E → X
with multiplicity function µ and an integer l, there is an ln-fold ramified

covering map pl : E → X such that pl = p and µl(e) = lµ(e), e ∈ E. Then

tpl = ltp : Hk(E;L) → Hk(X;L).

Proof. Consider the l-fold ramified covering map q : E → E such that
q = idE and ν(e) = l for all e ∈ E. Then pl = p ◦ q. Then apply Proposi-
tion 1.15.

Remark 1.17. The ln-fold covering map pl obtained from l is a sort
of spurious ramified covering map, since the multiplicity of p is artificially
multiplied by l. It is interesting to remark that the previous result shows
that the transfer of this new ramified covering map pl remains essentially
unchanged.
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2. General transfers for n-fold ramified covering maps in repre-

sentable cofunctors. In this section we consider representable contravari-
ant functors h and k, that is, h(−) = [−,H] and k(−) = [−,K], where H

and K are spaces, in order to study general transfers.

Definition 2.1. An (h, k)-transfer for n-fold ramified covering maps τ
associates, to every n-fold ramified covering map p : E → X with multiplic-
ity function µ : E → N, a function τp : h(E) → k(X) with the following two
properties:

(i) Given a pullback diagram

(2.2)

f∗E
f̃ //

p′

��

E

p

��
Y

f // X

of n-fold ramified covering maps, the diagram

h(E)
τp

//

f̃∗

��

k(X)

f∗

��
h(f∗E)

τp′

// k(Y )

commutes.
(ii) Given f : B → C, then for the diagram (1.10) the following diagram

commutes:

h(Cn ×Σn n)
τπC

n //

(fn×Σn1n)∗

��

k(SPnC)

(SPnf)∗

��
h(Bn ×Σn n)

τπB
n // k(SPnB)

Remark 2.3. Observe that the transfers just defined need not be ho-
momorphisms (even when H and K are H-spaces).

Note 2.4. Considering the category Ramcovn whose objects are n-fold
ramified covering maps and whose morphisms are pullback diagrams, one
has two functors, namely E,X : Ramcovn → Top such that given a covering
map p : E → X, E(p) = E and X(p) = X. Then a transfer is a natural

transformation h ◦ E
·
→ k ◦X (between functors Ramcovn → Set), that also

is a natural transformation h ◦ (−)n ×Σn n
·
→ k ◦ SPn (between functors

Top → Set).

If h = k = Hq(−;L), then by 1.8 and 1.9, we have the following.

Proposition 2.5. The transfer tp : h(E) → h(X) defined in 1.4 is an

(h, h)-transfer.
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We have the following classification result.

Theorem 2.6.

(i) Each class w ∈ k(SPnH) determines an (h, k)-transfer τw for n-fold
ramified covering maps, and conversely

(ii) each (h, k)-transfer τ for n-fold ramified covering maps determines

a class wτ ∈ k(SPnH); moreover ,
(iii) the class associated to τw is w, and conversely

(iv) the transfer associated to wτ is τ .

Proof. (i) Take a class w ∈ k(SPnH) and let p : E → X be an n-fold
ramified covering map with multiplicity function µ : E → N. We define
τpw : h(E) → k(X) as follows. Given [β] ∈ h(E), let τpw[β] be the homotopy
class of the composite

X
ϕp
→ SPnE

SPnβ
−−→ SPn

w
→ K.

In order to show that τw has property 2.1(i), consider the pullback dia-
gram (2.2). The element k(f) ◦ τpw[β] is given by the homotopy class of the
composite

Y
f
→ X

ϕp
→ SPnE

SPnβ
−−→ SPnH

w
→ K.

On the other hand, the element τp
′

w ◦h(f̃)[β] is given by the homotopy class
of the composite

Y
ϕp′ // SPn(f∗E)

SPnf̃ &&LLLLLLLLLL

SPn(β◦f̃) // SPnH
w // K

SPnE

SPnβ

::uuuuuuuuuu

By the functoriality of the construction SPn, the triangle commutes; there-
fore, we only have to show the commutativity of the diagram

Y
f //

ϕp′

��

X

ϕp

��
SPn(f∗E)

SPnf̃ // SPnE

To that end, take y ∈ Y and consider the fiber p−1(f(y)) = {e1, . . . , er}.
Then

ϕpf(y) = 〈e1, . . . , e1︸ ︷︷ ︸
µ(e1)

, . . . , er, . . . , er︸ ︷︷ ︸
µ(er)

〉.

Since p′−1(y) = {(y, e1), . . . , (y, er)} and the multiplicity function of p′ is
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µ ◦ f̃ , we have

ϕp′(y) = 〈(y, e1), . . . , (y, e1)︸ ︷︷ ︸
µ(e1)

, . . . , (y, er), . . . , (y, er)︸ ︷︷ ︸
µ(er)

〉.

Therefore,

SPnf̃ϕp′(y) = 〈e1, . . . , e1︸ ︷︷ ︸
µ(e1)

, . . . , er, . . . , er︸ ︷︷ ︸
µ(er)

〉,

and so the diagram commutes.

It is immediate to see that τw has property 2.1(ii), by the functoriality
of SPn and since SPn(fn×Σn idn)◦ϕπC

n
= ϕπB

n
◦SPnf , as one easily verifies.

(ii) Let τ be an (h, k)-transfer for n-fold ramified covering maps and
consider the map π : Hn×Σn n→ SPnH. As remarked in 1.3, π is an n-fold
ramified covering map. Therefore, we have τπ : h(Hn ×Σn n) → k(SPnH).
Let α : Hn ×Σn n → H be given by α〈a1, . . . , an; i〉 = ai. Then [α] ∈
h(Hn ×Σn n). We associate to τ the element wτ = τπ[α] ∈ k(SPnH).

(iii) Let w ∈ k(SPnH), and consider the associated transfer τw. The class
in k(SPnH) determined by τw is given by τπw[α], where α : Hn ×Σn n → H

is given by α〈a1, . . . , an; i〉 = ai. Therefore, τπw[α] is the homotopy class of
the composite

SPnH
ϕπ
→ SPn(Hn ×Σn n)

SPnα
−−→ SPnH

w
→ K.

Let a = 〈a1, . . . , an〉 be an element in SPnH. Then

ϕπ(a) = 〈〈a1, . . . , an; 1〉, . . . , 〈a1, . . . , an;n〉〉.

Therefore,

SPnα ◦ ϕπ(a) = 〈a1, . . . , an〉 = a,

so that SPnα ◦ ϕπ = 1. Hence τπw[α] = w.

(iv) Finally, given an (h, k)-transfer τ , we have wτ = τπ[α]. In order to
show that τwτ = τ , consider an n-fold ramified covering map p : E → X
with multiplicity function µ : E → N and some element [β] ∈ h(E) = [E,H].
We shall prove that τpwτ [β] = τp[β]. For that, consider the following two
diagrams:

E
ϕ̃p //

p

��

En ×Σn n

πE
n

��
X

ϕp // SPnE

En ×Σn n
βn×Σn1n //

πE
n

��

Hn ×Σn n

π

��
SPnE

SPnβ // SPnH

The left one is a pullback diagram while the one on the right is like (1.10).
Hence, by the two properties of the transfer, we have two commutative
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diagrams

h(En ×Σn n)
τπE

n //

(ϕ̃p)∗

��

k(SPnE)

(ϕp)∗

��
h(E)

τp
// k(X)

h(Hn ×Σn n)
τπ

//

(βn×Σn1n)∗

��

k(SPnH)

(SPnβ)∗

��
h(En ×Σn n)

τπE
n // k(SPnE)

and putting the right one on top of the left one, we obtain

h(Hn ×Σn n)
τπ

//

(ϕ̃p)∗◦(βn×Σn1n)∗

��

k(SPnH)

(ϕp)∗◦(SPnβ)∗

��
h(E)

τp
// k(X)

If we now chase our element [α] ∈ h(Hn ×Σn n) defined in the proof of (ii)
along the top and right side of the diagram, we obtain [wτ ◦ SPnβ ◦ ϕp] =
τpwτ [β], while if we chase it along the left and bottom side of the diagram we
obtain τp[β]. Thus τpwτ [β] = τp[β], as desired.

As a consequence of Theorem 2.6, we obtain the following.

Corollary 2.7. There is a one-to-one correspondence between (h, k)-
transfers τ and elements w in k(SPnH).

In the following result we compute wt for the cohomology transfers tp,
p : E → X, defined in 1.4.

Proposition 2.8. Let H = F (Sq, L). Then the element wt ∈ [SPnH,H]
that corresponds to the transfer tp is given by

wt〈a1, . . . , an〉 = a1 + · · · + an.

Proof. Let π : Hn ×Σn n → SPnH be the n-fold ramified covering
map given above. The transfer tπ : h(Hn ×Σn n) → h(SPnH) is such
that tπ[α](x) =

∑
π(e)=x µ(e)α(e). Thus, if x = 〈a1, . . . , an〉, then π−1(x) =

{〈a1, . . . , an; i〉 | i = 1, . . . , n}. Hence

wt(x) = tπ[α](x) =

n∑

i=1

α〈a1, . . . , an; i〉 =

n∑

i=1

ai.

Definition 2.9. By Theorem 2.6, given representable functors h and k,
we can define the set of transfers from h(E) to k(X) for each n-fold ramified
covering map p : E → X. We denote this set by TRn (h, k). If we assume that
the functor k takes values in the category Ab of abelian groups, then we
can give TRn (h, k) a group structure as follows. Given σ, τ ∈ TRn (h, k) and
an n-fold ramified covering map p : E → X, we define the transfer σ+ τ by
(σ + τ)p(a) = σp(a) + τp(a), for every a ∈ h(E).
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Corollary 2.10. Assume that k takes values in Ab. Then the bijection

of Corollary 2.7 gives an isomorphism of abelian groups

TRn (h, k) ∼= k(SPn(H)).

Proof. By 2.7, there is a bijection ψ : TRn (h, k) → k(SPn(H)) given by
ψ(τ) = wτ = τπ[α], as in the proof of 2.6(ii). Then

ψ(σ + τ) = (σ + τ)π[α] = σπ[α] + τπ[α] = ψ(σ) + ψ(τ).

Therefore, ψ is an isomorphism.

The following is a nice consequence of this corollary.

Proposition 2.11. Let τ be an (h, k)-transfer and assume that there is

a commutative diagram

E′

p′   A
AA

AA
AA

A

q // E

p
~~~~

~~
~~

~~

X

of n-fold ramified covering maps such that q : E′ → E is surjective and

µ(e) =
∑

e′∈q−1(e) µ
′(e′). Then the following triangle commutes:

(2.12) h(E)

τp
##G

GGGGGGG

q∗ // h(E′)

τp′{{ww
ww

ww
ww

w

k(X)

Proof. By the classification result 2.7, there is an element w = wτ ∈
k(SPnH) such that for any p : E → X and any element [f ] ∈ h(E) = [E,H],
τp[f ] is given by the class of the composite

X
ϕp
→ SPnE

SPnf
−−→ SPnH

w
→ K.

Similarly for τp
′

[f ′], f ′ = f ◦ q. Consider the following diagram:

SPnE′

SPn(f◦q)

%%K
KKKKKKKK

SPnq

��

X

ϕp′
;;wwwwwwwww

ϕp ##G
GG

GG
GG

GG
SPnH

w // K

SPnE

SPnf

99sssssssss

The triangle on the right clearly commutes. We shall show that so does the
left one. If p−1(x) = {e1, . . . , er} and p′−1(x) = {e′1, . . . , e

′
s}, then

ϕp(x) = 〈e1, . . . , e1︸ ︷︷ ︸
µ(e1)

, . . . , er, . . . , er︸ ︷︷ ︸
µ(er)

〉, ϕp′(x) = 〈e′1, . . . , e
′
1︸ ︷︷ ︸

µ′(e′1)

, . . . , e′s, . . . , e
′
s︸ ︷︷ ︸

µ′(e′s)

〉.
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Observe that p′−1(x) = q−1(e1) ⊔ · · · ⊔ q−1(er). Rewrite

ϕp′(x) = 〈e′11, . . . , e
′
11︸ ︷︷ ︸

µ′(e′11)

, . . . , e′1s1 , . . . , e
′
1s1︸ ︷︷ ︸

µ′(e′1s1
)

, . . . , e′r1, . . . , e
′
r1︸ ︷︷ ︸

µ′(e′r1)

, . . . , e′rsr
, . . . , e′rsr︸ ︷︷ ︸
µ′(e′rsr

)

〉,

where q−1(e1) = {e′11, . . . , e
′
1s1

}, . . . , q−1(er) = {e′r1, . . . , e
′
rsr

}. Since µ(e1) =
µ′(e′11) + · · · + µ′(e′1s1), . . . , µ(er) = µ′(e′r1) + · · · + µ′(e′rsr

), we have

SPnqϕp′(x)

= SPnq〈e′11, . . . , e
′
11︸ ︷︷ ︸

µ′(e′11)

, . . . , e′1s1 , . . . , e
′
1s1︸ ︷︷ ︸

µ′(e′1s1
)

, . . . , e′r1, . . . , e
′
r1︸ ︷︷ ︸

µ′(e′r1)

, . . . , e′rsr
, . . . , e′rsr︸ ︷︷ ︸
µ′(e′rsr

)

〉

= 〈e1, . . . , e1 . . . , e1, . . . , e1︸ ︷︷ ︸
µ(e1)

, . . . , er, . . . , er . . . , er, . . . , er︸ ︷︷ ︸
µ(er)

〉 = ϕp(x).

Hence,

τp[f ] = τpw[f ] = τp
′

w [f ◦ q] = τp
′

q∗[f ].

The following theorem yields the existence of transfers in some cases.

Theorem 2.13. Let H∗ denote singular cohomology with coefficients

in Z. Then

TRn (Hr, Hs) ∼=





0 if n ≥ s < r (s > 0),

Z if n ≥ s = r,

0 if n ≥ s = r + 1.

Proof. By 2.6 and 2.7, we have an isomorphism

TRn (Hr, Hs) ∼= Hs(SPn(K(Z, r)).

By [2, 6.3.24], for any (r−1)-connected CW-complex X, the inclusion X →֒
SP∞X is an (r+1)-equivalence. Therefore, SP∞K(Z, r) is (r−1)-connected,
πr(SP∞K(Z, r)) ∼= Z, and πr+1(SP∞K(Z, r)) = 0. By the Hurewicz theo-
rem,

H̃i(SP∞K(Z, r)) = 0 for i < r,

Hr(SP∞K(Z, r)) ∼= Z, Hr+1(SP∞K(Z, r)) = 0.

By the universal coefficients theorem,

Hs(SP∞K(Z, r)) = 0 for s < r,

Hr(SP∞K(Z, r)) ∼= Hom(Hr(SP∞K(Z, r)); Z) ∼= Hom(Z,Z) ∼= Z.

Since Hr(SP∞K(Z, r)) ∼= Z, it follows that Ext(Hr(SP∞K(Z, r)); Z) = 0,
and we have Hr+1(SP∞K(Z, r)) ∼= Hom(Hr(SP∞K(Z, r)); Z) = 0. By [8],
for any CW-complex X, Hs(SP∞X) ∼= Hs(SPnX) for n ≥ s, so the result
follows.
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3. Comparison between transfers for ordinary covering maps

and for ramified covering maps. In this section we shall compare our
classification of transfers for n-fold ramified covering maps given in the pre-
vious section with the classification of transfers for n-fold ordinary cov-
ering maps obtained by Roush [6]. For a description of his result we fol-
low [1].

Definition 3.1. Take again h(−) = [−,H] and k(−) = [−,K] as above.
An (h, k)-transfer for n-fold covering maps associates to every n-fold
covering map p : E → X over a paracompact space X a function tp :
h(E) → k(X), which is natural with respect to pullbacks in the sense of
property (2.1)(i) in the definition of (h, k)-transfers for n-fold ramified cov-
ering maps.

Denote by Tn(h, k) the set of transfers for n-fold ordinary covering maps,
and let EΣn → BΣn be the universal principal Σn-bundle. Then we have
the following.

Theorem 3.2 (Roush). There is a bijection

[EΣn ×Σn H
n,K] → Tn(h, k).

Since the transfers for n-fold ramified covering maps are also natural with
respect to pullbacks, as just mentioned above, we have a restriction function
r : TRn (h, k) → Tn(h, k). The following theorem relates both classifications,
namely Theorems 3.2 and 2.7.

Theorem 3.3. Let ̺ : EΣn×Σn Hn → SPnH be given by ̺〈e; a1, . . . , an〉
= 〈a1, . . . , an〉. Then the following diagram commutes:

[SPnH,K] oo
∼= //

̺∗

��

TRn (h, k)

r

��
[EΣn ×Σn Hn,K] // Tn(h, k)

Proof. Let w : SPnH → K be a map and τw the transfer for n-fold
ramified covering maps associated to it according to Corollary 2.7. Con-
sider ̺∗[w] = [w ◦ ̺] and let p : E → X be an n-fold covering map
and g : E → H. The value at [g] of the transfer τ ′p associated to the
class ̺∗[w] is defined as follows. Let q : E → X be the principal Σn-
bundle associated to p, i.e., E = {(e1, . . . , en) ∈ En | ei 6= ej if i 6= j,
and p(e1) = · · · = p(en)}, and q(e1, . . . , en) = p(e1). There is a free Σn-
action on E defined by permuting coordinates, and a homeomorphism
γ : E/Σn → X given by γ〈e1, . . . en〉 = p(e1). Therefore there is a pull-
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back square

E
β //

��

EΣn

��
X E/Σn //≈oo EΣn/Σn BΣn

Then τ ′p[g] ∈ k(X) = [X,K] is the class of the composite

X ≈ E/Σn
ψ
→ EΣn ×σn E

n id×Σng
n

−−−−−→ EΣn ×Σn H
n w◦̺
−−→ K

where ψ〈e1, . . . , en〉 = 〈β(e1, . . . , en); e1, . . . , en〉. Now we consider the fol-
lowing diagram:

E/Σn
ψ //

γ ≈

��

EΣn ×Σn E
n

id×Σng
n

//

̺′

��

EΣn ×Σn Hn w◦̺ //

̺

��

K

X
ϕp // SPnE

SPng // SPnH

w

99rrrrrrrrrrrr

where ̺′〈a; e1, . . . , en〉 = 〈e1, . . . , en〉. Since p : E → X is an n-fold covering
map, µ(e) = 1 for all e ∈ E, and {e1, . . . , en} is the fiber over p(e1). There-
fore, ϕp(γ〈e1, . . . , en〉) = 〈e1, . . . , en〉. Since ̺′ψ〈e1, . . . , en〉 = 〈e1, . . . , en〉,
the left square of the diagram commutes, and the middle square as well
as the triangle are clearly also commutative. But the class of the compos-
ite w ◦ SPng ◦ ϕp is r(τw)p[g] = τpw[g]. Hence r(τw)p[g] = τ ′p[g] and thus
r(τw) = τ ′.

4. Transfers for ramified covering maps in representable cofunc-

tors. In this section we shall consider families of (h, k)-transfers for n-fold
ramified covering maps for all n, and in order to do this, we assume that H

has a base point ∗.
Before stating the relevant definition, consider an n-fold ramified cov-

ering map p : E → X with multiplicity function µ : E → N. Recall the
(n+1)-fold ramified covering map p : E = E⊔X → X given in Remark 1.2.

Definition 4.1. An (h, k)-transfer τ for ramified covering maps con-
sists of an (h, k)-transfer τn for n-fold ramified covering maps, for each n ∈ N,
together with the following stability condition. Given an n-fold ramified cov-
ering map p : E → X, the following diagram commutes:

(4.2) h(E)

τ
p
n %%K

KKKKKKKK

γ // h(E ⊔X)

τ
p
n+1

��
k(X)

where γ[f ] = [(f, κ)], κ constant on X with value the base point in H.
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Proposition 4.3. Define ι : TRn+1(h, k) → TRn (h, k) by τn+1 7→ τ̂n,

where for an n-fold ramified covering map p : E → X, τ̂pn = τpn+1 ◦ γ. Then

the diagram

TRn+1(h, k)
ψ

∼=
//

ι

��

k(SPn+1
H)

i∗

��
TRn (h, k) ∼=

ψ // k(SPnH)

commutes for all n, where i : SPnH →֒ SPn+1
H is the canonical inclusion

given by 〈a1, . . . , an〉 7→ 〈a1, . . . , an, ∗〉.

Proof. Let p : E → SPnH be the (n + 1)-fold ramified covering map
obtained by taking the pullback of πn+1 over i : SPnH →֒ SPn+1

H. Con-
sider the maps β : Hn ×Σn n ⊔ SPnH → Hn+1 ×Σn+1 n+ 1 given by
β〈a1, . . . , an; j〉 = 〈a1, . . . , an, ∗; j〉 and β〈a1, . . . , an〉 = 〈a1, . . . , an, ∗;n+ 1〉,
and πn : Hn ×Σn n → SPnH, the canonical surjection. Hence we have a
commutative square

Hn ×Σn n ⊔ SPnH
β

((

πn

''

q

((P
P

P
P

P
P

P
P

E
j //

p

��

Hn+1 ×Σn+1 n+ 1

πn+1

��
SPnH

i // SPn+1
H

and since E is a pullback, there is a (unique) map q : (Hn×Σnn)⊔SPnH → E
such that p◦ q = πn and j ◦ q = β. We shall write an element 〈a〉 ∈ SPnH as

〈a〉 = 〈a1, . . . , a1︸ ︷︷ ︸
i1

, . . . , ar, . . . , ar︸ ︷︷ ︸
ir

〉.

Then π−1
n 〈a〉 = {〈a; i1〉, 〈a; i1 + i2〉, . . . , 〈a;n〉, 〈a〉}. On the other hand,

p−1〈a〉 = {〈a〉} × {〈a, ∗; i1〉, 〈a, ∗; i1 + i2〉, . . . , 〈a, ∗;n〉, 〈a, ∗;n+ 1〉}. We dis-
tinguish two cases, namely, when ai 6= ∗ for all i, and when ai = ∗ for some i.
In the first case, q induces a bijection between both fibers and one easily
sees that µp ◦ q = µπn . In the second case, arrange the components of a so
that

〈a〉 = 〈a1, . . . , a1︸ ︷︷ ︸
i1

, . . . , ∗, . . . , ∗︸ ︷︷ ︸
ir

〉.

In this case, q is as in the first case, except that q〈a;n〉 = q〈a〉 = 〈a, ∗;n〉 =
〈a, ∗;n + 1〉, so that q induces a surjection between the fibers. Since πn is
also surjective, q is surjective.
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Now

µpq〈a; i1〉 = i1 = µπn〈a; i1〉, . . . ,

µpq〈a; i1 + · · · + ir−1〉 = ir−1 = µπn〈a; i1 + · · · + ir−1〉,

µp(〈a〉, 〈a, ∗;n+ 1〉) = ir + 1 = µπn〈a;n〉 + µπn〈a〉.

Hence, µp(e) =
∑

e′∈q−1(e) µπn(e′) for any e ∈ E. Thus, by Proposition 2.11,

(4.4) τπn

n+1 ◦ q
∗ = τpn+1.

Let αn+1 : Hn+1×Σn+1n+ 1→H be given by αn+1〈a1, . . . , an+1; j〉= aj ,
as before, and take τn+1 ∈ TRn+1(h, k). Then β∗(αn+1) = γ(αn). By the
pullback property, the commutativity of the diagram, and (4.4) we have

i∗ψ(τn+1) = i∗τ
πn+1

n+1 [αn+1] = τpn+1j
∗[αn+1] = τπn

n+1q
∗j∗[αn+1]

= τπn

n+1β
∗[αn+1] = τπn

n+1γ[αn] = τ̂πn
n [αn] = ψ(τ̂n) = ψι(τn+1).

We have an inverse system

· · · → TRn+1(h, k)
ι
→ TRn (h, k) → · · · → TR1 (h, k) = Nat(h, k),

where Nat(h, k) denotes the natural transformations from h to k. Thus, by
the previous proposition, a transfer for ramified covering maps is an element
in limn T

R
n (h, k) = TR∞(h, k). On the other hand, we have another inverse

system

· · · → k(SPn+1
H)

i∗
→ k(SPnH) → · · · → k(H).

By the commutative diagram of Proposition 4.3 and Corollary 2.10, we have
the following.

Theorem 4.5. There is an isomorphism TR∞(h, k) → limn k(SPnH).

Example 4.6. The (h, h)-transfers τpn = tp given in Definition 1.4 for
each n determine an (h, h)-transfer for ramified covering maps, since for any
[α̃] ∈ h(E) we have γ[α̃] = [α̃′], where α̃′|E = α̃, and α̃′|X ≡ 0∈H. Hence

τpn+1γ[α̃] = tp[α̃′] = [α′], where α′(x) =
∑

p(e)=x µ(e)α̃′(e) =
∑

p(e)=x µ(e)α̃(e),

since for e = x, α̃′(e) = 0. Thus τpn+1 ◦ γ = τpn, and hence diagram (4.2)
commutes in this case.

Assume in what follows that τ is an (h, h)-transfer for ramified covering
maps given by an element [w] ∈ limn[SPnH,H], h = [−,H]. Let H be a
CW-complex. Then by [9], SPn−1

H is a subcomplex of SPnH, so that the
inclusion in : SPn−1

H →֒ SPnH is a cofibration and we may thus assume
that [w] is given by a family of maps wn : SPnH → H such that wn−1 =
wn ◦ in. If we further assume that τX = 1h(X), then w1 ≃ idH, and we may
suppose from the start that w1 = idH. Thus the maps wn determine a map



18 M. A. Aguilar and C. Prieto

w : SP∞
H → H such that w|SPn

H = wn. In particular, w|H = idH. We have
the following.

Lemma 4.7. Let H have the homotopy type of a connected CW-complex.

If there is a map w : SP∞
H → H such that w|H = idH, then H has the

homotopy type of a weak product
∏̃
n≥1K(πn(H), n) of Eilenberg–MacLane

spaces.

Proof. The homomorphism w∗ : πn(SP∞
H)→ πn(H) splits i∗ : πn(H)→

πn(SP∞
H) for all n. By the Dold–Thom theorem (see [2]), πn(SP∞

H) ∼=

H̃n(H; Z) and under this isomorphism, i∗ corresponds to the Hurewicz ho-
momorphism. Thus, the Hurewicz homomorphism is a split mono and hence
by a theorem of Moore (see [10, p. 420]) we have the result.

Hence, by the previous lemma and Theorem 4.5, we have the following
consequence.

Theorem 4.8. Let H have the homotopy type of a connected CW-com-

plex. There is an (h, h)-transfer τ for ramified covering maps such that

τ idX

1 = 1h(X) if and only if H has the homotopy type of a weak product

∏̃

n≥1

K(πn(H), n)

of Eilenberg–Mac Lane spaces.

In what follows, we shall show that the transfers for ramified cover-
ing maps in singular cohomology, i.e., the elements of limn T

R
n (h, k), where

h(X) = Hq(X;L) and k(X) = Hq(X;L′), are determined by the transfers
for 2-fold ramified covering maps.

Theorem 4.9. The function

ι : TRn+1(H
q(−;L), Hq(−;L′)) → TRn (Hq(−;L), Hq(−;L′))

is an isomorphism for n ≥ 2 (q > 0).

Proof. Since h = Hq(−;L), we have H = K(L, q), which is a CW-
complex. By [9], SPnH is also a CW-complex and a subcomplex of SPn+1

H.
Therefore, we have a (H-coexact) cofibration sequence

SPnH
i
→֒ SPn+1

H
j
։ SPn+1

H/SPnH.

Denote by S̃Pn+1H the reduced symmetric power of H, i.e., the quotient
of the action of Σn+1 on the smash product H ∧ · · · ∧ H (n + 1 factors).

Clearly, SPn+1
H/SPnH ≈ S̃Pn+1H. Using the exact cohomology sequence

of the cofibration sequence above for the theory k(X) = Hq(X;L′) gives us
an exact sequence
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H̃q(S̃Pn+1
H;L′)

j∗

→Hq(SPn+1
H;L′)

i∗
→Hq(SPnH;L′)

δ
→ H̃q+1(S̃Pn+1

H;L′),

and Proposition 4.3 gives us the commutative diagram

Hq(SPn+1
H;L′)

i∗ //
OO

∼=
��

Hq(SPnH;L′)
OO
∼=
��

TRn+1(H
q(−;L), Hq(−;L′))

ι // TRn (Hq(−;L), Hq(−;L′))

Since H = K(L, q) is (q − 1)-connected, by [9], S̃Pn+1H is (2n − 2 + q)-
connected. Therefore, by the Hurewicz isomorphism theorem and the univer-

sal coefficient theorem, we see that H̃q(S̃Pn+1H;L′) and H̃q+1(S̃Pn+1H;L′)
are both zero, provided that n ≥ 2. Hence, ι is an isomorphism for n ≥ 2.

In the case of theories other than the ordinary ones (given by Eilenberg–
Mac Lane spaces), there are nontrivial transfers. The following is an inter-
esting case.

Example 4.10. We analyze transfers for vector bundles. Let H be BU(1)
and K be BU(k). We denote by Vectk

C
(X) the set of isomorphism classes

of numerable complex k-dimensional vector bundles over X. By 2.7, given
an n-fold ramified covering map p : E → X, there is a bijection between
transfers tp : Vect1

C
(E) → Vectk

C
(X) and elements in [SPnBU(1),BU(k)] ∼=

Vectk
C
(SPnBU(1)).

Notice that BU(1) is a topological abelian group whose model can be
defined by BU(1) = F (S1,U(1)) (see [5]). This group structure is given in
terms of line bundles by the tensor product. Since BU(1) is an Eilenberg–
Mac Lane space of type K(Z, 2), this group structure also corresponds to
the group structure in H2(X; Z), where one maps each line bundle to its
first Chern class.

Consider the map ν : BU(1)n → BU(1) defined by the product above,
and which corresponds to the bundle γ1

⊠ · · ·⊠γ1, where γ1 is the universal
line bundle. Since BU(1) is abelian, this map defines a map ν : SPnBU(1) →
BU(1). Now let ̺ : BU(1) → BU(k) be the classifying map of the Whitney
sum γ1⊕· · ·⊕γ1 of k copies of γ1. Then the homotopy class of ̺◦ν defines a
transfer as mentioned above. To see that this transfer is not trivial, consider
the diagonal map d : BU(1) → BU(1)n. Denote by λ the tensor product
γ1 ⊗ · · · ⊗ γ1 of n copies of γ1. Then the map ̺ ◦ ν ◦ q ◦ d = ̺ ◦ ν ◦ d,
where q : BU(1)n → SPnBU(1) is the projection, classifies the bundle
λ ⊕ · · · ⊕ λ (k copies). By the comments above, γ1 7→ c1(γ

1) yields an
isomorphism, and H2(BU(1); Z) ∼= Z, therefore c1(λ) = nc1(γ

1) 6= 0. Hence
c1(λ ⊕ · · · ⊕ λ) = c1(λ) + · · · + c1(λ) = knc1(γ

1) 6= 0, and so the transfer
defined is not trivial.
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A modified version of the previous example is the following.

Example 4.11. Let p : E → X be an n-fold ramified covering map
with multiplicity function µ, let π : ξ → E be a (numerable) k-dimensional
complex vector bundle, and let λξ = det ξ → E denote its determinant line
bundle. Consider the bundle τpn(ξ) → X whose fiber over x ∈ X is given by

τpn(ξ)x = λξe1 ⊗ · · · ⊗ λξe1︸ ︷︷ ︸
µ(e1)

⊗ · · · ⊗ λξer
⊗ · · · ⊗ λξer︸ ︷︷ ︸
µ(er)

,

where p−1(x) = {e1, . . . , er} and λξej denotes the fiber of λξ over ej ∈ E.
The classifying map for this bundle is given by

X
ϕp
→ SPnE

SPnf
λξ

−−−−−→ SPnBGL(1,C)
ν
→ BGL(1,C),

where fλξ is the classifying map of λξ. Thus we have a transfer

τpn : VectC

k (E) = [E,BGL(k,C)] → [X,BGL(1,C)] = VectC
1 (X).

To compute the group of transfers of the previous example, we need the
following.

Lemma 4.12. Let detk : U(k) → U(1) be the determinant function. Then

Bdetk : BU(k) → BU(1) is such that [Bdet] = c1(γ
k), the first Chern class

of the universal bundle, thus it is a generator of H2(BU(k)) ∼= Z.

Proof. Take BU(k) = F (S1,U(k)). Then Bdetk : F (S1,U(k)) →
F (S1,U(1)) is given by Bdetk(u) = detk ◦ u. Since BU(1) = F (S1,U(1))
is a K(Z, 2), we take it to represent the second cohomology groups. If k = 1,
then det1 : U(1) → U(1) is the identity, hence

[Bdet1] = [id] ∈ H2(BU(1)) = [BU(1),BU(1)],

which is the generator, since we are dealing with Eilenberg–MacLane spaces,
and we have

[BU(1),BU(1)]
∼=
→ Hom(π2(BU(1)), π2(BU(1))) ∼= Hom(Z,Z) ∼= Z.

By induction, we assume that the homotopy class of Bdetk : BU(k) →

BU(1) is c1(γ
k), and consider H2(BU(k+ 1))

Bi∗
→ H2(BU(k)), where i is the

inclusion map. By naturality and stability of the Chern classes, Bi∗c1(γ
k+1)

= c1(γ
k). Since these classes are the generators, Bi∗ is an isomorphism.

Recalling that i : U(k) → U(k + 1) maps a matrix A to
(
A
0

0
1

)
, one has

Bi∗[Bdetk+1] = [Bdetk], since

Bdetk+1 ◦ Bi : x 7→ detk+1iu(x) = detk+1

(
u(x) 0

0 1

)
= detku(x).

Therefore, [Bdetk+1] = c1(γ
k+1) and thus it is a generator.
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We have the following result.

Theorem 4.13. TR(VectC

k (−),VectC
1 (−)) ∼= Z and the family of trans-

fers τpn constructed in Example 4.11 constitute a generator.

Proof. First we analyze the situation for the transfers for n-fold ramified
covering maps. By Corollary 2.10,

TRn (VectC

k (−),VectC
1 (−)) ∼= H2(SPnBGL(k,C); Z).

Without losing generality, we may write U(k) instead of GL(k,C). Mak-
ing use of the fibration U(k − 1) →֒ U(k) → S

2k−1, one easily shows that
π1(U(k)) ∼= Z for k ≥ 1. With this and the same arguments used in the
proof of 2.13, one has

H2(SPnBGL(k,C); Z) ∼= Z.

Now, consider the inverse system

(4.14) · · · → H2(SP3BU(k)) → H2(SP2BU(k)) → H2(BU(k)).

To show that all arrows are isomorphisms, take the cofiber sequence SPnX →֒

SPn+1X ։ SP
n+1

X = SPn+1X/SPnX. By [9] we know that if X is (l− 1)-

connected, then SP
n+1

X is (2n+ l − 2)-connected. Therefore, since BU(k)
is 1-connected, in the exact sequence

H̃2(SP
n+1

BU(k)) // H̃2(SPn+1BU(k))
∼= // H̃2(SPnBU(k)) // H̃3(SP

n+1
BU(k))

0 0

the middle arrow is an isomorphism if n ≥ 2. In order to see that the last
arrow on the right in the inverse system (4.14) is also an isomorphism, we
do the following. Take BU(k) = F (S1,U(k)), and take as base point ∗ the
function given by ∗(s) = 1, the identity matrix, for all s ∈ S

1. In particular,
BU(1) is a topological abelian group. On the other hand, the inclusions
SPnBU(k) →֒ SPn+1BU(k) are given by 〈u1 . . . , un〉 7→ 〈u1 . . . , un, ∗〉. By
Lemma 4.12, the generator of H2(BU(k)) = [BU(k),BU(1)] as an infinite
cyclic group is given by [Bdet]; on the other hand, the homotopy classes of
the maps βn given by the diagrams

BU(k)n
(Bdet)n

//

��

BU(1)n // BU(1)

SPnBU(k)

βn

44iiiiiiiiiiiiiiiiiii

seen as elements in H̃2(SPnBU(k)), where the top arrow on the right-hand
side is given by the abelian multiplication in BU(1), obviously map to each
other in the inverse system (4.14). In particular, [β2] 7→ [β1] = [Bdet]. So,
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the last arrow on the right of the inverse system is surjective, and thus it is
an isomorphism. Hence, all arrows are isomorphisms and the elements [βn]
are generators of the infinite cyclic groups, and since each τn corresponds
to [βn], the family τ = {τn} is a transfer for ramified covering maps. Conse-
quently, TR(VectC

k (−),VectC
1 (−)) ∼= limnH

2(SPnBU(k)) ∼= Z, and τ is the
generator.

5. Transfers in 1-dimensional integral cohomology. We consider
(H1(−; Z), H1(−; Z))-transfers for n-fold ramified covering maps as well as
for n-fold covering maps. We denote by Σn ≀ Z the wreath product of Σn
and Z, i.e., the semidirect product of Σn with Z

n, where Σn acts on Z
n

by permuting the summands. Therefore, the product in Σn ≀ Z is given by
(σ, a1, . . . , an) · (τ, b1, . . . , bn) = (στ, aτ(1) + b1, . . . , aτ(n) + bn).

Lemma 5.1. The following hold :

(a) B(Σn ≀ Z) = EΣn ×Σn (R/Z)n.
(b) Let f : Σn≀Z → Z be the homomorphism defined by f(σ, a1, . . . , an) =

a1 + · · · + an. Then Bf : B(Σn ≀ Z) → BZ is given by

ϕ : EΣn ×Σn (R/Z)n → R/Z, where ϕ〈y, r1, . . . , rn〉 = r1 + · · · + rn.

Proof. (a) Consider the space EΣn×R
n. This space is contractible and

has a free action of Σn ≀ Z given by

(y, r1, . . . , rn) · (σ, a1, . . . , an) = (y · σ, rσ(1) + a1, . . . , rσ(n) + an).

Therefore, B(Σn ≀ Z) = (EΣn × R
n)/(Σn ≀ Z). Now consider the following

diagram:

EΣn × R
n

��

id×qn

// EΣn × (R/Z)n

��
(EΣn × R

n)/(Σn ≀ Z) //______ EΣn ×Σn (R/Z)n

Since the quotient map q : R → R/Z is a covering map, so also is id×qn;
in particular, it is a quotient map as are the two vertical maps. Thus they
clearly define a homeomorphism (EΣn × Rn)/(Σn ≀ Z) → EΣn ×Σn (R/Z)n

given by 〈y, r1, . . . , rn〉 7→ 〈y, r1, . . . , rn〉.

(b) Consider the action Σn ≀ Z × Z → Z given by

(σ, a1, . . . , an) · k = f(σ, a1, . . . , an) + k = a1 + · · · + an + k.

By part (a), we have a principal Σn ≀ Z-bundle p : EΣn × R
n → EΣn ×Σn

(R/Z)n, where p(y, r1, . . . , rn) = 〈y, r1, . . . , rn〉. Then Bf classifies the asso-
ciated principal Z-bundle p : (EΣn × R

n) ×Σn≀Z Z → EΣn ×Σn (R/Z)n.
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Now consider the following diagram:

(EΣn × R
n) ×Σn≀Z Z

p

��

ψ // R

q

��
EΣn ×Σn (R/Z)n

ϕ // R/Z

where ψ〈(y, r1, . . . , rn), k〉 = r1 + · · ·+ rn + k. Clearly this is a morphism of
principal Z-bundles; therefore, Bf ≃ ϕ.

Lemma 5.2. H1(EΣn ×Σn K(Z, 1)n; Z) ∼= Z.

Proof. Since K(Z, 1) = BZ and EΣn ×Σn BZ
n = B(Σn ≀ Z) by 5.1, we

have

H1(EΣn ×Σn K(Z, 1)n; Z) ∼= H1(B(Σn ≀ Z); Z) ∼= Hom(Σn ≀ Z,Z).

Let ι : Z
n →֒ Σn ≀Z be the inclusion given by ι(a1, . . . , an) = (1, a1, . . . , an),

and consider ι∗ : Hom(Σn ≀ Z,Z) → Hom(Zn,Z). Let F : Σn ≀ Z → Z be
a homomorphism and assume that ι∗(F ) = 0. Then F (1, a1, . . . , an) = 0
for all (a1, . . . , an) ∈ Z

n. Since any element (σ, a1, . . . , an) ∈ Σn ≀ Z can
be written as (σ, a1, . . . , an) = (σ, 0, . . . , 0) · (1, a1, . . . , an), we see that
F (σ, a1, . . . , an) = F (σ, 0, . . . , 0) + F (1, a1, . . . , an) = F (σ, 0, . . . , 0). But σ
is an element of Σn, which is a finite subgroup of Σn ≀ Z, and the codomain
is free, hence F (σ, 0, . . . , 0) = 0. Therefore, F = 0, so that ι∗ is a monomor-
phism.

Let ei be the element in Z
n whose coordinates are all zero, except the

ith one that is equal to 1. Let τ ∈ Σn be the permutation given by τ(i) = j
and τ(k) = k for k 6= i, j. Then (1, ei) · (τ, 0) = (τ, ej) = (τ, 0) · (1, ej). Hence
F ((1, ei) · (τ, 0)) = F ((τ, 0) · (1, ej)). But F ((1, ei) · (τ, 0)) = F (1, ei) and
F ((τ, 0) · (1, ej)) = F (1, ej). Therefore, F (1, ei) = F (1, ej). Since we have an

isomorphism ψ : Hom(Zn,Z)
∼=
→ Z

n given by ψ(f) = (f(e1), . . . , f(en)), it
follows that im(ψ◦ι∗) is the diagonal subgroup in Z

n, isomorphic to Z. More-
over, the canonical element Ω in Hom(Σn ≀Z,Z) given by Ω(σ, a1, . . . , an) =
a1 + · · · + an is a generator because ψι∗(Ω) = (ι∗(Ω)(e1), . . . , ι

∗(Ω)(en)) =
(1, . . . , 1).

As a consequence of Lemma 5.2, the (H1(−; Z), H1(−; Z))-transfers for
n-fold ramified covering maps coincide with the (H1(−; Z), H1(−; Z))-trans-
fers for n-fold ordinary covering maps. Moreover, there is exactly one transfer
for each integer. In other words, we have the following.

Theorem 5.3. The restriction

r : TRn (H1(−; Z), H1(−; Z)) → Tn(H
1(−; Z), H1(−; Z))

is an isomorphism, and both groups are isomorphic to Z.
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Proof. By 3.3, we have a commutative diagram

TRn (H1(−; Z), H1(−; Z))
∼= //

r

��

H1(SPn(R/Z); Z)

̺∗

��
Tn(H

1(−; Z), H1(−; Z))
∼= // H1(EΣn ×Σn (R/Z)n; Z)

By [2, 5.2.23], the canonical inclusion j : R/Z →֒ SPn(R/Z) is a homotopy
equivalence. Let w : SPn(R/Z) → R/Z be the map defined by w〈r1, . . . , rn〉
= r1 + · · · + rn. Then j∗[w] = [w ◦ j] = [id], which is a generator of
H1(R/Z; Z). Therefore, H1(SPn(R/Z); Z) ∼= Z, with generator given by [w].

By Lemma 5.1(a),

H1(EΣn ×Σn (R/Z)n; Z) ∼= H1(B(Σn ≀ Z); Z) = [B(Σn ≀ Z),BZ].

By [2, 6.4.6],

[B(Σn ≀ Z),BZ] ∼= Hom(π1(B(Σn ≀ Z)), π1(BZ)) = Hom(Σn ≀ Z,Z),

and by Lemma 5.2, Hom(Σn ≀ Z,Z) ∼= Z, with a generator f : Σn ≀ Z → Z

defined by f(σ, a1, . . . , an) = a1 + · · · + an. Therefore, by the naturality of
the homotopy equivalence ΩBG ≃ G for any discrete group G, a generator
of H1(B(Σn ≀Z); Z) is given by Bf . By Lemma 5.1(b), Bf ≃ ϕ. Since ̺∗[w] =
[w◦̺], and w̺〈y, r1, . . . , rn〉 = w〈r1, . . . , rn〉 = r1+· · ·+rn, we have w◦̺ = ϕ.
Therefore, ̺∗ is an isomorphism and hence so is r.

As an immediate consequence we have the following.

Corollary 5.4. There is an isomorphism TRn (H1(−; Z), H1(−; Z))→Z.

The canonical transfer t, as given in 1.4, corresponds to 1 ∈ Z. For any other

integer k the corresponding transfer is kt given by (kt)
p
n(η) = k ·tpn(η) for any

n-fold ramified covering map p : E → X and any element η ∈ H1(E; Z).
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